1
|
Hou XE, Dahlström A. Synaptic vesicle proteins and neuronal plasticity in adrenergic neurons. Neurochem Res 2000; 25:1275-300. [PMID: 11059802 DOI: 10.1023/a:1007600313865] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The neurons in the superior cervical ganglion are active in plasticity and re-modelling in order to adapt to requirements. However, so far, only a few studies dealing with synaptic vesicle related proteins during adaptive processes have been published. In the present paper, changes in content and expression of the synaptic vesicle related proteins in the neurons after decentralization (cutting the cervical sympathetic trunk) or axotomy (cutting the internal and external carotid nerves) were studied. Immunofluorescence studies were carried out using antibodies and antisera against integral membrane proteins, vesicle associated proteins, NPY, and the enzymes TH and PNMT. For colocalization studies, the sections were simultaneously double labelled. Confocal laser scanning microscopy was used for colocalization studies as well as for semi-quantification analysis, using the computer software. Westen blot analysis, in situ 3'-end DNA labelling, and in situ hybridization were also employed. After decentralization of the ganglia several of the synaptic vesicle proteins (synaptotagmin I, synaptophysin, SNAP-25, CLC and GAP-43) were increased in the iris nerve terminal network, but with different time patterns, while TH-immunoreactivity had clearly decreased. In the ganglia, these proteins had decreased at 1 day after decentralization, probably due to degeneration of the pre-ganglionic nerve fibres and terminals. At later intervals, these proteins, except SNAP-25, had increased in the nerve fibre bundles and re-appeared in nerve fibres outlining the principal neurons.
Collapse
Affiliation(s)
- X E Hou
- Inst. of Anatomy and Cell Biology, Göteborg University, Sweden
| | | |
Collapse
|
2
|
Lutjens R, Igarashi M, Pellier V, Blasey H, Di Paolo G, Ruchti E, Pfulg C, Staple JK, Catsicas S, Grenningloh G. Localization and targeting of SCG10 to the trans-Golgi apparatus and growth cone vesicles. Eur J Neurosci 2000; 12:2224-34. [PMID: 10947801 DOI: 10.1046/j.1460-9568.2000.00112.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SCG10 is a membrane-associated, microtubule-destabilizing protein of neuronal growth cones. Using immunoelectron microscopy, we show that in the developing cortex of mice, SCG10 is specifically localized to the trans face Golgi complex and apparently associated with vesicular structures in putative growth cones. Consistent with this, subcellular fractionation of rat forebrain extracts demonstrates that the protein is enriched in the fractions containing the Golgi apparatus and growth cone particles. In isolated growth cone particles, SCG10 was found to be particularly concentrated in the growth cone vesicle fraction. To evaluate the molecular determinants of the specific targeting of SCG10 to growth cones, we have transfected PC12 cells and primary neurons in culture with mutant and fusion cDNA constructs. Deletion of the amino-terminal domain or mutations within this domain that prevented palmitoylation at cysteines 22 and 24 abolished Golgi localization as well as growth cone targeting, suggesting that palmitoylation of the amino-terminal domain is a necessary signal for Golgi sorting and possibly transport of SCG10 to growth cones. Fusion proteins consisting of the amino-terminal domain of SCG10 and the cytosolic proteins stathmin or glutathione-S-transferase colocalized with a Golgi marker, alpha-mannosidase II, and accumulated in growth cones of both axons and dendrites. These results reveal a novel axonal/dendritic growth cone targeting sequence that involves palmitoylation.
Collapse
Affiliation(s)
- R Lutjens
- Institut de Biologie Cellulaire et de Morphologie, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis. J Neurosci 1998. [PMID: 9742146 DOI: 10.1523/jneurosci.18-19-07757.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural plasticity of nerve cells is a requirement for activity-dependent changes in the brain. The growth-associated protein GAP-43 is thought to be one determinant of such plasticity, although the molecular mechanism by which it mediates dynamic structural alterations at the synapse is not known. GAP-43 is bound by calmodulin when Ca2+ levels are low, and releases the calmodulin when Ca2+ levels rise, suggesting that calmodulin may act as a negative regulator of GAP-43 during periods of low activity in the neurons. To identify the function of GAP-43 during activity-dependent increases in Ca2+ levels, when it is not bound to calmodulin, we sought proteins with which GAP-43 interacts in the presence of Ca2+. We show here that rabaptin-5, an effector of the small GTPase Rab5 that mediates membrane fusion in endocytosis, is one such protein. We demonstrate that GAP-43 regulates endocytosis and synaptic vesicle recycling. Modulation of endocytosis by GAP-43, in association with rabaptin-5, may constitute a common molecular mechanism by which GAP-43 regulates membrane dynamics during its known roles in activity-dependent neurotransmitter release and neurite outgrowth.
Collapse
|
4
|
Hou XE, Michael GJ, Priestley JV, Dahlström A. Growth associated protein 43 (GAP-43) mRNA is upregulated in the rat superior cervical ganglia after preganglionic transection. Neurosci Lett 1998; 251:73-6. [PMID: 9718977 DOI: 10.1016/s0304-3940(98)00415-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth-associated protein 43 (GAP-43) is a growth-associated protein which is synthesised in high amounts in neurons during neuronal outgrowth. In a previous study we have shown that GAP-43 immunoreactivity is increased in neurons in superior cervical ganglia (SCG) and in nerve terminals in the irides after preganglionic denervation. We have now examined changes in GAP-43 mRNA using in situ hybridisation. GAP-43 mRNA was seen to be constitutively expressed by principal neurons of the rat superior cervical ganglion. Expression was increased further by section of the cervical sympathetic trunk, reaching a maximum (increased by about 30%) 3 days after decentralisation. The increased GAP-43 protein seen after decentralisation thus appears to be due to an upregulation of GAP-43 mRNA in the adrenergic neurons. The results imply that GAP-43 expression in the SCG is under presynaptic control, acting at least partly by control of mRNA levels.
Collapse
Affiliation(s)
- X E Hou
- Department of Anatomy and Cell Biology, Göteborg University Medical Faculty, Sweden.
| | | | | | | |
Collapse
|
5
|
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627-86. [PMID: 9447616 DOI: 10.1016/s0301-0082(97)00043-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly conserved during evolution. The B-50 gene contains two promoters and three exons which specify functional domains of the protein. The first exon encoding the 1-10 sequence, harbors the palmitoylation site for attachment to the axolemma and the minimal domain for interaction with G0 protein. The second exon contains the "GAP module", including the calmodulin binding and the protein kinase C phosphorylation domain which is shared by the family of IQ proteins. Downstream sequences of the second and non-coding sequences in the third exon encode species variability. The third exon also contains a conserved domain for phosphorylation by casein kinase II. Functional interference experiments using antisense oligonucleotides or antibodies, have shown inhibition of neurite outgrowth and neurotransmitter release. Overexpression of B-50 in cells or transgenic mice results in excessive sprouting. The various interactions, specified by the structural domains, are thought to underlie the role of B-50 in synaptic plasticity, participating in membrane extension during neuritogenesis, in neurotransmitter release and long-term potentiation. Apparently, B-50 null-mutant mice do not display gross phenotypic changes of the nervous system, although the B-50 deletion affects neuronal pathfinding and reduces postnatal survival. The experimental evidence suggests that neuronal morphology and communication are critically modulated by, but not absolutely dependent on, (enhanced) B-50 presence.
Collapse
Affiliation(s)
- A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Abstract
Several lines of investigation have helped clarify the role of GAP-43 (FI, B-50 or neuromodulin) in regulating the growth state of axon terminals. In transgenic mice, overexpression of GAP-43 leads to the spontaneous formation of new synapses and enhanced sprouting after injury. Null mutation of the GAP-43 gene disrupts axonal pathfinding and is generally lethal shortly after birth. Manipulations of GAP-43 expression likewise have profound effects on neurite outgrowth for cells in culture. GAP-43 appears to be involved in transducing intra- and extracellular signals to regulate cytoskeletal organization in the nerve ending. Phosphorylation by protein kinase C is particularly significant in this regard, and is linked with both nerve-terminal sprouting and long-term potentiation. In the brains of humans and other primates, high levels of GAP-43 persist in neocortical association areas and in the limbic system throughout life, where the protein might play an important role in mediating experience-dependent plasticity.
Collapse
Affiliation(s)
- L I Benowitz
- Children's Hospital, Dept of Surgery, Boston, MA, USA
| | | |
Collapse
|
7
|
Verkade P, Verkleij AJ, Annaert WG, Gispen WH, Oestreicher AB. Ultrastructural localization of B-50/growth-associated protein-43 to anterogradely transported synaptophysin-positive and calcitonin gene-related peptide-negative vesicles in the regenerating rat sciatic nerve. Neuroscience 1996; 71:489-505. [PMID: 9053802 DOI: 10.1016/0306-4522(95)00463-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The growth-associated protein-43/B-50 (B-50/GAP-43) is conveyed from the neuronal soma into the axon by fast axonal transport and moved to the nerve terminal. To visualize and determine the type of vesicles by which B-50/GAP-43 is anterogradely transported in the regenerating rat sciatic nerve, we have investigated Lowicryl HM20 embedded nerve pieces dissected from the proximal side of a collection ligature. Ultrastructurally, numerous vesicular profiles of various sizes, tubules and mitochondria were seen to accumulate proximal to the collection ligature. Both, in unmyelinated and myelinated axons, B-50/GAP-43 immunoreactivity was associated with vesicular profiles which had a diameter of 50 nm. A fraction of the B-50/GAP-43 label co-localized with the small vesicle marker synaptophysin. Co-localization of B-50/GAP-43 was not detected with the large dense-core vesicle marker calcitonin gene-related peptide. These results indicate that, in rat sciatic nerve axons, B-50/GAP-43 is anterogradely transported in small 50 nm vesicles of the constitutive pathway. These transport vesicles were distinguished in two types. We suggest that one type carrying, both, B-50 GAP-43 and synaptophysin has as destination the nerve terminal, whereas the second type, which only contains B-50/GAP-43 and no synaptophysin, may be primarily targeted to the axolemma for local membrane fusion.
Collapse
Affiliation(s)
- P Verkade
- Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Handman E, Osborn AH, Symons F, van Driel R, Cappai R. The Leishmania promastigote surface antigen 2 complex is differentially expressed during the parasite life cycle. Mol Biochem Parasitol 1995; 74:189-200. [PMID: 8719160 DOI: 10.1016/0166-6851(95)02500-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The promastigote surface antigen 2 (PSA-2) complex comprises a family of antigenically similar polypeptides of M(r) 96,000, 80,000 and 50,000, anchored to the membrane with glycosylphosphatidylinositol. Although PSA-2 was initially detected only in promastigotes, Northern blot analysis indicated that mRNA transcripts are also present in amastigotes. Unlike the situation in promastigotes, where at least four major transcripts (2.6-5.3 kb) were detected, only one major (2.6 kb) and two minor transcripts were present in amastigotes. A cDNA clone encoding a member of the PSA-2 family expressed in amastigotes was isolated using DNA probes. The predicted protein sequence of M(r) 40,000 is distinct from promastigote sequences, but shows significant similarity to previously described members of the family from L major and L amazonensis. Antibodies to the carboxyl terminal sequence conserved in all L major PSA-2 studied to date, as well as antibodies affinity purified on the amastigote cDNA-derived polypeptide recognized a major M(r) 50,000 amastigote polypeptide. Immuno-electron microscopy localized both promastigote and amastigote PSA-2 to the cell surface. The expression of PSA-2 polypeptides during the transformation of amastigotes into promastigotes was ordered in a time-dependent manner, with the promastigote M(r) 80000 polypeptide appearing first, followed by the M(r) 96000 polypeptide. In contrast to the glycosylphosphatidylinositol anchor of promastigote PSA-2, which could be hydrolysed by phosphatidylinositol-specific phospholipase C, the amastigote form was resistant to this enzyme.
Collapse
MESH Headings
- Amidohydrolases/pharmacology
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- DNA, Complementary/genetics
- DNA, Protozoan/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Developmental
- Leishmania major/genetics
- Leishmania major/growth & development
- Leishmania major/immunology
- Leishmania mexicana/genetics
- Leishmania mexicana/growth & development
- Leishmania mexicana/immunology
- Mice
- Mice, Inbred BALB C
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Molecular Weight
- Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase
- Phosphatidylinositol Diacylglycerol-Lyase
- Phosphoinositide Phospholipase C
- Phosphoric Diester Hydrolases/pharmacology
- Protozoan Proteins
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- E Handman
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria,
| | | | | | | | | |
Collapse
|
9
|
Verkade P, Oestreicher AB, Verkleij AJ, Gispen WH. The increase in B-50/GAP-43 in regenerating rat sciatic nerve occurs predominantly in unmyelinated axon shafts: a quantitative ultrastructural study. J Comp Neurol 1995; 356:433-43. [PMID: 7642804 DOI: 10.1002/cne.903560310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The growth-associated protein B-50/GAP-43 is thought to play a crucial role in axonal growth. We investigated, by quantitative immunoelectron microscopy, whether there are differences in the subcellular distribution of B-50 in unmyelinated and myelinated axons of intact and regenerating sciatic nerves. Adult rats received an unilateral sciatic nerve crush and were euthanized 8 days later. Nerve pieces proximal from the crush site were embedded, and B-50 was visualized by specific B-50 antibodies and immunogold detection in ultrathin sections. The density of B-50 at the plasma membrane of unmyelinated axon shafts was significantly increased in the ipsilateral regenerating nerve in comparison to that of the contralateral intact nerve. In contrast, there was no significant difference in the B-50 density at the axolemma of myelinated regenerating and intact axon shafts. In the contralateral intact nerve, more B-50 was associated with the axolemma of unmyelinated axons than with the plasma membrane of myelinated axons. The density of axoplasmic B-50 was similar in intact unmyelinated and myelinated axon shafts, but was higher in regenerating nerve than in intact nerve. This suggests that enhanced axonal transport of B-50 occurs during axon outgrowth. Our study demonstrates a differential subcellular distribution of B-50 in unmyelinated and myelinated axon shafts in both the intact and regenerating sciatic nerve, indicating a differential inducible capacity for remodeling of the axon shafts.
Collapse
Affiliation(s)
- P Verkade
- Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
10
|
Li JY, Hou XE, Dahlström A. GAP-43 and its relation to autonomic and sensory neurons in sciatic nerve and gastrocnemius muscle in the rat. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 50:299-309. [PMID: 7714324 DOI: 10.1016/0165-1838(94)00101-o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The presence of the growth-associated protein, GAP-43, in rat sciatic nerve and gastrocnemius muscle was studied, using indirect immunofluorescence, in lumbar sympathectomized and sham-sympathectomized rats. To study fast axonal transport and accumulation of immunogenic GAP-43, the sciatic nerves were crush operated, 6 h before perfusion fixation. In sections of normal, crushed sciatic nerve GAP-43-like immunoreactivity (LI) rapidly accumulated, on both sides of the crushes, in medium and thin sized axons. In double immunostaining experiments, GAP-43-LI was mainly colocalized with tyrosine hydroxylase (TH)-LI, or neuropeptide Y (NPY)-LI, markers of sympathetic nerves. In some axons, GAP-43-LI was colocalized with Substance P (SP)-LI. In perivascular nerve terminals in the gastrocnemic muscle, strong GAP-43-immunofluorescence was observed, in most cases colocalized with TH-LI, but in some terminals with SP-LI. Three days after lumbar sympathectomy (removal of the L1-L4 sympathetic ganglia bilaterally), TH-LI and NPY-LI positive axons in the sciatic nerve were reduced in number by more than 90%. GAP-43-LI positive axons were reduced by about 50%. In the gastrocnemic muscle, some GAP-43-LI positive terminals, but very few TH-LI positive nerve fibres, were found around blood vessels. No further changes were seen 8 days after sympathectomy. SP-LI in axons in the sciatic nerve and in perivascular nerve terminals of the gastrocnemic muscle, did not change after sympathectomy; most of these axons also contained GAP-43-LI. S-100-LI was present periaxonally in the sciatic nerves, but it did not colocalize with GAP-43, indicating that Schwann cells contained no GAP-43-LI in these experiments. The results show that, in normal adult rats, GAP-43-LI is mainly present in sympathetic and sensory nerve fibers in sciatic nerve and in perivascular nerve terminals. The peptide is axonally transported, mainly in sensory and adrenergic axons.
Collapse
Affiliation(s)
- J Y Li
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | |
Collapse
|
11
|
Solimena M, Dirkx R, Radzynski M, Mundigl O, De Camilli P. A signal located within amino acids 1-27 of GAD65 is required for its targeting to the Golgi complex region. J Cell Biol 1994; 126:331-41. [PMID: 8034738 PMCID: PMC2200031 DOI: 10.1083/jcb.126.2.331] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms involved in the targeting of proteins to different cytosolic compartments are still largely unknown. In this study we have investigated the targeting signal of the 65-kD isoform of glutamic acid decarboxylase (GAD65), a major autoantigen in two autoimmune diseases: Stiff-Man syndrome and insulin-dependent diabetes mellitus. GAD65 is expressed in neurons and in pancreatic beta-cells, where it is concentrated in the Golgi complex region and in proximity to GABA-containing vesicles. GAD65, but not the similar isoform GAD67 which has a more diffuse cytosolic distribution, is palmitoylated within its first 100 amino acids (a.a.). We have previously demonstrated that the domain corresponding to a.a. 1-83 of GAD65 is required for the targeting of GAD65 to the Golgi complex region. Here we show that this domain is sufficient to target an unrelated protein, beta-galactosidase, to the same region. Site-directed mutagenesis of all the putative acceptor sites for thiopalmitoylation within this domain did not abolish targeting of GAD65 to the Golgi complex region. The replacement of a.a. 1-29 of GAD67 with the corresponding a.a. 1-27 of GAD65 was sufficient to target the otherwise soluble GAD67 to the Golgi complex region. Conversely, the replacement of a.a. 1-27 of GAD65 with a.a. 1-29 of GAD67 resulted in a GAD65 protein that had a diffuse cytosolic distribution and was primarily hydrophilic, suggesting that targeting to the Golgi complex region is required for palmitoylation of GAD65. We propose that the domain corresponding to a.a. 1-27 of GAD65, contains a signal required for the targeting of GAD65 to the Golgi complex region.
Collapse
Affiliation(s)
- M Solimena
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
12
|
Palacios G, Mengod G, Sarasa M, Baudier J, Palacios JM. De novo synthesis of GAP-43: in situ hybridization histochemistry and light and electron microscopy immunocytochemical studies in regenerating motor neurons of cranial nerve nuclei in the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 24:107-17. [PMID: 7968347 DOI: 10.1016/0169-328x(94)90122-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to investigate the modulation of the synthesis and the subcellular localization of the growth associated protein GAP-43 in neuronal cell bodies we have taken advantage of the well known regenerative properties of axotomized motor neurons of the facial and hypoglossal nuclei. Alterations in the levels of GAP-43 mRNA containing cells were studied by in situ hybridization histochemistry. The protein localization was examined using immunohistochemistry at the light and electron microscopic levels. Neurons from the control side showed undetectable levels of both GAP-43-like immunoreactivity and GAP-43 mRNA levels. Whereas axotomized neurons exhibited a marked increase in GAP-43 mRNA levels and in GAP-43-like immunoreactivity. Three to 50 days after axotomy, motor neurons ipsilateral to the lesion displayed a dense reticular or filamentous perinuclear distribution of the immunoreactivity in somata and proximal dendritic processes, corresponding to the location of the Golgi apparatus in these neurons. At the electron microscopic level the immunoreactivity was located in the cisternae of the Golgi complex and found to be associated with trans-side vesicles of these complexes. The myelinated fibers of the transectomized facial nerve also presented an intense GAP-43-like immunoreactivity. Twenty-one days after the axotomy a decay in the number of immunostained neurons and in the intensity of immunolabeled somata was observed. Our study reveals a rapid induction of GAP-43 mRNA and protein after axotomy. The localization of the newly synthesized GAP-43-like immunoreactivity to the Golgi apparatus seen in the present work suggests an early association of this protein with newly formed membranes prior to transport toward the terminals through the axons.
Collapse
Affiliation(s)
- G Palacios
- Department of Cellular Biology and Physiology, Faculty of Medicine, Universidad Autónoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Shughrue PJ, Dorsa DM. The ontogeny of GAP-43 (neuromodulin) mRNA in postnatal rat brain: evidence for a sex dimorphism. J Comp Neurol 1994; 340:174-84. [PMID: 8201017 DOI: 10.1002/cne.903400204] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
GAP-43 is a membrane-bound protein selectively concentrated in axonal growth cones during brain development and implicated in axonal outgrowth and elongation. A sex dimorphism in the number of synapses in certain regions of the adult rat brain has been attributed to differences in gonadal steroid hormone action during early postnatal life. The results of recent studies have demonstrated that gonadal steroids modulate GAP-43 mRNA in regions of the postnatal and adult brain where steroid hormone receptors are concentrated. Since gonadal steroids influence the development of the sexually undifferentiated brain during the first few weeks of postnatal life, the present study investigated the ontogeny of GAP-43 mRNA in the male and female rat brain between postnatal days 1 and 25. On postnatal days 1, 3, 6, 12, 18, and 25, brains were collected from male and female postnates and frozen, and 16 microns cryostat sections were processed and hybridized with a 35S-labeled antisense riboprobe complementary to GAP-43 mRNA. Evaluation of film autoradiograms demonstrated a widespread distribution of GAP-43 mRNA in postnatal brain regions, including the cerebral cortex; bed nucleus of the stria terminalis; and medial preoptic area, ventromedial nucleus, and arcuate nucleus of the hypothalamus. Densitometric measurements revealed that GAP-43 mRNA was transiently elevated during early postnatal life, with a subsequent decrease during brain maturation, although the pattern of change varied among the brain regions investigated. In addition, the level of GAP-43 hybridization signal was significantly higher in the male cortex, bed nucleus, and medial preoptic nucleus, but not the ventromedial and arcuate nuclei, than in postnatal females. Analysis of slide autoradiograms demonstrated that the change in GAP-43 mRNA during postnatal development was due to changes at the cellular level. The present results indicate that expression of GAP-43 mRNA is transiently elevated and sexually dimorphic in certain regions of the early postnatal rat brain. The results further suggest that the differential expression of GAP-43 in the male and female postnatal brain may be related to sex differences in neuronal outgrowth and connectivity resulting in a dimorphism in the pattern of adult neuronal circuitry.
Collapse
Affiliation(s)
- P J Shughrue
- Department of Pharmacology, University of Washington, Seattle 98195
| | | |
Collapse
|
14
|
Li JY, Dahlström AB. Distribution of GAP-43 in relation to CGRP and synaptic vesicle markers in rat skeletal muscles during development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 74:269-82. [PMID: 7691435 DOI: 10.1016/0165-3806(93)90013-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
GAP 43 in nerve terminal structures of rat skeletal muscles, was investigated during postnatal development using immunofluorescence and confocal laser scanning microscopy. Comparison with synaptophysin, synapsin, SV2, CGRP, SP and NF was done in double immunoincubation studies. GAP 43-like immunoreactivity (LI) was demonstrated in preterminal axons and motor endplates in all age groups (from E18 to adult), although the intensity of immunofluorescence was considerably higher in the younger rats. The outgrowing nerve sprouts in E18 muscles were strongly GAP 43-positive. The intensity decreased with increasing age, but even in adult animals GAP 43-LI was present in some p38- or SV2-positive endplates. GAP 43-LI was also present in muscle spindles and preterminal nerve branches, and likewise decreased with age. Perivascular nerve terminals (around arteries mainly) were, however, strong in GAP 43-LI during both development and adulthood. GAP 43-LI was strong, and present in both small and large granules. SP-LI was observed in a few thin, presumably sensory, axons around vessels, which also contained a few GAP 43-positive large granules. Most of the strongly GAP 43-positive terminals around vessels were probably autonomic postganglionic terminals. The results suggest that GAP 43, in addition to development and regeneration, may play a significant role also in normal adult rats, especially in perivascular nerve terminals, possibly connected with a high potential for plasticity in this kind of nerve terminals.
Collapse
Affiliation(s)
- J Y Li
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | |
Collapse
|
15
|
van Lookeren Campagne M, Dotti CG, Verkleij AJ, Gispen WH, Oestreicher AB. Redistribution of B-50/growth-associated protein 43 during differentiation and maturation of rat hippocampal neurons in vitro. Neuroscience 1992; 51:601-19. [PMID: 1336822 DOI: 10.1016/0306-4522(92)90300-q] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Morphologically polarized hippocampal neurons, grown in culture for two days, contain immunoreactivity of the growth-associated protein B-50 along the plasma membrane of both dendrites and axons. In mature hippocampal neurons, both in vitro and in vivo, B-50 is located in the axon. In order to assess at which stage during neuronal differentiation B-50 is selectively located in the axon, an immuno-light and electron-microscopic study was performed on rat hippocampal neurons developing in vitro. B-50 immunofluorescence was detected in the axon, dendrites and soma of two-day-old polarized neurons. Simultaneously, microtubule-associated protein 2, a marker specific to dendritic microtubules, was predominantly found in the soma, the short dendritic processes and at the base of axonal growth cones. In hippocampal neurons cultured beyond seven days in vitro, microtubule-associated protein 2 immunofluorescence is restricted to the cell soma and dendrites. The spatial distribution of B-50, however, varies. In solitary neurons maturing without interneuronal contacts, B-50 immunofluorescence is observed in axons and in the dendrosomatic domain characterized by the presence of microtubule-associated protein 2. In contrast, in high-density cell cultures B-50 immunofluorescence is absent in the cell body and dendrites, but punctate in axons running along the dendrites. Electron microscopy was carried out on hippocampal neurons of eight to 21 days in vitro to study the process of redistribution of B-50 at the subcellular level. In neurons of eight days in vitro with prominent synapses, B-50 immunoreactivity is significantly elevated at the axonal plasma membrane compared to the plasma membrane of the dendrites and the soma. In neurons from the same culture without synapses, B-50 immunoreactivity is distributed rather densely along the plasma membrane of the soma, dendrites, and on the axonal plasma membrane. A similar B-50 distribution is observed in mature neurons cultured at low cell density without interneuronal cell contacts, for 15 days in vitro. In high-density cell cultures of 21 days in vitro, B-50 is virtually absent at the plasma membrane of the soma and dendrites, and heterogenously distributed along the plasma membrane of axon and axonal varicosities. Our results indicate that selective sorting of B-50 into axons occurs after initial morphological polarization of hippocampal neurons and is correlated with the formation of synapses and with the cessation of dendritic outgrowth.
Collapse
Affiliation(s)
- M van Lookeren Campagne
- Rudolf Magnus Institute, Division of Molecular Neurobiology, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Van Lookeren Campagne M, Dotti CG, Jap Tjoen San ER, Verkleij AJ, Gispen WH, Oestreicher AB. B-50/GAP43 localization in polarized hippocampal neurons in vitro: an ultrastructural quantitative study. Neuroscience 1992; 50:35-52. [PMID: 1407559 DOI: 10.1016/0306-4522(92)90380-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hippocampal pyramidal neurons cultured in vitro gradually develop morphologically and biochemically distinct axons and dendrites, resulting in functional neuronal polarization [Dotti C. G. et al. (1988) J. Neurosci. 8, 1454-1468]. We have studied the distribution of the growth-associated protein B-50 in hippocampal neurons of the rat at stage 3 of development by means of light and electron microscopic immunocytochemistry. Hippocampal neurons grown for two to three days in vitro were aldehyde fixed and immunolabelled using polyclonal rabbit antibodies to B-50 and goat anti-rabbit immunoglobulins tagged with 1 nm gold particles. In order to permit visualization by both light and electron microscopy, the gold probes were silver intensified. Light microscopy demonstrated the absence of B-50 immunostaining in living neurons and the presence after permeabilization by fixation and subsequent treatment of the neurons with sodium borohydride, indicating that B-50 is located intracellularly. Both immunofluorescence and immunogold-silver labelling revealed that B-50 immunoreactivity outlined all neurites of the morphologically polarized neurons. For quantitative electron microscopy, six morphologically polarized neurons (developmental stage 3) were carefully selected from immunolabelled Epon-embedded neurons and processed completely to ultrathin sections. In this way the ultrastructural localization of B-50 has been studied in the cell body, the neurites and their growth cones. For each sectioned neuron, the relative distribution of the gold-silver deposits (representing B-50) over the plasma membrane of various cellular compartments was quantitated. B-50 is located at the plasma membrane of the neuronal cell body and all neurites including their growth cones. The density of B-50 on the plasma membrane of growth cones is not different from that of the neuritic shaft. In addition, B-50 is present on the cytosolic side of the membrane of small electron-lucent vesicles (average diameter 102.7 +/- 2.5 nm) resembling transport vesicles. These vesicles are present in the cell body and the neurites. A two-fold concentration is found in the central region of the growth cones, suggesting a role of these vesicles in axonal transport, membrane insertion and (or) recycling. Since, at the onset of neuronal polarization, B-50 is present at the plasma membrane in all compartments of the hippocampal neuron, we suggest that at this stage of development B-50 does not participate directly in the processes leading to morphological polarization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|