1
|
Zhang T, Guan T, Yao H, Wang LA, Wang Y, Guan Z. Brown Slime Cap Mushroom (Chroogomphus rutilus, Agaricomycetes) Polysaccharide Resists Motion Sickness by Inhibiting the Activity of the Serotonin System in Mice. Int J Med Mushrooms 2023; 25:1-13. [PMID: 37947060 DOI: 10.1615/intjmedmushrooms.2023050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Motion sickness (MS) is a disorder of the autonomic nervous system caused by abnormal exercise with symptoms such as nausea, vomiting and drowsiness. More than 90% of the human population has experienced different degrees of MS. At present, anticholinergics, antihistamines, and sympathomimetic drugs are used for treating MS, but these drugs generally have some adverse reactions and are not suitable for all people. Therefore, it is necessary to develop anti-MS drugs that have high efficiency and no adverse effects. Previous studies have found that Chroogomphus rutilus polysaccharide (CRP) is effective at preventing and treating MS in rats and mice. However, its mechanism of action is not clear. To clarify whether the CRP has anti-MS effects in mice, and to clarify its mechanism, we performed behavioral, biochemical, and morphological tests in a Kunming mouse model. Our results indicate that CRPs can significantly relieve the symptoms of MS, and their effect is equivalent to that of scopolamine, a commonly used anti-MS medicine. Our results indicate that CRPs may directly act on the gastrointestinal chromaffin cells to inhibit the synthesis and release of serotonin (5-hydroxytryptamine, or 5-HT) and thus reduce the signal from the gastrointestinal tract.
Collapse
Affiliation(s)
- Tao Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Tianyuan Guan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, P.R. China
| | - Hui Yao
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Li-An Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Zhenlong Guan
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| |
Collapse
|
2
|
Dutheil S, Watabe I, Sadlaoud K, Tonetto A, Tighilet B. BDNF Signaling Promotes Vestibular Compensation by Increasing Neurogenesis and Remodeling the Expression of Potassium-Chloride Cotransporter KCC2 and GABAA Receptor in the Vestibular Nuclei. J Neurosci 2016; 36:6199-212. [PMID: 27277799 PMCID: PMC6604891 DOI: 10.1523/jneurosci.0945-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their lesion-induced deficits. Because brain-derived neurotrophic factor (BDNF) can modulate vestibular functional recovery and neurogenesis in mammals, in this study, we examined the effect of BDNF chronic intracerebroventricular infusion versus K252a (a Trk receptor antagonist) in our UVN model. Results showed that long-term intracerebroventricular infusion of BDNF accelerated the restoration of vestibular functions and significantly increased UVN-induced neurogenesis, whereas K252a blocked that effect and drastically delayed and prevented the complete restoration of vestibular functions. Further, because the level of excitability in the deafferented VN is correlated with behavioral recovery, we examined the state of neuronal excitability using two specific markers: the cation-chloride cotransporter KCC2 (which determines the hyperpolarizing action of GABA) and GABAA receptors. We report for the first time that, during an early time window after UVN, significant BDNF-dependent remodeling of excitability markers occurs in the brainstem. These data suggest that GABA acquires a transient depolarizing action during recovery from UVN, which potentiates the observed reactive neurogenesis and accelerates vestibular functional recovery. These findings suggest that BDNF and/or KCC2 could represent novel treatment strategies for vestibular pathologies. SIGNIFICANCE STATEMENT In this study, we report for the first time that brain-derived neurotrophic factor potentiates vestibular neurogenesis and significantly accelerates functional recovery after unilateral vestibular injury. We also show that specific markers of excitability, the potassium-chloride cotransporter KCC2 and GABAA receptors, undergo remarkable fluctuations within vestibular nuclei (VN), strongly suggesting that GABA acquires a transient depolarizing action in the VN during the recovery period. This novel plasticity mechanism could explain in part how the system returns to electrophysiological homeostasis between the deafferented and intact VN, considered in the literature to be a key parameter of vestibular compensation. In this context, our results open new perspectives for the development of therapeutic approaches to alleviate the vestibular symptoms and favor vestibular function recovery.
Collapse
Affiliation(s)
- Sophie Dutheil
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Isabelle Watabe
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| | - Karina Sadlaoud
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle PRATIM, 13331 Marseille Cedex 03, France
| | - Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| |
Collapse
|
3
|
Zhang Y, Yanagawa Y, Saito Y. Nicotinic acetylcholine receptor-mediated responses in medial vestibular and prepositus hypoglossi nuclei neurons showing distinct neurotransmitter phenotypes. J Neurophysiol 2016; 115:2649-57. [PMID: 26936981 DOI: 10.1152/jn.00852.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/27/2016] [Indexed: 11/22/2022] Open
Abstract
Cholinergic transmission in both the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN) plays an important role in horizontal eye movements. We previously demonstrated that the current responses mediated via nicotinic acetylcholine receptors (nAChRs) were larger than those mediated via muscarinic acetylcholine receptors (mAChRs) in cholinergic MVN and PHN neurons that project to the cerebellum. In this study, to clarify the predominant nAChR responses and the expression patterns of nAChRs in MVN and PHN neurons that exhibit distinct neurotransmitter phenotypes, we identified cholinergic, inhibitory, and glutamatergic neurons using specific transgenic rats and investigated current responses to the application of acetylcholine (ACh) using whole cell recordings in brain stem slices. ACh application induced larger nAChR-mediated currents than mAChR-mediated currents in every neuronal phenotype. In the presence of an mAChR antagonist, we found three types of nAChR-mediated currents that exhibited different rise and decay times and designated these as fast (F)-, slow (S)-, and fast and slow (FS)-type currents. F-type currents were the predominant response in inhibitory MVN neurons, whereas S-type currents were observed in the majority of glutamatergic MVN and PHN neurons. No dominant response type was observed in cholinergic neurons. Pharmacological analyses revealed that the F-, S-, and FS-type currents were mainly mediated by α7, non-α7, and both α7 and non-α7 nAChRs, respectively. These findings suggest that cholinergic responses in the major neuronal populations of the MVN and PHN are predominantly mediated by nAChRs and that the expression of α7 and non-α7 nAChRs differ among the neuronal phenotypes.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Physiology, Dalian Medical University, Dalian, China
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Chiyoda-ku, Tokyo, Japan; and
| | - Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
4
|
Zhu Y, Chen SR, Pan HL. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons. J Neurochem 2016; 137:226-39. [PMID: 26823384 DOI: 10.1111/jnc.13554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
Abstract
Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We found that activation of pre-synaptic M2 muscarinic receptors inhibit glutamatergic input from vestibular primary afferents, whereas stimulation of post-synaptic M3 muscarinic receptors increases the firing activity of cerebellum-projecting MVN neurons. This new information advances our understanding of the cholinergic mechanism regulating the vestibular system.
Collapse
Affiliation(s)
- Yun Zhu
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Zhang Y, Kaneko R, Yanagawa Y, Saito Y. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors. Eur J Neurosci 2014; 39:1294-313. [PMID: 24593297 DOI: 10.1111/ejn.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/11/2013] [Accepted: 01/10/2014] [Indexed: 02/02/2023]
Abstract
Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | |
Collapse
|
6
|
Saito Y, Takazawa T, Ozawa S. Relationship between afterhyperpolarization profiles and the regularity of spontaneous firings in rat medial vestibular nucleus neurons. Eur J Neurosci 2008; 28:288-98. [PMID: 18702700 DOI: 10.1111/j.1460-9568.2008.06338.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous in vivo and in vitro whole-cell patch-clamp recording studies demonstrated that neurons in the medial vestibular nucleus (MVN) could be characterized on the basis of three electrophysiological properties: afterhyperpolarization (AHP) profile; firing pattern; and response pattern to hyperpolarizing current pulses. In the present study, to clarify which types of the classified MVN neurons correspond to neurons with regular or irregular firing, we investigated their spike discharge patterns using whole-cell patch-clamp recording in both in vivo and in vitro preparations. The discharge regularity was related to AHP profiles, and we found that: (i) the coefficient of variation (CV) of interspike intervals during spike discharges was smaller in neurons exhibiting AHP with a slow component [AHP(s+)] than in those without a slow component [AHP(s-)], or with a slow AHP component preceded by afterdepolarization (ADP) [AHP(s+) with ADP]; (ii) the blockade of Ca(2+)-dependent K(+) channels by 100 nm apamin abolished the slow component and increased the CV in neurons exhibiting AHP(s+); and (iii) the modulation of firing (firing gain) in response to ramp current was larger in neurons exhibiting AHP(s-) than in the other two neuronal types. These results suggest that neurons exhibiting AHP(s+) are regularly discharging neurons with small firing gains to stimulus, neurons exhibiting AHP(s+) with ADP are irregularly discharging neurons with small firing gains, and neurons exhibiting AHP(s-) are irregularly discharging neurons with large firing gains. The regular firing of neurons exhibiting AHP(s+) is attributed to the activation of apamin-sensitive Ca(2+)-dependent K(+) channels.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Neurophysiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | |
Collapse
|
7
|
Darlington CL, Dutia MB, Smith PF. The contribution of the intrinsic excitability of vestibular nucleus neurons to recovery from vestibular damage. Eur J Neurosci 2002; 15:1719-27. [PMID: 12081651 DOI: 10.1046/j.1460-9568.2002.02024.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Damage to the peripheral vestibular system results in a syndrome of ocular motor and postural abnormalities that partially and gradually abate over time in a process known as 'vestibular compensation'. The first, rapid, phase of compensation has been associated with a recovery of spontaneous resting activity in the ipsilateral vestibular nucleus complex (VNC), as a consequence of neuronal and synaptic plasticity. Increasing evidence suggests that normal VNC neurons in labyrinthine-intact animals, as well as ipsilateral VNC neurons following unilateral vestibular deafferentation (UVD), rely to some extent on intrinsic pacemaker activity provided by voltage-dependent conductances for their resting activity. Modification of this intrinsic pacemaker activity may underlie the recovery of resting activity that occurs in ipsilateral VNC neurons following UVD. This review summarizes and critically evaluates the 'intrinsic mechanism hypothesis', identifying discrepancies amongst the current evidence and suggesting experiments that may test it further.
Collapse
Affiliation(s)
- Cynthia L Darlington
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
8
|
Sun Y, Waller HJ, Godfrey DA, Rubin AM. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res 2002; 934:58-68. [PMID: 11937070 DOI: 10.1016/s0006-8993(02)02361-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extracellular recording was used to investigate spontaneously active neurons in all four major nuclei of the rat vestibular nuclear complex (VNC) in brainstem slices. The density of spontaneously active neurons was highest in the medial vestibular nucleus (MVN), slightly lower in the superior (SuVN) and spinal (SpVN) nuclei, and lowest in the lateral vestibular nucleus (LVN). We compared the effects of acetylcholine agonists and antagonists on spontaneously discharging neurons in MVN, SuVN, and SpVN with those in the nearby dorsal cochlear nucleus (DCN). The proportion of neurons responding to carbachol was greatest in DCN and smallest in SpVN. Unlike in DCN, some neurons in MVN, SuVN, and SpVN showed decreased firing during carbachol or muscarine. Magnitudes of responses to carbachol and muscarine were closely correlated (P<0.01). MVN neurons possessed nicotinic as well as muscarinic receptors. Activation of either type was unaffected by blocking synaptic transmission. The IC(50) values for the muscarinic subtype-preferential antagonists were compared, and tropicamide, preferential for M(4), was the most potent. Our results suggest that: (1) the relative numbers of spontaneously active neurons in rat VNC differ among nuclei; (2) acetylcholine agonists elicit changes in mean firing rates of neurons in MVN, SuVN and SpVN, but fewer neurons respond, and responses are smaller than in DCN; (3) both muscarinic and nicotinic acetylcholine receptors are present on MVN neurons, but muscarinic receptors may be more prominent.
Collapse
Affiliation(s)
- Yizhe Sun
- Department of Otolaryngology, Head and Neck Surgery, Medical College of Ohio, 3065 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | |
Collapse
|
9
|
Sasa M, Takeshita S, Amano T, Kurisu K. Primary neurotransmitters and regulatory substances onto vestibular nucleus neurons. UCHU SEIBUTSU KAGAKU 2001; 15:371-4. [PMID: 12101361 DOI: 10.2187/bss.15.371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review article focused on the primary neurotransmitters involved in transmission from the otolith to the vestibular nucleus (VN), especially in relation to the neurotransmission to the VN neurons (gravity-sensitive neurons) activated by tilt stimulation. The medial vestibular nucleus (MVN) neurons were classified in 8 types (alpha-theta) according to the patterns in response to the clockwise and counterclockwise tilt-stimulations. The tilt-induced firing was inhibited by GDEE (a non-selective glutamate receptor antagonist) and/or atropine (a muscarinic receptor antagonist). Thus, glutamate and/or acetylcholine may serve as the primary neurotransmitters. This conclusion is supported by the previous findings that glutamate exists in the vestibular nerve and is released from the nerve besides the presence of glutamate receptor subtypes in the VN. In addition, acetylcholine induced atropine-reversible firing of MVN neurons, and the enzymes involved in acetylcholine synthesis/metabolism are also found in the VN. Furthermore, serotonin was found to inhibit the MVN neuronal activities via the 5-HT1A receptors. As such, the 5-HT1A agonist, tandospirone, may be effective in preventing and/or treating motion sickness and/or space sickness.
Collapse
Affiliation(s)
- M Sasa
- Department of Pharamacology, Hiroshima University School of Medicine, Hiroshima, Japan.
| | | | | | | |
Collapse
|
10
|
Takeshita S, Sasa M, Ishihara K, Matsubayashi H, Yajin K, Okada M, Izumi R, Arita K, Kurisu K. Cholinergic and glutamatergic transmission in medial vestibular nucleus neurons responding to lateral roll tilt in rats. Brain Res 1999; 840:99-105. [PMID: 10517957 DOI: 10.1016/s0006-8993(99)01775-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The responses of the medial vestibular nucleus (MVN) neurons to lateral tilt and the neurotransmitters mediating otolith information to MVN neurons were investigated using rats. A computer-operated goniometer was tilted 20 degrees clockwise and counterclockwise at an angular speed of 5 degrees /s and paused in the inclined positions for 10 s to record neuronal responses in the static phase. The 185 MVN neurons recorded were classified into eight types according to their responses to tilt (alpha, beta, gamma, delta, epsilon, zeta, eta and theta). A majority showed increased firing in response to ipsilateral tilting and decreased firing in response to contralateral tilting (alpha type: 31.4%) or exhibited the reverse pattern (beta type: 36.8%). Further, other groups of neurons increased (gamma type) or decreased (delta type) firing rates to either side tilting and increased (epsilon and zeta type) or decreased (eta and theta type) firing only on one side. Atropine or L-glutamic acid diethyl ester hydrochloride (GDEE) applied microiontophoretically antagonized tilt-induced firing of alpha type neurons in 58.8% or 60.0%, respectively, and of beta type neurons in 66.7% or 58.3%, respectively. When the effects of atropine and GDEE were examined in the same neurons, antagonizing effects of both drugs on tilt-induced firing were obtained in 28.6% and 40.0% of alpha and beta type neurons, respectively. These results suggest that both acetylcholine and glutamate act as neurotransmitters in the transmission of otolith information to most MVN neurons.
Collapse
Affiliation(s)
- S Takeshita
- Department of Neurosurgery, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Grassi S, Malfagia C, Pettorossi VE. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei. Neuroscience 1998; 87:159-69. [PMID: 9722149 DOI: 10.1016/s0306-4522(98)00138-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation. Conversely the electrical long-term potentiation was still induced, but it was occluded by the previous drug potentiation. We conclude that metabotropic glutamate receptors play a dual functional role in the medial vestibular nuclei, consisting in the inhibition of glutamate release under basal conditions, and the facilitation of N-methyl-D-aspartate-dependent plasticity phenomena.
Collapse
Affiliation(s)
- S Grassi
- Institute of Human Physiology, University of Perugia, Italy
| | | | | |
Collapse
|
12
|
Tighilet B, Lacour M. Distribution of choline acetyltransferase immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci 1998; 10:3115-26. [PMID: 9786206 DOI: 10.1046/j.1460-9568.1998.00331.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-lesion recovery of vestibular functions is a suitable model for studying adult central nervous system plasticity. The vestibular nuclei complex (VN) plays a major role in the recovery process and neurochemical reorganizations have been described at this brainstem level. The cholinergic system should be involved because administration of cholinergic agonists and antagonists modify the recovery time course. This study was aimed at analysing the postlesion changes in choline acetyltransferase immunoreactivity (ChAT-Ir) in the VN of cats killed 1 week, 3 weeks or 1 year following unilateral vestibular neurectomy. ChAT-positive neurons and varicosities were immunohistochemically labelled and quantified (cell count and surface measurement, respectively) by means of an image analysing system. The spatial distribution of ChAT-Ir within the VN of control cats showed darkly stained neurons and varicosities mainly located in the caudal parts of the medial (MVN) and inferior (IVN) VN, the nucleus prepositus hypoglossi (PH) and, to a lesser extent, in the medial part of the superior vestibular nucleus (SVN). Lesion-induced changes consisted in a significant increase in both the number of ChAT-positive neurons (IVN, SVN) and the surface of ChAT-positive varicosities (IVN, SVN, PH). They were observed bilaterally in the acute (1 year and 3 weeks) and compensated (1 year) cats for the SVN and PH, while they persisted only in the IVN on the lesioned side in the compensated cats. These findings demonstrate vestibular lesion-induced reorganization of the cholinergic system in the IVN, SVN and PH which could contribute to postural and oculomotor function recovery.
Collapse
Affiliation(s)
- B Tighilet
- UMR 6562 Neurobiologie Intégrative et Adaptative, Université de Provence/CNRS, Laboratoire de Neurobiologie des Restaurations Fonctionnelles, Marseille, France
| | | |
Collapse
|
13
|
Cransac H, Cottet-Emard JM, Pequignot JM, Peyrin L. Monoamines (norepinephrine, dopamine, serotonin) in the rat medial vestibular nucleus: endogenous levels and turnover. J Neural Transm (Vienna) 1998; 103:391-401. [PMID: 9617784 DOI: 10.1007/bf01276416] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoamine (norepinephrine, dopamine, serotonin) and metabolite endogenous levels were determined in the rat medial vestibular nucleus (MVN) using HPLC with electrochemical detection. As a comparison, the locus coeruleus (LC) and dorsal raphe nucleus (RD) which contain the cell bodies of MVN noradrenergic and serotoninergic neurons respectively were also analyzed. Norepinephrine (NE) and serotonin (5-HT) basal levels of MVN were high (33.8 and 39.2pmol/mg protein respectively) but lesser than in LC or RD. Great amounts of MHPG and 5-HIAA were also present in the MVN. The turnover of NE assessed both from the ratio MHPG/NE and by the decrease in the NE content after treatment with alpha-methylparatyrosine was faster in the MVN (half-life: 1.5h) than in LC (half-life: 3.6h). On the other hand, the ratio 5-HIAA/5-HT was lower in the MVN (0.58) than in the RD (0.85) indicating a smaller 5-HT turnover in the MVN. In addition, like LC and RD, the MVN contained meaningful amounts of dopamine (DA) and DOPAC. The high ratio DA/NE (0.27) suggests the presence of non precursor specific dopaminergic pools. However, individualized dopaminergic neurons have not yet been demonstrated. The data are discussed in line with the possible neurotransmitter function of monoamines in the MVN.
Collapse
Affiliation(s)
- H Cransac
- Laboratoire de Physiologie, Faculté de Médecine Grange-Blanche, Lyon, France
| | | | | | | |
Collapse
|
14
|
Babalian A, Vibert N, Assie G, Serafin M, Mühlethaler M, Vidal PP. Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro. Neuroscience 1997; 81:405-26. [PMID: 9300431 DOI: 10.1016/s0306-4522(97)00069-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The isolated, in vitro whole brain of guinea-pig was used to assess some of the main physiological and pharmacological properties of the vestibulo-ocular pathways in this species. Extracellular and intracellular recordings were obtained from the vestibular, abducens and oculomotor nuclei, as well as from the abducens and oculomotor nerves, while inputs from the vestibular afferents, the visual pathways and the spinal cord were activated. The three main types of medial vestibular nucleus neurons (A, B and B+LTS), previously described on slices, were also identified in the isolated brain. They had similar membrane properties in both preparations. Eighty-five per cent of cells recorded in the vestibular nucleus responded with monosynaptic, excitatory postsynaptic potentials (latency 1.05-1.9 ms) to stimulation of the ipsilateral vestibular nerve, and were thus identified as second-order vestibular neurons. In addition, stimulation of the contralateral vestibular afferents revealed in most cases a disynaptic or trisynaptic, commissural inhibition. Second-order vestibular neurons displayed in the isolated brain a high degree of variability of their spontaneous activity, as in alert guinea-pigs. Type A neurons always exhibited a regular firing, while type B and B+LTS cells could have very irregular patterns of spontaneous discharge. Thus, type A and type B neurons might correspond, respectively, to the tonic and phasic vestibular neurons described in vivo. The regularity of spontaneous discharge was positively correlated with the amplitude of spike after hyperpolarization, and there was a trend for irregular neurons to be excited from ipsilateral vestibular afferents at shorter latencies than regular units. Synaptic activation could trigger subthreshold plateau potentials and low-threshold spikes in some of the second-order vestibular neurons. As a second step, the pharmacology of the synaptic transmission between primary vestibular afferents and second-order neurons was assessed using specific antagonists of the glutamatergic receptors. Both the synaptic field potentials and excitatory postsynaptic potentials elicited in the medial vestibular nucleus by single shock stimulation of the ipsilateral vestibular nerve were largely or, sometimes, totally blocked by 6-cyano-7-nitroquinoxaline-2,3-dione, indicating a dominating role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated glutamatergic transmission. The remaining component of the responses was completely or partially suppressed by DL-2-amino-5-phosphonovaleric acid in 35% of the cases, suggesting a concomitant, moderate involvement of N-methyl-D-asparate receptors. In addition, a synaptic response resistant to both antagonists, but sensitive to a zero Ca2+/high Mg(2+)-containing solution, was often observed. Finally, recordings from abducens and oculomotor complexes confirmed the existence in the guinea-pig of strong bilateral, disynaptic excitatory and inhibitory inputs from vestibular afferents to motoneurons of extraocular muscles, which contribute to generation of the vestibulo-ocular reflex. The functional integrity of vestibular-related pathways in the isolated brain was additionally checked by stimulation of the spinal cord and optic tract. Stimulation of the spinal cord evoked, in addition to antidromic responses in the vestibular nucleus, short-latency synaptic responses in both the vestibular nucleus and abducens motoneurons, suggesting possible recruitment of spinal afferents. Activation of visual pathways at the level of the optic chiasm often induced long latency responses in the various structures under study. These results demonstrate that the in vitro isolated brain can be readily used for detailed, functional studies of the neuronal networks underlying gaze and posture control.
Collapse
Affiliation(s)
- A Babalian
- Laboratoire de Physiologie de la Perception et de l'Action, CNRS-Collège de France, UMR C-9950, Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Sakai N, Ujihara H, Ishihara K, Sasa M, Tanaka C. Electrophysiological and pharmacological characteristics of ionotropic glutamate receptors in medial vestibular nucleus neurons: a whole cell patch clamp study in acutely dissociated neurons. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 72:335-46. [PMID: 9015742 DOI: 10.1254/jjp.72.335] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A patch clamp study was performed to determine which subtype of ionotropic glutamate receptors is involved in the glutamate-induced excitation of the medial vestibular nucleus (MVN) neurons. Whole cell recording was performed on MVN neurons that were acutely dissociated by enzymatic and mechanical treatments. Application of glutamate at a concentration of 100 microM produced a current with a reversal potential of approximately 0 mV. The glutamate-induced current was completely blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), a non-N-methyl-D-aspartate (NMDA)-receptor antagonist. Application of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) and kainic acid (KA), non-NMDA-receptor agonists, at concentrations of 30 and 100 microM produced a concentration-dependent depolarization concomitantly with an increase in firing rates during current clamp recording. During voltage clamp recording, glutamate, AMPA and KA elicited a concentration-dependent current with an equilibrium potential of approximately 0 mV. To clarify whether NMDA receptors are present in MVN neurons, the effects of glycine on the glutamate- and NMDA-induced current were examined. Two types of NMDA receptor-mediated current (types 1 and 2) were obtained in terms of the difference in sensitivity to both magnesium ion and MK-801, which act on the NMDA-receptor channel. In the type 1 neurons, the NMDA-induced current was not apparently blocked by magnesium ion or MK-801, although a larger current was obtained in the absence of magnesium ion. In the type 2 neurons, marked blockade of the NMDA-induced current was seen in the presence of magnesium ion and MK-801, as previously reported in other neurons of the central nervous system. These findings indicate the presence of both non-NMDA and NMDA receptors, which are involved in primary afferent transmission, in the MVN neuron, and two distinct types of NMDA receptors.
Collapse
Affiliation(s)
- N Sakai
- Laboratory of Molecular Pharmacology, Kobe University, Japan
| | | | | | | | | |
Collapse
|
16
|
Grassi S, Della Torre G, Capocchi G, Zampolini M, Pettorossi VE. The role of GABA in NMDA-dependent long term depression (LTD) of rat medial vestibular nuclei. Brain Res 1995; 699:183-91. [PMID: 8616620 DOI: 10.1016/0006-8993(95)00895-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of GABA in NMDA-dependent long term depression (LTD) in the medial vestibular nuclei (MVN) was studied on rat brainstem slices. High frequency stimulation (HFS) of the primary vestibular afferents induces a long lasting reduction of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the MVN. The induction but not the maintenance of this depression was abolished by AP5, a specific blocking agent for glutamate NMDA receptors. The involvement of GABA in mediating the depression was checked by applying the GABAA and GABAB receptor antagonists, bicuculline and saclofen, before and after HFS. Under bicuculline and saclofen perfusion, HFS provoked a slight potentiation of the N2 wave, while the N2 depression clearly emerged after drug wash-out. This indicates that GABA is not involved in inducing the long term effect, but it is necessary for its expression. Similarly, the LTD reversed and a slight potentiation appeared when both drugs were administered after its induction. Most of these effects were due to the bicuculline, suggesting that GABAA receptors contribute to LTD more than GABAB do. According to our results, it is unlikely that the long lasting vestibular depression is the result of a homosynaptic LTD. On the contrary, our findings suggest that the depression is due to an enhancement of the GABA inhibitory effect, caused by an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.
Collapse
Affiliation(s)
- S Grassi
- Institute of Human Physiology, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
17
|
Darlington CL, Gallagher JP, Smith PF. In vitro electrophysiological studies of the vestibular nucleus complex. Prog Neurobiol 1995; 45:335-46. [PMID: 7624481 DOI: 10.1016/0301-0082(94)00056-n] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C L Darlington
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
18
|
Licata F, Li Volsi G, Maugeri G, Santangelo F. Excitatory and inhibitory effects of 5-hydroxytryptamine on the firing rate of medial vestibular nucleus neurons in the rat. Neurosci Lett 1993; 154:195-8. [PMID: 8361640 DOI: 10.1016/0304-3940(93)90205-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of microiontophoretic application of 5-hydroxytryptamine (5-HT) on the neuronal firing rate of the medial vestibular nucleus (MVN) were studied in anaesthetized rats. Ninety-three % of the units modified their background activity following 5-HT iontophoresis, enhancements of the firing rate being recorded in 42%, decreases in 38% and biphasic effects in 13%. 5-HT antagonists methysergide and ketanserin blocked the excitatory but not the inhibitory responses to 5-HT. These latter were, however, mimicked by 5-HT agonists 5-methoxy-N,N-dimethyltryptamine (5MeODMT) and 8-hydroxy-2(di-n-propyl-amino)tetralin (8-OH-DPAT). It is concluded that 5-HT can variously influence the background activity of MVN neurons and that 5-HT2 and probably 5-HT1A receptors are involved in the responses.
Collapse
Affiliation(s)
- F Licata
- Istituto di Fisiologia umana, Università di Catania, Italy
| | | | | | | |
Collapse
|
19
|
The intrinsic properties of vestibular nucleus neurons and recovery of motor function following peripheral vestibular deafferentation: Is there a link? Hum Mov Sci 1993. [DOI: 10.1016/0167-9457(93)90043-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of the rat by secondary vestibular afferents. Ann N Y Acad Sci 1992; 656:566-79. [PMID: 1376098 DOI: 10.1111/j.1749-6632.1992.tb25236.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cholinergic innervation of the cerebellar cortex of the rat was studied by immunohistochemical localization of choline acetyltransferase, radiochemical measurement of ChAT activity, and double labeling of ChAT-positive neurons with HRP injected into the cerebellum. ChAT immunohistochemistry revealed large mossy fiber rosettes as well as finely beaded terminals with different morphological characterization, laminar distribution within the cerebellar cortex, and regional differences within the cerebellum. Large "grapelike" ChAT-positive mossy fiber rosettes that were distributed primarily in the granule cell layer were concentrated, but not exclusively located, in three separate regions of the cerebellum: (1) the uvula-nodulus (lobules 9 and 10); (2) the flocculus, and (3) the anterior lobe vermis (lobules 1 and 2). Regional differences in ChAT-positive afferent terminations in the cerebellar cortex demonstrated by immunohistochemistry were confirmed by regional biochemical measurements of ChAT activity. Using ChAT immunohistochemistry in combination with HRP injections into the uvula-nodulus, we have studied the origin of the cholinergic projection. The caudal medial vestibular nucleus and to a lesser extent the nucleus prepositus hypglossus contain ChAT-positive neurons that were double labeled following HRP injections into the uvula-nodulus. We conclude that (1) there is a prominent cholinergic mossy fiber pathway to the vestibulocerebellum, (2) this pathway originates primarily in the caudal third of the medial vestibular nucleus, and (3) this cholinergic pathway likely mediates secondary vestibular information related to postural adjustment.
Collapse
Affiliation(s)
- N H Barmack
- Department of Ophthalmology, R. S. Dow Neurological Sciences Institute, Good Samaritan Hospital & Medical Center, Portland, Oregon 97209
| | | | | |
Collapse
|
21
|
Gallagher JP, Phelan KD, Shinnick-Gallagher P. Modulation of Excitatory Transmission at the Rat Medial Vestibular Nucleus Synapse. Ann N Y Acad Sci 1992; 656:630-44. [PMID: 1350894 DOI: 10.1111/j.1749-6632.1992.tb25241.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J P Gallagher
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
22
|
Phelan KD, Gallagher JP. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro. Synapse 1992; 10:349-58. [PMID: 1585263 DOI: 10.1002/syn.890100410] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.
Collapse
Affiliation(s)
- K D Phelan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
23
|
Barmack NH, Baughman RW, Eckenstein FP, Shojaku H. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol 1992; 317:250-70. [PMID: 1577999 DOI: 10.1002/cne.903170304] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously we have shown that four regions of the cerebellum, the uvula-nodulus, flocculus, ventral paraflocculus, and anterior lobe 1, receive extensive, but not exclusive, cholinergic mossy fiber projections. In the present experiment we have studied the origin of three of these projections in the rat and rabbit (uvula-nodulus, flocculus, ventral paraflocculus), using choline acetyltransferase (ChAT) immunohistochemistry in combination with a double label, retrogradely transported horseradish peroxidase (HRP). We have demonstrated that in both the rat and rabbit the caudal medial vestibular nucleus (MVN) and to a lesser extent the nucleus prepositus hypoglossus (NPH) contain ChAT-positive neurons. Neurons of the caudal MVN are double-labeled following HRP injections into the uvula-nodulus. HRP injections into the uvula-nodulus also labeled less than 5% of the neurons in the cholinergic vestibular efferent complex. Fewer ChAT-positive neurons in the MVN and some ChAT-positive neurons in the NPH are double-labeled following HRP injections into the flocculus. Almost no ChAT-positive neurons in the MVN and some ChAT-positive neurons in the NPH are double-labeled following HRP injections into the ventral paraflocculus. Injections of Phaseolus leucoagglutinin (PHA-L) into the caudal MVN of both the rat and rabbit demonstrated projection patterns to the uvula-nodulus and flocculus that were qualitatively similar to those observed using ChAT immunohistochemistry. We conclude that the cholinergic mossy fiber pathway to the cerebellum in general and the uvula-nodulus in particular is likely to mediate secondary vestibular information related to postural adjustments.
Collapse
Affiliation(s)
- N H Barmack
- Department of Ophthalmology, R.S. Dow Neurological Sciences Institute, Good Samaritan Hospital & Medical Center Portland, Oregon 97209
| | | | | | | |
Collapse
|
24
|
Dutia MB, Johnston AR, McQueen DS. Tonic activity of rat medial vestibular nucleus neurones in vitro and its inhibition by GABA. Exp Brain Res 1992; 88:466-72. [PMID: 1587312 DOI: 10.1007/bf00228176] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The spontaneous discharge of 48 medial vestibular nucleus (MVN) neurones was recorded extracellularly in horizontal slices of the rat brainstem in vitro. The mean tonic rate of discharge was 17.1 +/- 8.2 imp/s, similar to that observed by others in transverse (coronal) slices of the rat and guinea pig MVN. The tonic rate of discharge of individual MVN cells either increased or decreased after synaptic blockade in low Ca2+ media, suggesting that ongoing synaptic activity has an important influence on the spontaneous activity of MVN cells in vitro. However the persistence of tonic activity after synaptic blockade indicates that an intrinsic, pacemaker-like mechanism is involved in the generation of the tonic activity. GABA, muscimol, baclofen and 3-APA inhibited the tonic activity of all MVN cells tested. Bicuculline antagonised, and picrotoxin blocked, the inhibitory responses to muscimol, but the effects of GABA were only partially blocked in 50 microM picrotoxin. The effects of baclofen and 3-APA persisted in low Ca2+ media, and were antagonised by saclofen and phaclofen. Picrotoxin-resistant responses to GABA persisted in low Ca2+ media, and were also antagonised by saclofen. These results suggest that the inhibitory control of MVN neurones by GABA involves both the GABAA and GABAB subtypes of GABA receptor. GABAB receptors appear to be distributed both pre- and post-synaptically in the rat MVN. The possible significance of the intrinsic, tonic activity of MVN cells in normal vestibular function and in vestibular compensation, and the effects of GABA, are discussed.
Collapse
Affiliation(s)
- M B Dutia
- Department of Physiology, Medical School, Edinburgh, UK
| | | | | |
Collapse
|
25
|
Smith PF, Darlington CL. Neurochemical mechanisms of recovery from peripheral vestibular lesions (vestibular compensation). BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1991; 16:117-33. [PMID: 1760653 DOI: 10.1016/0165-0173(91)90001-o] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reviews the literature relating to the neurochemical basis of vestibular compensation, a process of behavioral recovery which occurs following the removal of afferent input from one labyrinth (unilateral labyrinthectomy, UL). Although vestibular compensation is known to be correlated with a return of resting activity to the vestibular nucleus (VN) ipsilateral to the UL (the deafferented VN), the neurochemical mechanisms by which this neuronal recovery occurs, are unknown. At present, there is little evidence to support the hypothesis that denervation supersensitivity of excitatory amino acid, dopamine, norepinephrine or acetylcholine receptors in the deafferented VN, is responsible for vestibular compensation: binding studies for glutamate or acetylcholine do not support an upregulation of these receptor types. However, changes in the affinity or efficacy of these receptor complexes cannot be ruled out. There are still many neurotransmitter systems, such as serotonergic and histaminergic systems, which have not been investigated in relation to vestibular compensation. In several species it has been shown that treatment with adrenocorticotropic hormone, fragment 4-10 (ACTH-(4-10], can accelerate vestibular compensation. It is not clear how these drugs exert their effects. In vitro electrophysiological studies have shown that VN neurons are capable of generating resting activity in the absence of their normal afferent inputs and it is possible that these neurons have pacemaker-like membrane characteristics which contribute to the regeneration of activity following UL. Recent biochemical studies have revealed changes in the phosphorylation patterns of a number of proteins during compensation. The possible relationship between these phosphorproteins and the synaptic or membrane changes which are responsible for vestibular compensation remains to be determined.
Collapse
Affiliation(s)
- P F Smith
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
26
|
Kawabata A, Sasa M, Ujihara H, Takaori S. Inhibition by enkephalin of medial vestibular nucleus neurons responding to horizontal pendular rotation. Life Sci 1990; 47:1355-63. [PMID: 1978216 DOI: 10.1016/0024-3205(90)90200-b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrophysiological studies were performed to determine whether or not enkephalin modulates the activities of medial vestibular nucleus (MVN) neurons responding to horizontal pendular rotation using alpha-chloralose anesthetized cats. The effects of microiontophoretically applied drugs were examined in type I and type II neurons identified according to responses to horizontal, sinusoidal rotation; type I and type II neurons showed an increase and decrease in firing with rotation ipsilateral to the recording site and vice versa with contralateral rotation, respectively. Iontophoretic application of enkephalin suppressed spike firing induced by rotation of the animals in type I neuron, but not in type II neuron. The spike firing induced by iontophoretically applied glutamate was also inhibited during the application of enkephalin. The inhibition by enkephalin of both rotation- and glutamate-induced firing was antagonized by naloxone which was given simultaneously. These results suggest that enkephalin acts on MVN type I neuron to inhibit transmission from the vestibule, thereby controlling vestibulo-ocular reflex.
Collapse
Affiliation(s)
- A Kawabata
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|