1
|
Molinari M, Lieberman OJ, Sulzer D, Santini E, Borgkvist A. 5-HT1B receptors mediate dopaminergic inhibition of vesicular fusion and GABA release from striatonigral synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584991. [PMID: 38559006 PMCID: PMC10980074 DOI: 10.1101/2024.03.14.584991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The substantia nigra pars reticulata (SNr), a crucial basal ganglia output nucleus, contains a dense expression of dopamine D1 receptors (D1Rs), along with dendrites belonging to dopaminergic neurons of substantia nigra pars compacta. These D1Rs are primarily located on the terminals of striatonigral medium spiny neurons, suggesting their involvement in the regulation of neurotransmitter release from the direct pathway in response to somatodendritic dopamine release. To explore the hypothesis that D1Rs modulate GABA release from striatonigral synapses, we conducted optical recordings of striatonigral activity and postsynaptic patch-clamp recordings from SNr neurons in the presence of dopamine and D1R agonists. We found that dopamine inhibits optogenetically triggered striatonigral GABA release by modulating vesicle fusion and Ca 2+ influx in striatonigral boutons. Notably, the effect of DA was independent of D1R activity but required activation of 5-HT1B receptors. Our results suggest a serotonergic mechanism involved in the therapeutic actions of dopaminergic medications for Parkinson's disease and psychostimulant-related disorders.
Collapse
|
2
|
Lee YG, Jeon S, Baik K, Kang SW, Ye BS. Substantia nigral dopamine transporter uptake in dementia with Lewy bodies. NPJ Parkinsons Dis 2023; 9:88. [PMID: 37296236 PMCID: PMC10256694 DOI: 10.1038/s41531-023-00534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Nigrostriatal dopaminergic degeneration is a pathological hallmark of dementia with Lewy bodies (DLB). To identify the subregional dopamine transporter (DAT) uptake patterns that improve the diagnostic accuracy of DLB, we analyzed N-(3-[18F] fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)-nortropane (FP-CIT) PET in 51 patients with DLB, in 36 patients with mild cognitive impairment with Lewy body (MCI-LB), and in 40 healthy controls (HCs). In addition to a high affinity for DAT, FP-CIT show a modest affinity to serotonin or norepinephrine transporters. Specific binding ratios (SBRs) of the nigrostriatal subregions were transformed to age-adjusted z-scores (zSBR) based on HCs. The diagnostic accuracy of subregional zSBRs were tested using receiver operating characteristic (ROC) curve analyses separately for MCI-LB and DLB versus HCs. Then, the effect of subregional zSBRs on the presence of clinical features and gray matter (GM) density were evaluated in all patients with MCI-LB or DLB as a group. ROC curve analyses showed that the diagnostic accuracy of DLB based on the zSBR of substantia nigra (area under the curve [AUC], 0.90) or those for MCI-LB (AUC, 0.87) were significantly higher than that based on the zSBR of posterior putamen for DLB (AUC, 0.72) or MCI-LB (AUC, 0.65). Lower zSBRs in nigrostriatal regions were associated with visual hallucination, severe parkinsonism, and cognitive dysfunction, while lower zSBR of substantia nigra was associated with widespread GM atrophy in DLB and MCI-LB patients. Taken together, our results suggest that evaluation of nigral DAT uptake may increase the diagnostic accuracy of DLB and MCI-LB than other striatal regions.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Nikolaus S, Wittsack HJ, Beu M, Hautzel H, Antke C, Mamlins E, Cardinale J, Decheva C, Huston JP, Antoch G, Giesel FL, Müller HW. The 5-HT1A receptor antagonist WAY-100635 decreases motor/exploratory behaviors and nigrostriatal and mesolimbocortical dopamine D2/3 receptor binding in adult rats. Pharmacol Biochem Behav 2022; 215:173363. [DOI: 10.1016/j.pbb.2022.173363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
4
|
Radulovic J, Ivkovic S, Adzic M. From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:481-495. [PMID: 35034756 DOI: 10.1016/b978-0-12-819410-2.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Neuroscience, Albert Einstein Medical College, Bronx, NY, United States; Department of Psychiatry and Behavioral Sciences, Albert Einstein Medical College, Bronx, NY, United States.
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Nikolaus S, Wittsack HJ, Antke C, Beu M, Hautzel H, Decheva C, Mamlins E, Mori Y, Huston JP, Antoch G, Müller HW. Serotonergic Modulation of Nigrostriatal and Mesolimbic Dopamine and Motor/Exploratory Behaviors in the Rat. Front Neurosci 2021; 15:682398. [PMID: 34456668 PMCID: PMC8387951 DOI: 10.3389/fnins.2021.682398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose: The 5-HT2A receptor (R) is known to modulate dopamine (DA) release in the mammalian brain. Altanserin (ALT) and 2,5-dimethoxy-4-iodoamphetamine (DOI) act as 5-HT2AR antagonist and agonist, respectively. In the present study, we assessed the effects of ALT and DOI on motor and exploratory behaviors and on D2/3R binding in the rat brain with in vivo imaging methods. Methods: D2/3R binding was determined after systemic application of ALT (10 mg/kg) or DOI (0.5 mg/kg) and the respective vehicles [dimethyl sulfoxide (DMSO) and 0.9% saline (SAL)] with [123I]IBZM as a single-photon emission computed tomography (SPECT) radioligand. Anatomical information for the delineation of the target regions was obtained with dedicated small animal MRI. Immediately after 5-HT2AR antagonistic or agonistic treatment, motor/exploratory behaviors were assessed for 45 (ALT) or 30 min (DOI) in an open field. Additional rats underwent behavioral measurements after injection of DMSO or SAL. Results: ALT increased D2/3R binding in the ventral hippocampus relative to vehicle, while DOI augmented D2/3R binding in caudate putamen, frontal cortex, motor cortex, and ventral hippocampus. The 5-HT2AR agonist as well as antagonist decreased parameters of motor activity and active exploration. However, ALT, in contrast to DOI, decreased explorative head–shoulder motility and increased sitting. Conclusions: The regional increases of D2/3R binding after ALT and DOI (90 and 75 min post-challenge) may be conceived to reflect decreases of synaptic DA. The reductions of motor/exploratory activities (min 1–45 and min 1–30 after challenge with ALT and DOI, respectively) contrast the regional reductions of D2/3R binding, as they indicate elevated DA levels at the time of behavioral measurements. It may be concluded that ALT and DOI modulate DA in the individual regions of the nigrostriatal and mesolimbocortical pathways differentially and in a time-dependent fashion.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Cvetana Decheva
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yuriko Mori
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Nakamura K. The role of the dorsal raphé nucleus in reward-seeking behavior. Front Integr Neurosci 2013; 7:60. [PMID: 23986662 PMCID: PMC3753458 DOI: 10.3389/fnint.2013.00060] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN), a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear. To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine. I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide "reward context" information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information.
Collapse
Affiliation(s)
- Kae Nakamura
- Department of Physiology, Kansai Medical University Hirakata, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Kawaguchi, Japan
| |
Collapse
|
7
|
Reyes S, Fu Y, Double K, Thompson L, Kirik D, Paxinos G, Halliday GM. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J Comp Neurol 2013; 520:2591-607. [PMID: 22252428 DOI: 10.1002/cne.23051] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G-protein-regulated inward-rectifier potassium channel 2 (GIRK2) is reported to be expressed only within certain dopamine neurons of the substantia nigra (SN), although very limited data are available in humans. We examined the localization of GIRK2 in the SN and adjacent ventral tegmental area (VTA) of humans and mice by using either neuromelanin pigment or immunolabeling with tyrosine hydroxylase (TH) or calbindin. GIRK2 immunoreactivity was found in nearly every human pigmented neuron or mouse TH-immunoreactive neuron in both the SN and VTA, although considerable variability in the intensity of GIRK2 staining was observed. The relative intensity of GIRK2 immunoreactivity in TH-immunoreactive neurons was determined; in both species nearly all SN TH-immunoreactive neurons had strong GIRK2 immunoreactivity compared with only 50-60% of VTA neurons. Most paranigral VTA neurons also contained calbindin immunoreactivity, and approximately 25% of these and nearby VTA neurons also had strong GIRK2 immunoreactivity. These data show that high amounts of GIRK2 protein are found in most SN neurons as well as in a proportion of nearby VTA neurons. The single previous human study may have been compromised by the fixation method used and the postmortem delay of their controls, whereas other studies suggesting that GIRK2 is located only in limited neuronal groups within the SN have erroneously included VTA regions as part of the SN. In particular, the dorsal layer of dopamine neurons directly underneath the red nucleus is considered a VTA region in humans but is commonly considered the dorsal tier of the SN in laboratory species.
Collapse
Affiliation(s)
- Stefanie Reyes
- Neuroscience Research Australia and the School of Medical Sciences, University of New South Wales, Randwick, Sydney, 2031 New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Hashemi P, Dankoski EC, Wood KM, Ambrose RE, Wightman RM. In vivo electrochemical evidence for simultaneous 5-HT and histamine release in the rat substantia nigra pars reticulata following medial forebrain bundle stimulation. J Neurochem 2011; 118:749-59. [PMID: 21682723 PMCID: PMC3155665 DOI: 10.1111/j.1471-4159.2011.07352.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exploring the mechanisms of serotonin [5-hydroxytryptamine (5-HT)] in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized fast-scan cyclic voltammetry for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely because of increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR.
Collapse
Affiliation(s)
- Parastoo Hashemi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - Elyse C. Dankoski
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - Kevin M. Wood
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - R. Ellen Ambrose
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| | - R. Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599
| |
Collapse
|
10
|
Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal Chem 2009; 81:9462-71. [PMID: 19827792 PMCID: PMC2783829 DOI: 10.1021/ac9018846] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
5-Hydroxytryptamine (5-HT) is an important molecule in the brain that is implicated in mood and emotional processes. In vivo, its dynamic release and uptake kinetics are poorly understood due to a lack of analytical techniques for its rapid measurement. Whereas fast-scan cyclic voltammetry with carbon fiber microelectrodes is used frequently to monitor subsecond dopamine release in freely moving and anesthetized rats, the electrooxidation of 5-HT forms products that quickly polymerize and irreversibly coat the carbon electrode surface. Previously described modifications of the electrochemical waveform allow stable and sensitive 5-HT measurements in mammalian tissue slice preparations and in the brain of fruit fly larvae. For in vivo applications in mammals, however, the problem of electrode deterioration persists. We identify the root of this problem to be fouling by extracellular metabolites such as 5-hydoxyindole acetic acid (5-HIAA), which is present in 200-1000 times the concentration of 5-HT and displays similar electrochemical properties, including filming of the electrode surface. To impede access of the 5-HIAA to the electrode surface, a thin layer of Nafion, a cation exchange polymer, has been electrodeposited onto cylindrical carbon-fiber microelectrodes. The presence of the Nafion film was confirmed with environmental scanning electron microscopy and was demonstrated by the diminution of the voltammetric signals for 5-HIAA as well as other common anionic species. The modified microelectrodes also display increased sensitivity to 5-HT, yielding a characteristic cyclic voltammogram that is easily distinguishable from other common electroactive brain species. The thickness of the Nafion coating and a diffusion coefficient (D) in the film for 5-HT were evaluated by measuring permeation through Nafion. In vivo, we used physiological, anatomical, and pharmacological evidence to validate the signal as 5-HT. Using Nafion-modified microelectrodes, we present the first endogenous recording of 5-HT in the mammalian brain.
Collapse
Affiliation(s)
- Parastoo Hashemi
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | |
Collapse
|
11
|
Threlfell S, Greenfield SA, Cragg SJ. 5-HT(1B) receptor regulation of serotonin (5-HT) release by endogenous 5-HT in the substantia nigra. Neuroscience 2009; 165:212-20. [PMID: 19819310 DOI: 10.1016/j.neuroscience.2009.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/02/2009] [Accepted: 10/04/2009] [Indexed: 11/25/2022]
Abstract
Axonal release of serotonin (5-hydroxytryptamine, 5-HT) in the CNS is typically regulated by presynaptic 5-HT autoreceptors. Release of 5-HT in substantia nigra pars reticulata (SNr), a principal output from the basal ganglia, has seemed an interesting exception to this rule. The SNr receives one of the highest densities of 5-HT innervation in mammalian brain and yet negative feedback regulation of axonal 5-HT release by endogenous 5-HT has not been identified here. We explored whether we could identify autoregulation of 5-HT release by 5-HT(1B) receptors in rat SNr slices using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to detect 5-HT release evoked by discrete stimuli (50 Hz, 20 pulses) paired over short intervals (1-10 s) within which any autoreceptor control should occur. Evoked 5-HT release exhibited short-term depression after an initial stimulus that recovered by 10 s. Antagonists for 5-HT(1B) receptors, isamoltane (1 microM) or SB 224-289 (1 microM), did not modify release during a stimulus train, but rather, they modestly relieved depression of subsequent release evoked after a short delay (< or =2 s). Release was not modified by antagonists for GABA (picrotoxin, 100 microM, saclofen, 50 microM) or histamine-H(3) (thioperamide, 10 microM) receptors. These data indicate that 5-HT release can activate a 5-HT(1B)-receptor autoinhibition of subsequent release, which is mediated directly via 5-HT axons and not via GABAergic or histaminergic inputs. These data reveal that 5-HT release in SNr is not devoid of autoreceptor regulation by endogenous 5-HT, but rather is under modest control which only weakly limits 5-HT signaling.
Collapse
Affiliation(s)
- S Threlfell
- University Department of Pharmacology, Oxford, UK.
| | | | | |
Collapse
|
12
|
Düzel E, Bunzeck N, Guitart-Masip M, Düzel S. NOvelty-related motivation of anticipation and exploration by dopamine (NOMAD): implications for healthy aging. Neurosci Biobehav Rev 2009; 34:660-9. [PMID: 19715723 DOI: 10.1016/j.neubiorev.2009.08.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 12/24/2022]
Abstract
Studies in humans and animals show that dopaminergic neuromodulation originating from the substantia nigra/ventral tegmental area (SN/VTA) of the midbrain enhances hippocampal synaptic plasticity for novel events and has a motivationally energizing effect on actions through striatal mechanisms. In this review, we discuss how these mechanisms of dopaminergic neuromodulation connect to the behavioural and functional consequences that age-related structural degeneration of the SN/VTA exerts on declarative memory. We propose a framework called 'NOvelty-related Motivation of Anticipation and exploration by Dopamine' (NOMAD) which captures existing links between novelty, dopamine, long-term memory, plasticity, energization and their relation to aging. We propose that maximizing the use of this mechanism by maintaining mobility and exploration of novel environments could be a potential mechanism to slow age-related decline of memory.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neuroscience and Department of Psychology, University College London, 17 Queen Square, London WC1N 3AR, UK.
| | | | | | | |
Collapse
|
13
|
Düzel E, Bunzeck N, Guitart-Masip M, Wittmann B, Schott BH, Tobler PN. Functional imaging of the human dopaminergic midbrain. Trends Neurosci 2009; 32:321-8. [PMID: 19446348 DOI: 10.1016/j.tins.2009.02.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/02/2009] [Accepted: 02/18/2009] [Indexed: 10/20/2022]
Abstract
Invasive recording of dopamine neurons in the substantia nigra and ventral tegmental area (SN/VTA) of behaving animals suggests a role for these neurons in reward learning and novelty processing. In humans, functional magnetic resonance imaging (fMRI) is currently the only non-invasive event-related method to measure SN/VTA activity, but it is debated to what extent fMRI enables inference about dopaminergic responses within the SN/VTA. We consider the anatomical and functional parcellation of the primate SN/VTA and find that its homogeneity suggests little variation in the regional specificity of fMRI signals for reward-related dopaminergic responses. Hence, these responses seem to be well captured by the compound fMRI signal from the SN/VTA, which seems quantitatively related to dopamine release in positron emission tomography (PET). We outline how systematic investigation of the functional parcellation of the SN/VTA in animals, new developments in fMRI analysis and combined PET-fMRI studies can narrow the gap between fMRI and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC13 NAR, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Dopamine (DA)-containing neurons involved in the regulation of sleep and waking (W) arise in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc). The VTA and SNc cells have efferent and afferent connections with the dorsal raphe nucleus (DRN), the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT), the locus coeruleus (LC), the lateral and posterior hypothalamus (LH), the basal forebrain (BFB), and the thalamus. Molecular cloning techniques have enabled the characterization of two distinct groups of DA receptors, D(1)-like and D(2)-like receptors. The D(1) subfamily includes the D(1) and D(5) receptors, whereas the D(2) subfamily comprises the D(2), D(3), and D(4) receptors. Systemic administration of a selective D(1) receptor agonist induces behavioral arousal, together with an increase of W and a reduction of slow wave sleep (SWS) and REM sleep (REMS). Systemic injection of a DA D(2) receptor agonist induces biphasic effects, such that low doses reduce W and increase SWS and REMS (predominant activation of the D(2) autoreceptor), whereas large doses induce the opposite effect (predominant facilitation of the D(2) postsynaptic receptor). Compounds with DA D(1) or D(2) receptor blocking properties augment non-REMS and reduce W. Preliminary findings tend to indicate that the administration of a DA D(3)-preferring agonist induces somnolence and sleep in laboratory animals and man. DA neurons in the VTA and the SNc do not change their mean firing rate across the sleep-wake cycle. It has been proposed that DA cells in the midbrain show a change in temporal pattern rather than firing rate during the sleep-wake cycle. The available evidence tends to indicate that during W there occurs an increase of burst firing activity of DA neurons, and an enhanced release of DA in the VTA, the nucleus accumbens (NAc), and a number of forebrain structures. A series of structures relevant for the regulation of the behavioral state, including the DRN, LDT/PPT, LC, and LH, could be partly responsible for the changes in the temporal pattern of activity of DA neurons.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, 2833/602 Zudañez Street, Montevideo 11300, Uruguay.
| | | |
Collapse
|
15
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Janhunen S, Ahtee L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci Biobehav Rev 2006; 31:287-314. [PMID: 17141870 DOI: 10.1016/j.neubiorev.2006.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/10/2006] [Accepted: 09/18/2006] [Indexed: 01/21/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) modulate dopaminergic function. Discovery of their multiplicity has lead to the search for subtype-selective nAChR agonists that might be therapeutically beneficial in diseases linked to brain dopaminergic pathways. The regulation and responses of the nigrostriatal and mesolimbic dopaminergic pathways are often similar, but some differences do exist. The cerebral distribution and characteristics of various nAChR subtypes differ between nigrostriatal and mesolimbic dopaminergic pathways. Comparison of nicotine and epibatidine, two nAChR agonists whose relative affinities for various nAChR subtypes differ, revealed differences in the nAChR-mediated regulation of dopaminergic activation between these dopamine systems. Nicotine preferentially stimulates the mesolimbic pathway, whereas epibatidine's stimulatory effect falls on the nigrostriatal pathway. Thus, it may be possible to stimulate the nigrostriatal pathway with selective nAChR agonists that do not significantly affect the mesolimbic pathway, and thus lack addictive properties. Furthermore, dopamine uptake inhibition revealed a novel inhibitory effect of epibatidine on accumbal dopamine release, which could form a basis for novel antipsychotics that could alleviate the elevated accumbal dopaminergic tone found in schizophrenia during the active psychotic state. Different regulation of nigrostriatal and mesolimbic dopaminergic pathways by nAChRs could be an important basis for developing novel drugs for treatment of Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Sanna Janhunen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5), Helsinki, FIN-00014, Finland.
| | | |
Collapse
|
17
|
Cobb WS, Abercrombie ED. Differential regulation of somatodendritic and nerve terminal dopamine release by serotonergic innervation of substantia nigra. J Neurochem 2003; 84:576-84. [PMID: 12558977 DOI: 10.1046/j.1471-4159.2003.01546.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.
Collapse
Affiliation(s)
- William S Cobb
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA
| | | |
Collapse
|
18
|
Bata-García JL, Heredia-López FJ, Alvarez-Cervera FJ, Arankowsky-Sandoval G, Góngora-Alfaro JL. Circling behavior induced by microinjection of serotonin reuptake inhibitors in the substantia nigra. Pharmacol Biochem Behav 2002; 71:353-63. [PMID: 11812544 DOI: 10.1016/s0091-3057(01)00721-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The nigrostriatal dopaminergic neurons of the substantia nigra pars compacta (SNc) and the nondopaminergic neurons of the substantia nigra pars reticulata (SNr) receive a dense synaptic input from the serotonergic neurons of the raphe nuclei. To assess whether serotonin [5-hydroxytryptamine (5-HT)] spontaneously released at the substantia nigra could modulate motor activity, the 5-HT reuptake inhibitors (SRIs), duloxetine (6-12 nmol) and clomipramine (12 nmol), were unilaterally microinjected either into the SNc or the SNr of freely moving rats, and the circling behavior was counted with an automated rotometer. In the SNc, the main effect of the SRIs was a contraversive circling behavior that was not observed when applied at distances > or = 0.2 mm above the SNc. The circling induced by clomipramine was blocked by microinjection of haloperidol (53 nmol) into the ipsilateral neostriatum, suggesting that the circling elicited by microinjection of the SRIs into the SNc depends on an intact striatal dopaminergic transmission. Microinjection of 5-HT (21 nmol) only produced a significant contraversive circling response when it was coinjected with the SRIs. Pretreatment with methysergide (1 mg/kg ip), a nonselective 5-HT(2) antagonist, did not block the circling elicited by microinjection of clomipramine into the SNc, either alone or in combination with 5-HT. However, microinjection of the 5-HT(2) antagonist mianserin (2 nmol) into the SNc partially inhibited the circling induced by duloxetine (6 nmol), alone or coinjected with 5-HT. Since current theories of circling behavior hypothesize that the animal turns away from the cerebral hemisphere where dopamine neurotransmission predominates, these results suggest that the contraversive circling induced by the unilateral microinjection of SRIs into the SNc could be mediated by a 5-HT-induced increase of firing frequency of nigrostriatal dopaminergic neurons. When applied into the SNr, clomipramine and duloxetine also elicited a contraversive circling behavior and enhanced the circling induced by 5-HT. Systemic methysergide (1 mg/kg i.p.), but not intranigral mianserin (2 nmol), blocked the circling elicited by microinjection of clomipramine into the SNr, either alone or in combination with 5-HT. These results suggest that 5-HT(2)-like receptors are involved in the contraversive circling induced by enhancement of serotonergic transmission in the SNr.
Collapse
Affiliation(s)
- José L Bata-García
- Laboratorios de Neurofisiología, Centro de Investigaciones Regionales, Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Avenida Itzaes No. 490, Mérida, Yucatán, México 97000
| | | | | | | | | |
Collapse
|
19
|
Gervais J, Rouillard C. Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse 2000; 35:281-91. [PMID: 10657038 DOI: 10.1002/(sici)1098-2396(20000315)35:4<281::aid-syn6>3.0.co;2-a] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The serotoninergic (5-HT) input from the dorsal raphe nucleus (DRN) to midbrain dopamine (DA) neurons is one of the most prominent. In this study, using standard extracellular single cell recording techniques we investigated the effects of electrical stimulation of the DRN on the spontaneous activity of substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) DA neurons in anesthetized rats. Poststimulus time histograms (PSTH) revealed two different types of response in both SNpc and VTA. Some cells exhibited an inhibition-excitation response while in other DA neurons the initial response was an excitation followed by an inhibition. In SNpc, 56% of the DA cells recorded were initially inhibited and 31% of the DA cells were initially excited. In contrast, 63% of VTA DA cells were initially excited and 34% were initially inhibited. Depletion of endogenous 5-HT by the neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), and the 5-HT synthesis inhibitor para-chlorophenylalanine (PCPA), almost completely eliminated the inhibition-excitation response in both SNpc and VTA DA cells, without changing the percentage of DA cells initially excited. Consequently, the proportion of DA neurons that were not affected by DR stimulation increased after 5-HT depletion (from 13% to 60% in SNpc and from 6% to 31% in VTA). In several DA cells, DRN stimulation caused important changes in firing rate and firing pattern. These data strongly suggest that the 5-HT input from the DRN is mainly inhibitory. It also suggests that 5-HT afferences modulate SNpc and VTA DA neurons in an opposite manner. Our results also suggest that non-5-HT inputs from DR can also modulate mesencephalic DA neurons. A differential modulation of VTA and SNpc DA neurons by 5-HT afferences from the DRN could have important implications for the development of drugs to treat schizophrenia or other neurologic and psychiatric diseases in which DA neurons are involved.
Collapse
Affiliation(s)
- J Gervais
- Département de Médecine, Université Laval, Ste-Foy, Québec, Canada G1V 4G2
| | | |
Collapse
|
20
|
Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J Neurosci 1998. [PMID: 9698340 DOI: 10.1523/jneurosci.18-16-06528.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study we investigate, using in vivo microdialysis, the involvement of central 5-HT3 receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindole-3-acetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens and the striatum of halothane-anesthetized rats. DRN stimulation (300 microA, 1 msec at 3, 5, 10, and 20 Hz for 15 min) induced a frequency-dependent increase of accumbal DA release and a concomitant reduction of DA release in the ipsilateral striatum at 20 Hz. In both structures DOPAC and 5-HIAA dialysate contents were enhanced in a frequency-dependent manner. Central serotonin (5-HT) depletion, induced by intra-raphe injections of 5, 7-dihydroxytryptamine neurotoxin, abolished the effect of 20 Hz DRN stimulation on DA, DOPAC, and 5-HIAA extracellular levels in both regions. The 5-HT synthesis inhibitor para-chlorophenylalanine (3 x 400 mg/kg, i.p., for 3 d), although preventing the effect on DA release, failed to modify significantly the effect of 20 Hz DRN stimulation on DOPAC and 5-HIAA outflow in both structures. Ondansetron (0.1 and 1 mg/kg) and (S)-zacopride (0.1 mg/kg), two 5-HT3 antagonists, significantly impaired the increase of accumbal DA release induced by 20 Hz DRN stimulation but did not affect either the decrease of striatal DA release or the increase in DOPAC outflow in both structures. These results indicate that an enhancement of central 5-HT transmission induced by DRN stimulation differentially affects striatal and accumbal DA release and that endogenous 5-HT, via its action on 5-HT3 receptors, exerts a facilitatory control restricted to the mesoaccumbal DA pathway.
Collapse
|
21
|
Thorré K, Ebinger G, Michotte Y. 5-HT4 receptor involvement in the serotonin-enhanced dopamine efflux from the substantia nigra of the freely moving rat: a microdialysis study. Brain Res 1998; 796:117-24. [PMID: 9689461 DOI: 10.1016/s0006-8993(98)00337-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functional regulation by serotonin (5-HT) receptors of the 5-HT-enhanced dopamine (DA) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. Exogenously administered or extracellularly enhanced 5-HT (by means of intranigral citalopram perfusion) (both 1 microM for 1 h) significantly increased nigral DA efflux to 165% and 145%, respectively. Intranigral administration of pindolol (10 microM, 3 h), a 5-HT1A/1B receptor antagonist which is clinically used in order to block 5-HT1A/1B autoreceptors, did not affect DA levels but significantly increased nigral 5-HT levels to 135%. Co-perfusion of this antagonist with 5-HT (1 microM, 1 h) did not abolish the 5-HT-induced DA release from the SN as DA was increased to 166%. Local application of the 5-HT1A/1B receptor agonist, CP 93129 (1 microM, 1 h), increased DA release from the SN to 4770% whereas 5-HT release was significantly decreased to 75%. Co-perfusion of the 5-HT1A/1B receptor antagonist, pindolol, with this agonist only partly abolished the CP 93129-induced DA release whereas the CP 93129-induced decrease in nigral 5-HT release was completely abolished. Administration of the 5-HT2A/2C receptor antagonist, ketanserin (50 microM, 3 h), significantly increased DA to 143% and 5-HT release to 363%. Co-perfusion of this antagonist with 5-HT still caused an increase in nigral DA release to 214%. Intranigral perfusion of the 5-HT4 receptor antagonist, RS 39604 (10 microM, 3 h), did not affect DA levels but significantly decreased nigral 5-HT levels to 74%. Co-perfusion of this antagonist with 5-HT was able to prevent the 5-HT-enhanced DA efflux from the SN. From this study it can be concluded that the 5-HT-enhanced (and possibly the citalopram-induced) nigral DA release is 5-HT4 receptor mediated.
Collapse
Affiliation(s)
- K Thorré
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Belgium
| | | | | |
Collapse
|
22
|
Thorré K, Sarre S, Smolders I, Ebinger G, Michotte Y. Dopaminergic regulation of serotonin release in the substantia nigra of the freely moving rat using microdialysis. Brain Res 1998; 796:107-16. [PMID: 9689460 DOI: 10.1016/s0006-8993(98)00336-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The functional regulation by dopamine (DA) receptors of serotonin (5-HT) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. A D1- and D2-receptor-mediated inhibition of nigral 5-HT release was demonstrated in this study. Continuous administration of the D1-receptor agonist CY 208243 (10 microM) through the probe did not alter extracellular DA nor 5-HT from the SN, whereas intranigral administration of the D1-receptor antagonist SCH-23390 HCl (10 microM) significantly increased both DA (to 214%) and 5-HT release (to 168%) from the SN. Co-perfusion of the D1-receptor agonist and antagonist did not change nigral DA nor 5-HT release compared to perfusion of the antagonist alone. The continuous intranigral perfusion of the D2-receptor agonist, (-)-quinpirole HCl (1 microM) significantly decreased both DA ad 5-HT release to 71% and 78%, respectively. These decreases were abolished when the D2-receptor antagonist S(-)-sulpiride (10 microM) and the D2-receptor agonist (-)-quinpirole HCl (1 microM) were co-perfused. In contrast, the intranigral perfusion of the DA precursor, L-DOPA (5 microM; 1 h), significantly increased nigral and striatal 5-HT release to 202% and 155%, respectively. This enhanced nigral 5-HT release might not be receptor-mediated. The results of the present study suggest a D1 and D2 regulation of nigral 5-HT release, either directly mediated by DA receptors on nigral 5-HT terminals or indirectly by nigral GABA, Glu or Asp. Alternatively, the observed DA-5HT-interaction in the SN might not reflect a local interaction but might involve an interaction at the level of the serotonin cell body region, the dorsal raphe nuclei (DRN).
Collapse
Affiliation(s)
- K Thorré
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Thorré K, Sarre S, Ebinger G, Michotte Y. Characterization of the extracellular serotonin release in the substantia nigra of the freely moving rat using microdialysis. Brain Res 1997; 772:29-36. [PMID: 9406952 DOI: 10.1016/s0006-8993(97)00589-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The characteristics of the serotonin release were investigated in the substantia nigra (SN) of the freely moving rat using microdialysis. We also examined whether the delay between surgery and microdialysis experiments might influence these characteristics by implanting rats with a guide cannula 1 or 2 days prior to microdialysis experiments. In the first group, the tissue was not punctured until the microdialysis probe was inserted the evening before the experiment. In the second group, the nigral tissue was punctured with an extended obturator which was then replaced by a microdialysis probe the evening before the experiment. After administration of 60 mM K+ a more pronounced increase in serotonin was observed in the first group (260%) compared to the second group (159%). Calcium-free and tetrodotoxin (TTX, a sodium channel blocker) (1 microM) perfusion reduced extracellular serotonin to respectively 77% and 80% in the first group and 70% and 64% in the second group. These results suggest that vesicular release of nigral serotonin only occurs partially in this region and that minimizing the damage caused by implantation of the probe results only in 10% more vesicular release of serotonin. However, blockade of the serotonin reuptake carrier caused more TTX sensitivity of the serotonin release. Also, stimulation of the dorsal raphe by locally perfusing 60 mM K+ decreased serotonin in the SN, confirming the anatomical and functional link between both areas.
Collapse
Affiliation(s)
- K Thorré
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
24
|
Rocha BA, Ator R, Emmett-Oglesby MW, Hen R. Intravenous cocaine self-administration in mice lacking 5-HT1B receptors. Pharmacol Biochem Behav 1997; 57:407-12. [PMID: 9218264 DOI: 10.1016/s0091-3057(96)00444-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present experiment tested the hypothesis that 5-HT1B receptors are involved in the reinforcing effects of cocaine. Transgenic mice lacking 5-HT1B receptors were used as subjects and compared with wild-type mice for the acquisition and maintenance of intravenous (IV) cocaine self-administration. Male 129/Sv-ter and 5-HT1B-minus 129/Sv-ter inbred mice (Columbia University, New York) were initially trained to press a lever under a fixed-ratio schedule 2, first for sweetened condensed milk as reinforcer and subsequently for cocaine (2.0 mg/kg/infusion). When a stable baseline of responding was obtained, each subject was tested under different doses of cocaine (1.0, 2.0, and 4.0 mg/kg), with the number of reinforcers per hour used as the dependent variable. Both strains successfully acquired food-shaping and cocaine self-administration, but the mutant mice presented a significantly shorter latency to meet IV cocaine self-administration acquisition criteria (p < 0.05). However, both wild-type and mutant mice had similar dose-response to cocaine. These results suggest that the 5-HT1B receptors may be implicated in the propensity to self-administer cocaine, but other mechanisms might be involved in the maintenance of cocaine self-administration.
Collapse
Affiliation(s)
- B A Rocha
- Department of Pharmacology, University of North Texas Health Science Center, Fort Worth 76107, USA.
| | | | | | | |
Collapse
|
25
|
Rick CE, Stanford IM, Lacey MG. Excitation of rat substantia nigra pars reticulata neurons by 5-hydroxytryptamine in vitro: evidence for a direct action mediated by 5-hydroxytryptamine2C receptors. Neuroscience 1995; 69:903-13. [PMID: 8596658 DOI: 10.1016/0306-4522(95)00283-o] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Single-unit extracellular and whole-cell patch clamp recording were used to study the actions of exogenously applied 5-hydroxytryptamine on substantia nigra pars reticulata neurons in parasaggital slices of rat midbrain. Seventy-six per cent of substantia nigra pars reticulata cells (254/334) recorded extracellularly were excited by 5-hydroxytryptamine (EC50 = 9.56 microM); in the remainder, inhibitions (13.5%), biphasic responses (4.2%) or lack of response (6.3%) were observed. Using whole-cell patch recording, 5-hydroxytryptamine (10 microM) caused either an inward current (9/9 cells) or a depolarization (3/3 cells) at membrane potentials in the range -50 to -90 mV, which was resistant to tetrodotoxin (4/4 cells), indicating that the predominant, excitatory action of 5-hydroxytryptamine was due to a direct action on substantia nigra pars reticulata neurons. The 5-hydroxytryptamine excitation (recorded extracellularly) was reduced to 24 +/- 6% of control values by methysergide (0.1 microM) and to 17 +/- 5% of control by ketanserin (10 microM), but was unaffected by the 5-hydroxytryptamine antagonists spiperone (0.1 microM), yohimbine (0.1 microM), pindolol (1 microM), GR113808A (1 microM) or ICS 205930 (10 microM). In addition, the 5-hydroxytryptamine excitation was mimicked by the 5-hydroxytryptamine2C receptor--preferring agonist alpha-methyl 5-hydroxytryptamine (10 microM), but the agonists CP93, 129 (0.1-1 microM) and (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (0.1-1 microM) were without effect. Taken together, this pharmacology indicated involvement of the 5-hydroxytryptamine2C receptor in the 5-hydroxytryptamine excitation, while other candidate receptors known to be present in rat substantia nigra pars reticulata (5-hydroxytryptamine1B, 5-hydroxytryptamine2A and 5-hydroxytryptamine4) could be excluded from consideration. While in accord with current information on the location of 5-hydroxytryptamine receptor subtypes in substantia nigra pars reticulata, and the consequence of activation of neuronal 5-hydroxytryptamine2C receptors, these results contrast with data from in vivo experiments which suggest that the net effect of 5-hydroxytryptamine is to inhibit substantia nigra pars reticulata neurons. The reason for this apparent discrepancy may lie in detailed consideration of the microcircuitry of the substantia nigra pars reticulata. This may lead to a re-evaluation of the influence of 5-hydroxytryptamine on this basal ganglia output relay nucleus, and its role in motor control and the gating of generalized seizure activity.
Collapse
Affiliation(s)
- C E Rick
- Department of Pharmacology, Medical School, University of Birmingham, Edgbaston, U.K
| | | | | |
Collapse
|
26
|
Dickie BG, Greenfield SA. Release of acetylcholinesterase from guinea-pig substantia nigra: effects of tryptaminergic drugs and dorsal raphé nucleus stimulation. Neuropharmacology 1995; 34:1191-200. [PMID: 8532190 DOI: 10.1016/0028-3908(95)00088-n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The guinea-pig substantia nigra receives a 5-hydroxytryptaminergic (5-HT ergic) projection from the dorsal raphé nucleus. In this study we have attempted to identify the 5-HT receptor subtype mediating release of acetylcholinesterase (AChE) from nigral neurones, measured by assay of perfusate obtained via chronically implanted push-pull cannulae. The effects of direct nigral application of 5-HT, 2-methyl-5-HT and 5-methoxytryptamine. Application of submicromolar concentrations of 5-HT, 2,5,-dimethoxy-4- iodoamphetamine and alpha-methyl-5-HT significantly enhanced release of AChE, whereas 5-carboxamidotryptamine, sumatriptan, 2-methyl-5-HT and 5-methoxytryptamine were ineffective at a similar concentration range. Electrical stimulation (50 Hz, 20-300 mu A) of the dorsal raphé nucleus evoked release of AChE from the substantia nigra, and induced a rotational behavioural effect for the duration of stimulation. Pretreatment with 5,7,-dihydroxytryptamine inhibited both DRN-evoked release of AChE and animal rotation. The 5-HT receptor antagonists ketanserin and ritanserin (10(-7)-10(-6)M, when applied to the substantia nigra, inhibited raphé-stimulated AChE release. Drugs which inhibited raphé-stimulated release of AChE had no effect on concomitant animal rotation, indicating that the behavioural events are mediated via distinct processes, unrelated to those mediating nigral AChE release. The data suggest that evoked release of AChE from the substantia nigra by stimulation of the dorsal raphé nucleus may be mediated in part via a 5-HT2 receptor type. The 5-HT1D agonists 5-carboxamidotryptamine (10(-6)M and sumatriptan (10(-5)M also inhibited raphé-evoked AChE release, suggesting a possible presynaptic autoinhibitory role for 5-HT1D receptors on raphé-nigral nerve terminals.
Collapse
Affiliation(s)
- B G Dickie
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
27
|
Medina L, Anderson KD, Karle EJ, Reiner A. An ultrastructural double-label immunohistochemical study of the enkephalinergic input to dopaminergic neurons of the substantia nigra in pigeons. J Comp Neurol 1995; 357:408-32. [PMID: 7673476 DOI: 10.1002/cne.903570307] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron microscopic immunohistochemical double-label studies were carried out in pigeons to characterize the ultrastructural organization and postsynaptic targets of enkephalinergic (ENK+) striatonigral projection. ENK+ terminals in the substantia nigra were labeled with antileucine-enkephalin antiserum by using peroxidase-antiperoxidase methods, and dopaminergic neurons were labeled with anti-tyrosine hydroxylase antiserum by using silver-intensified immunogold methods. ENK+ terminals on dopaminergic neurons were equal in abundance to ENK+ terminals on nondopaminergic neurons, although the former were typically somewhat smaller than the latter (mean size: 0.50 vs. 0.75 micron, respectively). ENK+ terminals were evenly distributed on the cell bodies and dendrites of dopaminergic neurons, and they were evenly distributed on dendrites but rare on perikarya of nondopaminergic neurons. Transection of the basal telencephalic output revealed that 75% of the nigral ENK+ terminals were of basal telencephalic origin. These telencephalic ENK+ terminals included over 80% of those smaller than 0.80 micron on dopaminergic neurons and smaller than 1.0 micron on nondopaminergic neurons, and none greater than this in size. Both telencephalic and the nontelencephalic ENK+ nigral terminals made predominantly symmetric synapses on nigral neurons. Although the basal telencephalic ENK+ terminals uniformly targeted dendrites and perikarya, nontelencephalic ENK+ terminals seemed to avoid perikarya. The results indicate that ENK+ striatonigral neurons in birds may directly influence both dopaminergic and nondopaminergic neurons of the substantia nigra. Based on similar data for substance P-containing striatonigral terminals, the roles of enkephalin and substance P in influencing nigral dopaminergic neurons may differ slightly, as they appear to target preferentially different portions of dopaminergic neurons. The overall results in pigeons are similar to those for ENK+ terminals in the ventral tegmental area in rats, suggesting that the synaptic organization of the ENK+ input to the tegmental dopaminergic cell fields is similar in mammals and birds.
Collapse
Affiliation(s)
- L Medina
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Ascending Noradrenergic and Serotonergic Systems in the Human Brainstem. ADVANCES IN BEHAVIORAL BIOLOGY 1995. [DOI: 10.1007/978-1-4615-1853-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Abstract
The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. It has abundant 5-HT neurons and many other neurotransmitter and/or neuromodulator containing neurons. Its vast fiber connections to other parts of the central nervous system provide a morphological basis for its pain modulating function. Its descending projections, via the nucleus raphe magnus or directly, modulate the responses caused by noxious stimulation of the spinal dorsal horn neurons. In ascending projections, it directly modulates the responses of pain sensitive neurons in the thalamus. It can also be involved in analgesia effects induced by the arcuate nucleus of the hypothalamus. Neurophysiologic and neuropharmacologic results suggest that 5-HT neurons and ENKergic neurons in the DRN are pain inhibitory, and GABA neurons are the opposite. The studies of the intrinsic synapses between ENKergic neurons, GABAergic neurons, and 5-HT neurons within the DRN throw light on their relations in pain modulation functions, and further explain their functions in pain mediation.
Collapse
Affiliation(s)
- Q P Wang
- Department of Neurobiology, Shanghai Medical University, China
| | | |
Collapse
|
31
|
Zhang J, Chiodo LA, Freeman AS. Further characterization of the effects of BMY 14802 on dopamine neuronal activity. Synapse 1993; 15:276-84. [PMID: 7908761 DOI: 10.1002/syn.890150404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Further evaluation of the effects of BMY 14802 on dopamine (DA) neuronal activity in the rat substantia nigra pars compacta (A9) was conducted with single-unit recording and microiontophoresis in anesthetized rats. Microiontophoretic administration of BMY 14802 (sigma, serotonin (5-HT)-1A and alpha-1 adrenoceptor ligand) had no effect on DA neurons. Microiontophoretic administration of (+)-3-PPP (weak D2 agonist with high affinity for sigma receptors) and quinpirole (D2/D3 agonist) inhibited A9 DA neuronal activity. Co-iontophoresis or i.v. pretreatment with BMY 14802 had no effect on the current-response curves for the effects of microiontophoretic (+)-3-PPP or quinpirole on A9 DA neurons. Co-iontophoretic administration of (-)-sulpiride, a selective D2 antagonist, blocked the inhibitory effects of microiontophoretic (+)-3-PPP. The effects of BMY 14802 (0.25-8 mg/kg, i.v.) on DA neurons (increased firing rate, increased burst-firing, reduced regularity of firing pattern) were not altered by acute brain hemitransection, but were blocked by pretreatment with NAN-190, an antagonist of 5-HT-1A and alpha-1 receptors. The alpha-1 receptor antagonist, prazosin, did not block these effects of BMY 14802. In conclusion, the effects of BMY 14802 on DA neuronal firing rate and firing pattern are indirect, perhaps due in part to the occupation of 5-HT-1A receptors.
Collapse
Affiliation(s)
- J Zhang
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
32
|
Kelland MD, Freeman AS, Rubin J, Chiodo LA. Ascending afferent regulation of rat midbrain dopamine neurons. Brain Res Bull 1993; 31:539-46. [PMID: 8495379 DOI: 10.1016/0361-9230(93)90121-q] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Standard, extracellular single-unit recording techniques were used to examine the electrophysiological and pharmacological responsiveness of midbrain dopamine (DA) neurons to selected, ascending afferent inputs. Sciatic nerve stimulation-induced inhibition of nigrostriatal DA (NSDA) neurons was blocked by both PCPA (5-HT synthesis inhibitor) and 5,7-DHT (5-HT neurotoxin), suggesting mediation by a serotonergic (5-HT) system. Direct stimulation of the dorsal raphe (which utilizes 5-HT as a neurotransmitter and inhibits slowly firing NSDA neurons) inhibited all mesoaccumbens DA (MADA) neurons tested. Paradoxically, DPAT, a 5-HT1A agonist which inhibits 5-HT cell firing, enhanced sciatic nerve stimulation-induced inhibition of NSDA neurons. MADA neurons were not inhibited by sciatic nerve stimulation and, therefore, could not be tested in this paradigm. In contrast to the dorsal raphe, electrical stimulation of the pedunculopontine tegmental nucleus preferentially excited slowly firing NSDA and MADA neurons. Thus, both excitatory and inhibitory ascending afferents influence the activity of midbrain DA neurons, and intact 5-HT systems are necessary for sciatic nerve stimulation to alter DA cell activity. However, the role that 5-HT plays in mediating peripheral sensory input remains unclear.
Collapse
Affiliation(s)
- M D Kelland
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | |
Collapse
|
33
|
Nissbrandt H, Waters N, Hjorth S. The influence of serotoninergic drugs on dopaminergic neurotransmission in rat substantia nigra, striatum and limbic forebrain in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1992; 346:12-9. [PMID: 1328893 DOI: 10.1007/bf00167564] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of serotoninergic drugs on dopaminergic neurotransmission in the substantia nigra, the striatum and the limbic forebrain of rat have been investigated. The accumulation of 3-methoxytyramine (3-MT) following inhibition of monoamine oxidase with pargyline was used as an indirect measure of dopamine (DA) activity in vivo. The effects of the following serotoninergic drugs were tested: the 5-HT1A receptor agonist 8-OH-DPAT, the 5-HT1B receptor agonist trifluoromethyl-phenylpiperazine (TFMPP), CGS 12066 B and RU 24969, the 5-HT1A/1B antagonist (+/-)pindolol, the 5-HT2/1C receptor antagonist ritanserin, the 5-HT2/1C receptor agonist DL-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), the 5-HT3 receptor antagonist BRL 43694, the unselective 5-HT receptor antagonist methiothepin, and carbidopa + L-5-hydroxytryptophan (L-5-HTP) to achieve a general, unselective stimulation of multiple 5-HT receptors. In the substantia nigra, carbidopa + 5-HTP treatment increased the 3-MT accumulation by 26% and decreased the DA concentration to 67% of controls, tentatively suggesting a 5-HTP-induced displacement of nigral DA. A minor, non dose-related reduction in nigral 3-MT was seen after the 5-HT1A receptor agonist 8-OH-DPAT. None of the other serotonin receptor acting drugs induced any pronounced effect on the nigral 3-MT accumulation. Taken together, the findings provide little support for the idea that one single 5-HT receptor subtype serves a modulatory function on DA activity in the substantia nigra. In the striatum and the limbic forebrain, trifluoromethyl-phenylpiperazine dose-dependently increased the 3-MT accumulation to maximally 200%-220% of controls.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Nissbrandt
- Department of Pharmacology, University of Göteborg, Sweden
| | | | | |
Collapse
|
34
|
Abstract
Since the initial observation by Brown (1914) that electrical stimulation applied to the habenular efferent bundle in the chimpanzee evoked a pattern of respiration which closely resembled the act of laughter, the habenular complex has remained a mysterious structure. The anatomy of the habenular complex is well delineated (Jones, 1985) forming a major component of the dorsal diencephalic conduction system. Data derived mainly from animal experimentation over the past decade point to the fact that the habenular complex functions as an important link between the limbic forebrain and the midbrain-extrapyramidal motor system. The elucidation of the functions of the habenular complex may thus significantly increase the current insight into the understanding of the interaction between behavioral and motor functions. Clearly, such information would be of great relevance for further understanding of neuropsychiatric disorders such as schizophrenia, Parkinson's disease, Tardive dyskinesia, and Tourette's syndrome in which behavioral and motor impairments are interfaced. This review summarizes anatomical, functional, and pharmacological aspects of the habenular complex and discusses its potential contribution to the pathophysiology of selected neuropsychiatric and movement disorders.
Collapse
Affiliation(s)
- R Sandyk
- Department of Psychiatry, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461
| |
Collapse
|
35
|
Abstract
Ascending projections from the dorsal raphe nucleus (DR) were examined in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). The majority of labeled fibers from the DR ascended through the forebrain within the medial forebrain bundle. DR fibers were found to terminate heavily in several subcortical as well as cortical sites. The following subcortical nuclei receive dense projections from the DR: ventral regions of the midbrain central gray including the 'supraoculomotor central gray' region, the ventral tegmental area, the substantia nigra-pars compacta, midline and intralaminar nuclei of the thalamus including the posterior paraventricular, the parafascicular, reuniens, rhomboid, intermediodorsal/mediodorsal, and central medial thalamic nuclei, the central, lateral and basolateral nuclei of the amygdala, posteromedial regions of the striatum, the bed nucleus of the stria terminalis, the lateral septal nucleus, the lateral preoptic area, the substantia innominata, the magnocellular preoptic nucleus, the endopiriform nucleus, and the ventral pallidum. The following subcortical nuclei receive moderately dense projections from the DR: the median raphe nucleus, the midbrain reticular formation, the cuneiform/pedunculopontine tegmental area, the retrorubral nucleus, the supramammillary nucleus, the lateral hypothalamus, the paracentral and central lateral intralaminar nuclei of the thalamus, the globus pallidus, the medial preoptic area, the vertical and horizontal limbs of the diagonal band nuclei, the claustrum, the nucleus accumbens, and the olfactory tubercle. The piriform, insular and frontal cortices receive dense projections from the DR; the occipital, entorhinal, perirhinal, frontal orbital, anterior cingulate, and infralimbic cortices, as well as the hippocampal formation, receive moderately dense projections from the DR. Some notable differences were observed in projections from the caudal DR and the rostral DR. For example, the hippocampal formation receives moderately dense projections from the caudal DR and essentially none from the rostral DR. On the other hand, virtually all neocortical regions receive significantly denser projections from the rostral than from the caudal DR. The present results demonstrate that dorsal raphe fibers project significantly throughout widespread regions of the midbrain and forebrain.
Collapse
Affiliation(s)
- R P Vertes
- Center for Complex Systems, Florida Atlantic University, Boca Raton 33431
| |
Collapse
|
36
|
Bolam JP, Smith Y. The GABA and substance P input to dopaminergic neurones in the substantia nigra of the rat. Brain Res 1990; 529:57-78. [PMID: 1704287 DOI: 10.1016/0006-8993(90)90811-o] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to examine the synaptic input to dopaminergic neurones in the substantia nigra from GABAergic terminals and terminals that contain substance P, double and triple immunocytochemical studies were carried out at the light and electron microscopic levels in the rat. In a first series of experiments sections of the substantia nigra were incubated to reveal axon terminals containing either substance P or glutamate decarboxylase and then incubated to reveal dopaminergic neurones using tyrosine hydroxylase immunocytochemistry. Examination of this material in the light microscope revealed that many substance P- and glutamate decarboxylase-immunoreactive boutons were associated with the dopaminergic cells. In the electron microscope it was found that the perikarya and dendrites of the dopaminergic neurons received symmetrical synaptic input from terminals that displayed immunoreactivity for substance P or glutamate decarboxylase. A small proportion of the substance P-positive boutons formed asymmetrical synapses. In a second series of experiments sections of the substantia nigra were processed by the pre-embedding immunocytochemical technique for tyrosine hydroxylase and then the post-embedding immunogold technique for gamma-aminobutyric acid (GABA). Examination in the electron microscope revealed that the tyrosine hydroxylase-positive neurons received symmetrical synaptic input from many GABA-positive terminals. Quantitative analyses demonstrated that a minimum of 50-70% of all boutons afferent to the dopaminergic neurones display glutamate decarboxylase or GABA immunoreactivity. Triple immunocytochemical studies i.e. pre-embedding immunocytochemistry for tyrosine hydroxylase and substance P, combined with post-embedding immunogold staining for GABA, revealed that some of the substance P-immunoreactive boutons that were in contact with the dopaminergic neurones also displayed GABA immunoreactivity. In a third series of experiments the combination of anterograde transport of lectin-conjugated horseradish peroxidase or biocytin with post-embedding GABA immunocytochemistry demonstrated that at least one of the sources of GABA-containing terminals in the substantia nigra is the striatum. The results of the present study: (1) demonstrate that dopaminergic neurones in the substantia nigra receive symmetrical synaptic input from GABAergic and substance P-containing terminals, (2) show that a proportion of these terminals contain both substance P and GABA and (3) suggest that the major synaptic input to dopaminergic neurones is from GABAergic terminals and that a part of this innervation is derived from the striatum.
Collapse
Affiliation(s)
- J P Bolam
- MRC Anatomical Neuropharmacology Unit, University Department of Pharmacology, Oxford, U.K
| | | |
Collapse
|
37
|
Lavoie B, Parent A. Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 1990; 299:1-16. [PMID: 2212111 DOI: 10.1002/cne.902990102] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A specific antibody raised against 5-hydroxytryptamine (5-HT) conjugated to bovine serum albumin was used to study the serotoninergic innervation of the basal ganglia in the squirrel monkey (Saimiri sciureus). At midbrain level, numerous fine 5-HT-immunoreactive axons were seen to arise from the immunopositive neurons of the dorsal raphe nucleus and less abundantly from those of the nucleus centralis superior. The bulk of these axons formed a rather loosely arranged bundle that arched ventrorostrally through the central portion of the midbrain tegmentum and ascended toward the ventral tegmental area. Several fascicles detached themselves from this bundle to reach the substantia nigra where they arborized into a multitude of heterogeneously distributed 5-HT terminals. The 5-HT innervation was particularly dense in the pars reticulata but much less so in the pars compacta of the substantia nigra. More rostrally other 5-HT fibers swept dorsolaterally and formed a remarkably dense network of varicose fibers within the subthalamic nucleus. A multitude of 5-HT axons continued their ascending course within the lateral hypothalamic area, and many of them swept laterally to invade the lenticular nucleus. At pallidal levels, the 5-HT axons arborized much less profusely in the external segment than in the internal segment, which contained numerous 5-HT varicose fibers and terminals arranged in a typical bandlike pattern. At striatal levels, the 5-HT terminals were particularly abundant in the ventral striatum, including the nucleus accumbens and deep layers of the olfactory tubercle. They also abounded in the ventrolateral region of the putamen and the ventromedial aspect of the caudate nucleus. Overall, the number of 5-HT fibers and terminals decreased progressively along the rostrocaudal axis of the striatum and several large and elongated zones rather devoid of 5-HT immunoreactivity were visualized, particularly in the caudate nucleus and the dorsal putamen. These zones of poor 5-HT immunoreactivity were in register with similar areas devoid of tyrosine hydroxylase immunoreactivity as seen on contiguous sections. These findings reveal that all the core structures of the basal ganglia in primates receive a significant serotoninergic input, but that the densities and patterns of innervation vary markedly from one structure to the other.
Collapse
Affiliation(s)
- B Lavoie
- Centre de recherche en neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| | | |
Collapse
|
38
|
Abstract
The projections of putative dopamine containing cells within the dorsal raphe nucleus (DR) were studied using a combination of tyrosine hydroxylase (TH) immunocytochemistry and fluorescent retrograde tracing. Substantial numbers of TH-immunoreactive cells in the DR were found to project to the nucleus accumbens. Progressively smaller numbers of cells were found to project to the lateral septum and medial prefrontal cortex. Very few TH-immunoreactive cells projected to the dorsal striatum, and none to the substantia nigra. TH-immunoreactive cells did not display serotonin-like immunoreactivity. These findings indicate that the projection pattern of TH-immunoreactive cells within the dorsal raphe more closely resembles that of dopaminergic cells within the ventral tegmental area (VTA) than that of serotonergic cells within the DR.
Collapse
Affiliation(s)
- T R Stratford
- Department of Psychology, University of Illinois, Chicago 60680
| | | |
Collapse
|
39
|
Janusz W, Kleinrok Z. The role of the central serotonergic system in pilocarpine-induced seizures: receptor mechanisms. Neurosci Res 1989; 7:144-53. [PMID: 2533336 DOI: 10.1016/0168-0102(89)90054-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modification of central serotonergic transmission resulted in alterations of pilocarpine convulsive activity in male Wistar rats. Seizure activity was increased after pizotifen injection and the latency period to onset of convulsions was shortened in animals pretreated with mianserine and quipazine. Stimulation of 5-HT1A receptors with 8-hydroxy-di-N,N-propylaminotetralin (8-OH-DPAT) and blockade of 5-HT1B receptors with cyanopindolol resulted in seizure protection. Intracerebroventricular injections of 5,6-dihydroxytryptamine (5,6-DHT) did not change the protective effect of cyanopindolol. Other agents specifically affecting serotonergic receptors, the agonists 1-(3-chlorophenyl)piperazine (mCPP) and 5-methoxytryptamine (5-MT) and the antagonists spiperone, metergoline, methysergide, cyproheptadine and metoclopramide, did not influence pilocarpine-induced seizures. In conclusion, the present study suggests that the inhibition of pilocarpine-induced seizures may be mediated by stimulation of 5-HT1A and by blockade of 5-HT1B receptors, located probably on the cholinergic terminals.
Collapse
Affiliation(s)
- W Janusz
- Department of Pharmacology, Medical School, Lublin, Poland
| | | |
Collapse
|
40
|
Paris JM, Mitsushio H, Lorens SA. Intra-raphe neurokinin-induced hyperactivity: effects of 5,7-dihydroxytryptamine lesions. Brain Res 1989; 476:183-8. [PMID: 2464417 DOI: 10.1016/0006-8993(89)91556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rats were implanted with cannulae in the median raphe nucleus (MR). 5,7-Dihydroxytryptamine (5,7-DHT) or vehicle was infused either directly through the MR cannula, or bilaterally into the medial forebrain bundle (MFB). The MR 5,7-DHT lesions completely blocked the hyperactivity elicited by injections into the MR of the neurokinin (NK) 3 agonists, DiMe-C7 and senktide, and the NK-2 agonist, neurokinin A. In contrast, the MFB 5,7-DHT lesions did not affect the locomotor hyperactivity produced by intra-MR administration of DiMe-C7 and senktide, but appeared to attenuate the effects of NKA. The data indicate that intra-raphe neurokinin-induced hyperactivity is mediated by 5-HT neurons, and that 5-HT projections to the forebrain may be involved in the behavioral activation induced by intra-raphe neurokinin A administration, but not that induced by intra-MR NK-3 agonists.
Collapse
Affiliation(s)
- J M Paris
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL 60153
| | | | | |
Collapse
|