1
|
Taslimifar M, Buoso S, Verrey F, Kurtcuoglu V. Propagation of Plasma L-Phenylalanine Concentration Fluctuations to the Neurovascular Unit in Phenylketonuria: An in silico Study. Front Physiol 2019; 10:360. [PMID: 31105574 PMCID: PMC6454150 DOI: 10.3389/fphys.2019.00360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/14/2019] [Indexed: 01/21/2023] Open
Abstract
Phenylketonuria (PKU) is an inherited metabolic disease characterized by abnormally high concentrations of the essential amino acid L-phenylalanine (Phe) in blood plasma caused by reduced activity of phenylalanine hydroxylase (PAH). While numerous studies have shown association between high plasma Phe concentration and intellectual impairment, it is not clear whether increased Phe fluctuations also observed in PKU affect the brain as well. To investigate this, time-resolved in vivo data on Phe and competing large neutral amino acid (LNAA) concentrations in neurons are needed, but cannot be acquired readily with current methods. We have used in silico modeling as an alternative approach to characterize the interactive dynamics of Phe and competing LNAAs (CL) in the neurovascular unit (NVU). Our results suggest that plasma Phe fluctuations can propagate into the NVU cells and change there the concentration of LNAAs, with the highest magnitude of this effect observed at low frequency and high amplitude-to-mean ratio of the plasma Phe concentration fluctuations. Our model further elucidates the effect of therapeutic LNAA supplementation in PKU, showing how abnormal concentrations of Phe and CL in the NVU move thereby toward normal physiologic levels.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stefano Buoso
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute for Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich, Switzerland
| | - Francois Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney Control of Homeostasis, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney Control of Homeostasis, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Taslimifar M, Buoso S, Verrey F, Kurtcuoglu V. Functional Polarity of Microvascular Brain Endothelial Cells Supported by Neurovascular Unit Computational Model of Large Neutral Amino Acid Homeostasis. Front Physiol 2018; 9:171. [PMID: 29593549 PMCID: PMC5859092 DOI: 10.3389/fphys.2018.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
The homeostatic regulation of large neutral amino acid (LNAA) concentration in the brain interstitial fluid (ISF) is essential for proper brain function. LNAA passage into the brain is primarily mediated by the complex and dynamic interactions between various solute carrier (SLC) transporters expressed in the neurovascular unit (NVU), among which SLC7A5/LAT1 is considered to be the major contributor in microvascular brain endothelial cells (MBEC). The LAT1-mediated trans-endothelial transport of LNAAs, however, could not be characterized precisely by available in vitro and in vivo standard methods so far. To circumvent these limitations, we have incorporated published in vivo data of rat brain into a robust computational model of NVU-LNAA homeostasis, allowing us to evaluate hypotheses concerning LAT1-mediated trans-endothelial transport of LNAAs across the blood brain barrier (BBB). We show that accounting for functional polarity of MBECs with either asymmetric LAT1 distribution between membranes and/or intrinsic LAT1 asymmetry with low intraendothelial binding affinity is required to reproduce the experimentally measured brain ISF response to intraperitoneal (IP) L-tyrosine and L-phenylalanine injection. On the basis of these findings, we have also investigated the effect of IP administrated L-tyrosine and L-phenylalanine on the dynamics of LNAAs in MBECs, astrocytes and neurons. Finally, the computational model was shown to explain the trans-stimulation of LNAA uptake across the BBB observed upon ISF perfusion with a competitive LAT1 inhibitor.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stefano Buoso
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute for Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich, Switzerland
| | - Francois Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Tessari P. Leucine Transamination Is Lower in Middle-Aged Compared with Younger Adults. J Nutr 2017; 147:2025-2030. [PMID: 28931590 DOI: 10.3945/jn.117.250852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/28/2017] [Accepted: 08/22/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Insulin and age affect leucine (and protein) kinetics in vivo. However, to our knowledge, leucine transamination and the effects of insulin have not been studied in participants of different ages.Objective: The aims of the study were to measure whole-body leucine deamination to α-ketoisocaproate (KIC) and KIC reamination to leucine in middle-aged and younger healthy adults, both in the postabsorptive state and after hyperinsulinemia.Methods: Younger (mean ± SE age: 26 ± 2 y) and middle-aged (54 ± 3 y) healthy men and women were enrolled. Isotope dilution methods with 2 independent leucine and KIC tracers, a dual isotope model and the euglycemic, hyperinsulinemic clamp technique, were used.Results: Leucine deamination [expressed as μmol/(kg × min)] was consistently greater than KIC reamination. In middle-aged adults, postabsorptive leucine deamination (0.77 ± 0.05), reamination (0.49 ± 0.04), and net deamination (0.28 ± 0.04) were ∼30% lower than in the younger group (deamination: 1.12 ± 0.07; reamination: 0.70 ± 0.09; net deamination: 0.42 ± 0.04) (P < 0.002, P < 0.05, and P < 0.015, respectively). After the hyperinsulinemic clamp, plasma leucine and KIC concentrations were reduced by ∼50% in both groups. Deamination and reamination also were suppressed by ∼40-50% in both groups (P < 0.001); however, they remained lower [-35% (P = 0.02) and -25% (P = 0.036), respectively] in the middle-aged than in the younger participants. The leucine rate of appearance and its suppression by insulin were similar in the middle-aged and in the younger subjects. By using both the basal and the clamp data, deamination was directly correlated with the plasma leucine concentration (r = 0.61, P < 0.0025) and reamination to that of plasma KIC (r = 0.79, P < 0.00002). Expressing the data relative to lean body mass did not substantially alter the results.Conclusions: Leucine deamination and reamination are lower in middle-aged than in younger adults, both in the postabsorptive and in the insulin-stimulated state. In middle age, a decreased net leucine transamination may represent a mechanism to spare this essential amino acid.
Collapse
Affiliation(s)
- Paolo Tessari
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Yudkoff M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem Res 2017; 42:10-18. [PMID: 27696119 PMCID: PMC5285401 DOI: 10.1007/s11064-016-2057-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/17/2023]
Abstract
Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.
Collapse
Affiliation(s)
- Marc Yudkoff
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Drgonova J, Liu QR, Hall FS, Krieger RM, Uhl GR. Deletion of v7-3 (SLC6A15) transporter allows assessment of its roles in synaptosomal proline uptake, leucine uptake and behaviors. Brain Res 2007; 1183:10-20. [PMID: 17931606 PMCID: PMC2211565 DOI: 10.1016/j.brainres.2007.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/23/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
V7-3 (SLC6A15) is the prototype for a gene subfamily whose members have sequence homologies to classical Na+- and Cl(-)-dependent neurotransmitter transporters but display unusual features that include characteristic large fourth extracellular loops. Interest in v7-3 has been increased by the elucidation of its expression in neurons located in cerebral cortex, hippocampus, cerebellum, midbrain and olfactory bulb. To help clarify the role of v7-3 in brain functions, we have created and characterized v7-3 knockout mice. These mice lack functional v7-3 protein but are viable and fertile. While our studies were in progress, v7-3 expression was reported to confer transport of proline and branched-chain amino acids in in vitro expression systems [Takanaga, H., Mackenzie, B., Peng, J.B., Hediger, M.A., 2005b. Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in human brain. Biochem. Biophys. Res. Commun. 337, 892-900; Broer, A., Tietze, N., Kowalczuk, S., Chubb, S., Munzinger, M., Bak, L.K., Broer, S., 2006. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem. J. 393, 421-430]. Assessment of amino acid uptake into cortical synaptosomes of v7-3 knockouts identified 15% and 40% reductions in sodium-dependent proline and leucine transport, respectively, compared to wild type controls. Despite these biochemical changes, v7-3 knockout mice demonstrate only modest alterations in rotarod performance with aging and lack reproducible alterations in other motor, memory, anxiety or olfactory tests. Compensation for the lack of v7-3 via other amino acid carriers is likely to leave v7-3 knockouts without gross behavioral manifestations. The current results place v7-3 in the context of other brain transporters that accumulate proline and branched-chain amino acids.
Collapse
Affiliation(s)
- Jana Drgonova
- Molecular Neurobiology Branch, NIDA, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
6
|
Honegger P, Braissant O, Henry H, Boulat O, Bachmann C, Zurich MG, Pardo B. Alteration of amino acid metabolism in neuronal aggregate cultures exposed to hypoglycaemic conditions. J Neurochem 2002; 81:1141-51. [PMID: 12068063 DOI: 10.1046/j.1471-4159.2002.00888.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.
Collapse
Affiliation(s)
- Paul Honegger
- Institute of Physiology, University of Lausanne, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|