1
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex differences in the affective-cognitive dimension of neuropathic pain: Insights from the spared nerve injury rat model. THE JOURNAL OF PAIN 2024; 27:104752. [PMID: 39626836 DOI: 10.1016/j.jpain.2024.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Over 40% of neuropathic pain patients experience mood and cognitive disturbances, often showing reduced response to analgesics, with most affected individuals being female. This highlights the critical role of biological sex in pain-related affective and cognitive disorders, making it essential to understand the emotional and cognitive circuits linked to pain for improving treatment strategies. However, research on sex differences in preclinical pain models is lacking. This study aimed to investigate these differences using the spared nerve injury (SNI) rat model, conducting a comprehensive series of behavioural tests over 100 days post-injury to identify key time points for observing sex-specific behaviours indicative of pain-related conditions. The findings revealed that female rats exhibited greater mechanical and cold hypersensitivity compared to males following nerve injury and showed earlier onset of depression-related behaviours, while males were more prone to anxiety, social, and memory-related alterations. Interestingly, by the 14th week post-injury, females displayed no signs of these emotional and cognitive impairments. Additionally, fluctuations in the oestrous cycle or changes in testosterone and oestradiol levels did not correlate with sex differences in pain sensitivity or negative affect. Recognizing the influence of biological sex on pain-induced affective and cognitive alterations, especially in later stages post-injury, is crucial for enhancing our understanding of this complex pain disorder. PERSPECTIVE: This manuscript reports the relevance of long-term investigations of sex differences in chronic pain. It shows differential development of somatosensory sensitivity, negative affective states and cognitive impairments in males and females. It emphasizes the importance of including subjects of both sexes in the investigation of pain-related mechanisms and therapeutic management.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland; Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Pepino L, Malapert P, Saurin AJ, Moqrich A, Reynders A. Formalin-evoked pain triggers sex-specific behavior and spinal immune response. Sci Rep 2023; 13:9515. [PMID: 37308519 DOI: 10.1038/s41598-023-36245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Mounting evidence shows sex-related differences in the experience of pain with women suffering more from chronic pain than men. Yet, our understanding of the biological basis underlying those differences remains incomplete. Using an adapted model of formalin-induced chemical/inflammatory pain, we report here that in contrast to male mice, females distinctly display two types of nocifensive responses to formalin, distinguishable by the duration of the interphase. Females in proestrus and in metestrus exhibited respectively a short-lasting and a long-lasting interphase, underscoring the influence of the estrus cycle on the duration of the interphase, rather than the transcriptional content of the dorsal horn of the spinal cord (DHSC). Additionally, deep RNA-sequencing of DHSC showed that formalin-evoked pain was accompanied by a male-preponderant enrichment in genes associated with the immune modulation of pain, revealing an unanticipated contribution of neutrophils. Taking advantage of the male-enriched transcript encoding the neutrophil associated protein Lipocalin 2 (Lcn2) and using flow cytometry, we confirmed that formalin triggered the recruitment of LCN2-expressing neutrophils in the pia mater of spinal meninges, preferentially in males. Our data consolidate the contribution of female estrus cycle to pain perception and provide evidence supporting a sex-specific immune regulation of formalin-evoked pain.
Collapse
Affiliation(s)
- Lucie Pepino
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Pascale Malapert
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Aziz Moqrich
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France.
| | - Ana Reynders
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France.
| |
Collapse
|
3
|
Marcon L, C V V Giacomini A, Dos Santos BE, Costa F, Rosemberg DB, Demin KA, Kalueff AV, de Abreu MS. Understanding sex differences in zebrafish pain- and fear-related behaviors. Neurosci Lett 2021; 772:136412. [PMID: 34942320 DOI: 10.1016/j.neulet.2021.136412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Sex is an important variable in translational biomedical research. While overt sex differences have been reported for pain and fear-like behaviors in humans and rodents, these differences in other popular model organisms, such as zebrafish, remain poorly understood. Here, we evaluate potential sex differences in zebrafish behavioral responses to pain (intraperitoneal administration of 5% acetic acid) and fear stimuli (exposure to alarm substance). Overall, both male and female zebrafish exposed to pain (intraperitoneal 5% acetic acid injection) show lesser distance traveled, fewer top entries and more writhing-like pain-related behavior vs. controls. However, female fish more robustly (than males) altered some other pain-like behaviors (e.g., increasing freezing episodes and time in top) in this model. In contrast, zebrafish of both sexes responded equally strongly to fear evoked by alarm substance exposure. Collectively, these findings emphasize the growing importance of studying sex differences in zebrafish, including pain models.
Collapse
Affiliation(s)
- Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Fabiano Costa
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Novosibirsk State University, Novosibirsk, Russia; Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia.
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
4
|
Hagiwara H, Sakimura K, Abe M, Itoi K, Kamiya Y, Akema T, Funabashi T. Sex differences in pain-induced modulation of corticotropin-releasing hormone neurons in the dorsolateral part of the stria terminalis in mice. Brain Res 2021; 1773:147688. [PMID: 34644526 DOI: 10.1016/j.brainres.2021.147688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023]
Abstract
We earlier reported female-biased, sex-specific involvement of the dorsolateral bed nucleus of the stria terminalis (dl BST) in the formalin-induced pain response in rats. The present study investigated pain effects on mice behaviors. Because the dl BST is densely populated with corticotropin-releasing hormone (CRH) neurons, we examined sex differences in these parameters for the dl BST CRH neurons in male and female mice of a mouse line for which the CRH gene promoter (corticotropin-releasing factor [CRF]-Venus ΔNeo) controls the expression of the modified yellow fluorescent protein (Venus). Approximately 92% of Venus-positive cells in the dl BST were also CRH mRNA-positive, irrespective of sex. Therefore, the cells identified using Venus fluorescence were regarded as CRH neurons. A female-biased sex difference was observed in pain-induced behaviors during the interphase (5-15 min after formalin injection) but not during the later phase (phase 2, 15-60 min) in wild-type mice. In CRF-Venus ΔNeo mice, a female-biased difference was observed in either the earlier phase (phase 1, 0-5 min) or the interphase, but not in phase 2. Patch-clamp recordings taken using an acute BST slice obtained from a CRF-Venus ΔNeo mouse after formalin injection showed miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). Remarkably, the mEPSCs frequency was higher in the Venus-expressing cells of formalin-injected female mice than in vehicle-treated female mice. Male mice showed no increase in mEPSC frequency by formalin injection. Formalin injection had no effect on mEPSC or mIPSC amplitudes in either sex. Pain-induced changes in mEPSC frequency in putative CRH neurons were phase-dependent. Results show that excitatory synaptic inputs to BST CRH neurons are temporally enhanced along with behavioral sex differences in pain response, suggesting that pain signals alter the BST CRH neurons excitability in a sex-dependent manner.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-aza Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 950-8510, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan.
| |
Collapse
|
5
|
A new hypertonic saline assay for analgesic screening in mice: effects of animal strain, sex, and diurnal phase. Can J Anaesth 2021; 68:672-682. [PMID: 33598887 DOI: 10.1007/s12630-021-01923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE There exists a pressing need for the identification of novel analgesics. We recently reported on a new preclinical assay for rapid analgesic screening based on intraplantar (i.pl.) injection of 10% hypertonic saline (HS) in female outbred (CD-1) mice. Herein, we characterized the HS assay's performance in inbred (C57BL/6) mice, sensitivity to sex differences, and effects of diurnal rhythm phase. METHODS In randomized, controlled, blinded in vivo animal experiments, we studied nociceptive responses induced by i.pl. HS in C57BL/6 (vs CD-1) mice of both sexes (n = 240) and determined diurnal rhythm phase effects in female animals. We established the HS assay's sensitivity to morphine by constructing dose-response curves and calculating half-maximal inhibitory doses (ID50s). RESULTS The injection of i.pl. HS produced nociceptive (licking and biting) responses in all C57BL/6 mice tested. In both C57BL/6 and CD-1 mice, the mean (95% confidence interval [CI]) response magnitudes were greater in females vs males (C57BL/6: 87 sec [64 to 110] vs 45 sec [29 to 61]; difference in means, 42 sec; 95% CI, 17 to 68; P < 0.001; n = 10/group; CD-1: 110 sec [95 to 126] vs 53 sec [32 to 74]; difference in means, 57 sec; 95% CI, 34 to 79; P < 0.001; n = 10/group). The mean (95% CI) nociceptive responses were greater at 24:00 hr than at 12:00 hr in C57BL/6 mice (64 sec [40 to 88] vs 37 sec [24 to 51]; difference in means, 27 sec; 95% CI, 7 to 47; P = 0.007; n = 10/group), but not in CD-1 mice (P = 0.97). Intravenous morphine dose-dependently attenuated nociceptive responses of both C57BL/6 and CD-1 mice (ID50, 0.6 and 2.5 mg·kg-1, respectively; P = 0.41). CONCLUSION These findings in inbred and outbred mice solidify the utility of the HS assay as an effective, rapid, robust, and versatile preclinical tool for analgesic screening.
Collapse
|
6
|
Bimpong K, Thomson K, Mcnamara CL, Balaj M, Akhter N, Bambra C, Todd A. The Gender Pain Gap: gender inequalities in pain across 19 European countries. Scand J Public Health 2021; 50:287-294. [PMID: 33568013 PMCID: PMC8873965 DOI: 10.1177/1403494820987466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims: Chronic pain is increasingly considered to be an international public health issue, yet gender differences in chronic pain in Europe are under-examined. This work aimed to examine gender inequalities in pain across Europe. Methods: Data for 27,552 men and women aged 25–74 years in 19 European countries were taken from the social determinants of health module of the European Social Survey (2014). Inequalities in reporting pain were measured by means of adjusted rate differences (ARD) and relative adjusted rate risks (ARR). Results: At the pooled pan-European level, a greater proportion of women (62.3%) reported pain than men (55.5%) (ARD 5.5% (95% confidence intervals (CI) 4.1, 6.9), ARR 1.10 (95% CI 1.08, 1.13)). These inequalities were greatest for back/neck pain (ARD 5.8% (95% CI 4.4, 7.1), ARR 1.15 (95% CI 1.12, 1.19)), but were also significant for hand/arm pain (ARD 4.6% (95% CI 3.5, 5.7), ARR 1.24 (95% CI 1.17, 1.30)) and foot/leg pain (ARD 2.6% (95% CI 1.5, 3.8), ARR 1.12 (95% CI 1.07, 1.18)). There was considerable cross-national variation in gender pain inequalities across European countries. Conclusions: Significant gender pain inequalities exist across Europe whereby women experience more pain than men. The extent of the gender pain gap varies by country. The gender pain gap is a public health concern and should be considered in future prevention and management strategies.
Collapse
Affiliation(s)
| | - Katie Thomson
- Population Health Sciences Institute, Newcastle University, UK
| | - Courtney L Mcnamara
- Centre for Global Health Inequalities Research (CHAIN), Norwegian University of Science and Technology (NTNU), Norway
| | - Mirza Balaj
- Centre for Global Health Inequalities Research (CHAIN), Norwegian University of Science and Technology (NTNU), Norway
| | | | - Clare Bambra
- Population Health Sciences Institute, Newcastle University, UK.,Centre for Global Health Inequalities Research (CHAIN), Norwegian University of Science and Technology (NTNU), Norway
| | - Adam Todd
- School of Pharmacy, Newcastle University, UK.,Centre for Global Health Inequalities Research (CHAIN), Norwegian University of Science and Technology (NTNU), Norway
| |
Collapse
|
7
|
Mosley GE, Wang M, Nasser P, Lai A, Charen DA, Zhang B, Iatridis JC. Males and females exhibit distinct relationships between intervertebral disc degeneration and pain in a rat model. Sci Rep 2020; 10:15120. [PMID: 32934258 PMCID: PMC7492468 DOI: 10.1038/s41598-020-72081-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Back pain is linked to intervertebral disc (IVD) degeneration, but clinical studies show the relationship is complex. This study assessed whether males and females have distinct relationships between IVD degeneration and pain using an in vivo rat model. Forty-eight male and female Sprague-Dawley rats had lumbar IVD puncture or sham surgery. Six weeks after surgery, IVDs were evaluated by radiologic IVD height, histological grading, and biomechanical testing. Pain was assessed by von Frey assay and dorsal root ganglia (DRG) expression of Calca and Tac1 genes. Network analysis visualized which measures of IVD degeneration most related to pain by sex. In both females and males, annular puncture induced structural IVD degeneration, but functional biomechanical properties were similar to sham. Females and males had distinct differences in mechanical allodynia and DRG gene expression, even though sex differences in IVD measurements were limited. Network analysis also differed by sex, with more associations between annular puncture injury and pain in the male network. Sex differences exist in the interactions between IVD degeneration and pain. Limited correlation between measures of pain and IVD degeneration highlights the need to evaluate pain or nociception in IVD degeneration models to better understand nervous system involvement in discogenic pain.
Collapse
Affiliation(s)
- Grace E Mosley
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA.,Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA
| | - Alon Lai
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA
| | - Daniel A Charen
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA.
| |
Collapse
|
8
|
McIlwrath SL, Montera MA, Gott KM, Yang Y, Wilson CM, Selwyn R, Westlund KN. Manganese-enhanced MRI reveals changes within brain anxiety and aversion circuitry in rats with chronic neuropathic pain- and anxiety-like behaviors. Neuroimage 2020; 223:117343. [PMID: 32898676 PMCID: PMC8858643 DOI: 10.1016/j.neuroimage.2020.117343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023] Open
Abstract
Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety and depression after pain chronification reportedly are caused by brain remodeling/recruitment of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has caused opioid overprescribing and continued overuse of opioids leading to the current opioid epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of underlying pathologies contributing to pain chronification is needed to address these chronic pain related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased compared to controls in supraspinal regions of the anxiety and aversion circuitry, including anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal intensity as the neuronal activity measure, was not significantly different in thalamus and decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte activation. These findings support use of MEMRI and chronic rodent models for preclinical studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has persisted in timeframes relevant to clinical pain and to observe treatment effects not possible in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement is predicted in the success rate of preclinical drug trials in future studies with this model.
Collapse
Affiliation(s)
| | - Marena A Montera
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Katherine M Gott
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Yirong Yang
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Colin M Wilson
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Reed Selwyn
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Karin N Westlund
- Research Services New Mexico VA HealthCare System Albuquerque NM 87108 USA; University of New Mexico Health Sciences Center, Albuquerque, NM USA
| |
Collapse
|
9
|
M Santos B, Nascimento GC, Capel CP, Borges GS, Rosolen T, Sabino JPJ, Leite-Panissi CRA, Branco LGS. Sex differences and the role of ovarian hormones in site-specific nociception of SHR. Am J Physiol Regul Integr Comp Physiol 2019; 317:R223-R231. [PMID: 31091153 DOI: 10.1152/ajpregu.00390.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accurate diagnosis and treatment of pain is dependent on knowledge of the variables that might alter this response. Some of these variables are the locality of the noxious stimulus, the sex of the individual, and the presence of chronic diseases. Among these chronic diseases, hypertension is considered a serious and silent disease that has been associated with hypoalgesia. The main goal of this study was to evaluate the potential nociceptive differences in spontaneously hypertensive rats (SHR) regarding the locality of the stimulus, i.e., the temporomandibular joint or paw, the sex, and the role of ovarian hormones in a model of mechanical nociception (Von Frey test) or formalin-induced inflammatory nociception. Our results indicate that SHR had lower orofacial mechanical nociception beyond the lower mechanical nociception in the paw compared with WKY rats. In a model of formalin-induced inflammatory nociception, SHR also had decreased nociception compared with normotensive rats. We also sought to evaluate the influence of sex and ovarian hormones on orofacial mechanical nociception in SHR. We observed that female SHR had higher mechanical nociception than male SHR only in the paw, but it had higher formalin-induced orofacial nociception than male SHR. Moreover, the absence of ovarian hormones caused an increase in mean arterial pressure and a decrease in paw nociception in female SHR.
Collapse
Affiliation(s)
- Bruna M Santos
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Glauce C Nascimento
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Camila P Capel
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Gabriela S Borges
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Thales Rosolen
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - João P J Sabino
- Department of Biophysics and Physiology, Federal University of Piauí , Teresina, Piauí , Brazil
| | - Christie R A Leite-Panissi
- Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Luiz G S Branco
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry Faculty, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| |
Collapse
|
10
|
Abstract
Pain is an increasing clinical challenge affecting about half the population, with a substantial number of people suffering daily intense pain. Such suffering can be linked to the dramatic rise in opioid use and associated deaths in the United States. There is a pressing need for new analgesics with limited side effects. Here, we summarize what we know about the genetics of pain and implications for drug development. We make the case that chronic pain is not one but a set of disease states, with peripheral drive a key element in most. We argue that understanding redundancy and plasticity, hallmarks of the nervous system, is critical in developing analgesic drug strategies. We describe the exploitation of monogenic pain syndromes and genetic association studies to define analgesic targets, as well as issues associated with animal models of pain. We appraise present-day screening technologies and describe recent approaches to pain treatment that hold promise.
Collapse
Affiliation(s)
- Jane E Sexton
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
11
|
Harton LR, Richardson JR, Armendariz A, Nazarian A. Dissociation of morphine analgesic effects in the sensory and affective components of formalin-induced spontaneous pain in male and female rats. Brain Res 2017; 1658:36-41. [PMID: 28089665 DOI: 10.1016/j.brainres.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/27/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Sex differences in the analgesic effects of morphine have been previously reported in various models that represent the sensory component of pain. However, pain sensation is a complex process that consists of both sensory and affective components. It is presently unclear whether the analgesic effects of morphine between the sensory and affective components of pain are sexually dimorphic. Moreover, differences in morphine dose-response in the two components of pain have not been examined in male and female rats. Therefore, we examined the analgesic effects of morphine on the sensory and affective components of formalin-induced pain behaviors in male and female rats. To discern the sensory component, rats were pretreated with varying doses of morphine and then intraplantar formalin-induced paw flinches were measured. Morphine reduced the number of formalin-induced paw flinches at a treatment dose of 4.0mg/kg. Morphine analgesia was similar across the sexes in the early (phase 1) and late phase (phase 2) of the formalin test. To examine the affective component, rats were pretreated with varying doses of morphine, and then intraplantar formalin-induced conditioned place aversion (CPA) was examined. Formalin produced CPA, which was blocked by morphine at doses of 1.0mg/kg and higher in male and female rats. Lastly, formalin-induced cFos expression and the effects of systemic morphine were examined in the superficial dorsal horn of the spinal cord. Intraplantar formalin produced robust expression of cFos; however, morphine did not attenuate the cFos expression. These results demonstrate a notable dissociation of the analgesic effects of morphine by detecting a fourfold shift in the minimum effective dose between the sensory and affective components of formalin-induced spontaneous pain, that were similar between male and female rats. The findings further suggest disparate mechanisms involved in systemic morphine-induced analgesia in the two components of formalin-induced pain.
Collapse
Affiliation(s)
- Lisa R Harton
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Janell R Richardson
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Alexander Armendariz
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
12
|
Melchior M, Poisbeau P, Gaumond I, Marchand S. Insights into the mechanisms and the emergence of sex-differences in pain. Neuroscience 2016; 338:63-80. [DOI: 10.1016/j.neuroscience.2016.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
|
13
|
Nasir H, Mahboubi H, Gyawali S, Ding S, Mickeviciute A, Ragavendran JV, Laferrière A, Stochaj U, Coderre TJ. Consistent sex-dependent effects of PKMζ gene ablation and pharmacological inhibition on the maintenance of referred pain. Mol Pain 2016; 12:1744806916675347. [PMID: 27899695 PMCID: PMC5131814 DOI: 10.1177/1744806916675347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Persistently active PKMζ has been implicated in maintaining spinal nociceptive sensitization that underlies pain hypersensitivity. However, evidence for PKMζ in the maintenance of pain hypersensitivity comes exclusively from short-term studies in males using pharmacological agents of questionable selectivity. The present study examines the contribution of PKMζ to long-lasting allodynia associated with neuropathic, inflammatory, or referred visceral and muscle pain in males and females using pharmacological inhibition or genetic ablation. RESULTS Pharmacological inhibition or genetic ablation of PKMζ reduced mild formalin pain and slowly developing contralateral allodynia in nerve-injured rats, but not moderate formalin pain or ipsilateral allodynia in models of neuropathic and inflammatory pain. Pharmacological inhibition or genetic ablation of PKMζ also effectively reduced referred visceral and muscle pain in male, but not in female mice and rats. CONCLUSION We show pharmacological inhibition and genetic ablation of PKMζ consistently attenuate long-lasting pain hypersensitivity. However, differential effects in models of referred versus inflammatory and neuropathic pain, and in males versus females, highlight the roles of afferent input-dependent masking and sex differences in the maintenance of pain hypersensitivity.
Collapse
Affiliation(s)
- Hibatulnaseer Nasir
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sandeep Gyawali
- Division of Pharmacology & Toxicology, School of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Stephanie Ding
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Aiste Mickeviciute
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - J Vaigunda Ragavendran
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - André Laferrière
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Terence J Coderre
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Kaushal R, Taylor BK, Jamal AB, Zhang L, Ma F, Donahue R, Westlund KN. GABA-A receptor activity in the noradrenergic locus coeruleus drives trigeminal neuropathic pain in the rat; contribution of NAα1 receptors in the medial prefrontal cortex. Neuroscience 2016; 334:148-159. [PMID: 27520081 DOI: 10.1016/j.neuroscience.2016.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/20/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
Trigeminal neuropathic pain is described as constant excruciating facial pain. The study goal was to investigate the role of nucleus locus coeruleus (LC) in a model of chronic orofacial neuropathic pain (CCI-ION). The study examines LC's relationship to both the medullary dorsal horn receiving trigeminal nerve sensory innervation and the medial prefrontal cortex (mPFC). LC is a major source of CNS noradrenaline (NA) and a primary nucleus involved in pain modulation. Although descending inhibition of acute pain by LC is well established, contribution of the LC to facilitation of chronic neuropathic pain is also reported. In the present study, a rat orofacial pain model of trigeminal neuropathy was induced by chronic constrictive injury of the infraorbital nerve (CCI-ION). Orofacial neuropathic pain was indicated by development of whisker pad mechanical hypersensitivity. Hypersensitivity was alleviated by selective elimination of NA neurons, including LC (A6 cell group), with the neurotoxin anti-dopamine-β-hydroxylase saporin (anti-DβH-saporin) microinjected either intracerebroventricularly (i.c.v.) or into trigeminal spinal nucleus caudalis (spVc). The GABAA receptor antagonist, bicuculline, administered directly into LC (week 8) inhibited hypersensitivity. This indicates a valence shift in which increased GABAA signaling ongoing in LC after trigeminal nerve injury paradoxically produces excitatory facilitation of the chronic pain state. Microinjection of NAα1 receptor antagonist, benoxathian, into mPFC attenuated whisker pad hypersensitivity, while NAα2 receptor antagonist, idazoxan, was ineffective. Thus, GABAA-mediated activation of NA neurons during CCI-ION can facilitate hypersensitivity through NAα1 receptors in the mPFC. These data indicate LC is a chronic pain generator.
Collapse
Affiliation(s)
- R Kaushal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - B K Taylor
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - A B Jamal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - R Donahue
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
15
|
Vidal-Cantú GC, Jiménez-Hernández M, Rocha-González HI, Villalón CM, Granados-Soto V, Muñoz-Islas E. Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test. Eur J Pharmacol 2016; 781:109-16. [PMID: 27068146 DOI: 10.1016/j.ejphar.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/29/2022]
Abstract
Sumatriptan, dihydroergotamine and methysergide inhibit 1% formalin-induced nociception by activation of peripheral 5-HT1B/1D receptors. This study set out to investigate the pharmacological profile of the antinociception produced by intrathecal and intraplantar administration of ergotamine (a 5-HT1B/1D and 5-HT5A/5B receptor agonist) and valerenic acid (a partial agonist at 5-HT5A receptors). Intraplantar injection of 1% formalin in the right hind paw resulted in spontaneous flinching behavior of the injected hindpaw of female Wistar rats. Intrathecal ergotamine (15nmol) or valerenic acid (1 nmol) blocked in a dose dependent manner formalin-induced nociception. The antinociception by intrathecal ergotamine (15nmol) or valerenic acid (1nmol) was partly or completely blocked by intrathecal administration of the antagonists: (i) methiothepin (non-selective 5-HT5A/5B; 0.01-0.1nmol); (ii) SB-699551 (selective 5-HT5A; up to 10nmol); (iii) anti-5-HT5A antibody; (iv) SB-224289 (selective 5-HT1B; 0.1-1nmol); or (v) BRL-15572 (selective 5-HT1D; 0.1-1nmol). Likewise, antinociception by intraplantar ergotamine (15nmol) and valerenic acid (10nmol) was: (i) partially blocked by methiothepin (1nmol), SB-699551 (10nmol) or SB-224289 (1nmol); and (ii) abolished by BRL-15572 (1nmol). The above doses of antagonists (which did not affect per se the formalin-induced nociception) were high enough to completely block their respective receptors. Our results suggest that ergotamine and valerenic acid produce antinociception via 5-HT5A and 5-HT1B/1D receptors located at both spinal and peripheral sites. This provides new evidence for understanding the modulation of nociceptive pathways in inflammatory pain.
Collapse
Affiliation(s)
- Guadalupe C Vidal-Cantú
- Laboratories of Neurobiology of Pain and Cardiovascular Pharmacology, Departamento de Farmacobiología, Cinvestav, Sede Sur, México D.F., México
| | | | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., México
| | - Carlos M Villalón
- Laboratories of Neurobiology of Pain and Cardiovascular Pharmacology, Departamento de Farmacobiología, Cinvestav, Sede Sur, México D.F., México
| | - Vinicio Granados-Soto
- Laboratories of Neurobiology of Pain and Cardiovascular Pharmacology, Departamento de Farmacobiología, Cinvestav, Sede Sur, México D.F., México
| | - Enriqueta Muñoz-Islas
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Secretaría de Salud, Montes Urales 800, Col. Lomas Virreyes, 11000 México D.F., México; Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, México.
| |
Collapse
|
16
|
Zouikr I, Ahmed AF, Horvat JC, Beagley KW, Clifton VL, Ray A, Thorne RF, Jarnicki AG, Hansbro PM, Hodgson DM. Programming of formalin-induced nociception by neonatal LPS exposure: Maintenance by peripheral and central neuroimmune activity. Brain Behav Immun 2015; 44:235-46. [PMID: 25449583 DOI: 10.1016/j.bbi.2014.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022] Open
Abstract
The immune and nociceptive systems are shaped during the neonatal period where they undergo fine-tuning and maturation. Painful experiences during this sensitive period of development are known to produce long-lasting effects on the immune and nociceptive responses. It is less clear, however, whether inflammatory pain responses are primed by neonatal exposure to mild immunological stimuli, such as with lipopolysaccharide (LPS). Here, we examine the impact of neonatal LPS exposure on inflammatory pain responses, peripheral and hippocampal interleukin-1β (IL-1β), as well as mast cell number and degranulation in preadolescent and adult rats. Wistar rats were injected with LPS (0.05mg/kg IP, Salmonella enteritidis) or saline on postnatal days (PNDs) 3 and 5 and later subjected to the formalin test at PNDs 22 and 80-97. At both time-points, and one-hour after formalin injection, blood and hippocampus were collected for measuring circulating and central IL-1β levels using ELISA and Western blot, respectively. Paw tissue was also isolated to assess mast cell number and degree of degranulation using Toluidine Blue staining. Behavioural analyses indicate that at PND 22, LPS-challenged rats displayed enhanced flinching (p<.01) and licking (p<.01) in response to formalin injection. At PNDs 80-97, LPS-challenged rats exhibited increased flinching (p<.05), an effect observed in males only. Furthermore, neonatal LPS exposure enhanced circulating IL-1β and mast cell degranulation in preadolescent but not adult rats following formalin injection. Hippocampal IL-1β levels were increased in LPS-treated adult but not preadolescent rats in response to formalin injection. These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, peripheral and central IL-1β levels, as well as mast cell degranulation following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping immune response and pain sensitivity later in life. This is of clinical relevance given the high prevalence of bacterial infection during the neonatal period, particularly in the vulnerable population of preterm infants admitted to neonatal intensive care units.
Collapse
Affiliation(s)
- Ihssane Zouikr
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia.
| | - Abdulrzag F Ahmed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kenneth W Beagley
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vicki L Clifton
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Allyson Ray
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
17
|
Sarookhani MR, Ghasemi-Dashkhasan E, Heidari-Oranjaghi N, Azhdari-Zarmehri H, Erami E, Hosseini SS. Effect of food deprivation on formalin-induced nociceptive behaviors and β-endorphin and sex hormone concentration in rats. IRANIAN BIOMEDICAL JOURNAL 2014; 18:107-13. [PMID: 24518552 DOI: 10.6091/ibj.1212.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The present study examined the possible role of endogenous opioidergic system in effect of food deprivation on formalin-induced nociceptive behaviors in male and female rats. Also, we investigated the effect of food deprivation on the plasma level of beta-endorphin and sex hormones. METHODS Food was withdrawn 48 h prior to performing the formalin test, but water continued to be available ad libitum. The formalin was injected into hind plantar paw. RESULTS There is significant difference between male and female control rats during phase 2B. Following 48-h food deprivation, both male and female rats exhibited enhanced nociceptive behavior in response to formalin. Food deprivation for 12 and 24 h increased and for 48 h decreased beta-endorphin level in male and female rats. Food deprivation for 24 h decreased testosterone level in male, while it had no significant effect on female rats and food deprivation for 48 h decreased testosterone level in both sexes. Food deprivation for 24 h increased estradiol level in female and that for 48 h had no significant effect on male and female rats. CONCLUSIONS The present study demonstrates the existence of food deprivation for 48 h causes enhancement of nociception in the formalin test in male and female rats that has correlation with decrease in plasma beta-endorphin and testosterone levels.
Collapse
Affiliation(s)
| | | | - Nima Heidari-Oranjaghi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Elaheh Erami
- Nursing and Midwifery School, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
| | - Sedighe-Sadat Hosseini
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
18
|
Barragán-Iglesias P, Rocha-González HI, Pineda-Farias JB, Murbartián J, Godínez-Chaparro B, Reinach PS, Cunha TM, Cunha FQ, Granados-Soto V. Inhibition of peripheral anion exchanger 3 decreases formalin-induced pain. Eur J Pharmacol 2014; 738:91-100. [PMID: 24877687 DOI: 10.1016/j.ejphar.2014.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 05/10/2014] [Indexed: 01/01/2023]
Abstract
We determined the role of chloride-bicarbonate anion exchanger 3 in formalin-induced acute and chronic rat nociception. Formalin (1%) produced acute (first phase) and tonic (second phase) nociceptive behaviors (flinching and licking/lifting) followed by long-lasting evoked secondary mechanical allodynia and hyperalgesia in both paws. Local peripheral pre-treatment with the chloride-bicarbonate anion exchanger inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid prevented formalin-induced nociception mainly during phase 2. These drugs also prevented in a dose-dependent fashion long-lasting evoked secondary mechanical allodynia and hyperalgesia in both paws. Furthermore, post-treatment (on day 1 or 6) with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid reversed established hypersensitivity. Anion exchanger 3 was expressed in dorsal root ganglion neurons and it co-localized with neuronal nuclei protein (NeuN), substance P and purinergic P2X3 receptors. Furthermore, Western blot analysis revealed a band of about 85 kDa indicative of anion exchanger 3 protein expression in dorsal root ganglia of naïve rats, which was enhanced at 1 and 6 days after 1% formalin injection. On the other hand, this rise failed to occur during 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid exposure. These results suggest that anion exchanger 3 is present in dorsal root ganglia and participates in the development and maintenance of short and long-lasting formalin-induced nociception.
Collapse
Affiliation(s)
- Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Janet Murbartián
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México, D.F., Mexico
| | - Peter S Reinach
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico.
| |
Collapse
|
19
|
Ralya A, McCarson KE. Acute estrogen surge enhances inflammatory nociception without altering spinal Fos expression. Neurosci Lett 2014; 575:91-5. [PMID: 24861514 DOI: 10.1016/j.neulet.2014.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022]
Abstract
Chronic pain is a major neurological disorder that can manifest differently between genders or sexes. The complex actions of sex hormones may underlie these differences; previous studies have suggested that elevated estrogen levels can enhance pain perception. The purpose of this study was to investigate the hypothesis that acute, activational effects of estradiol (E2) increase persistent inflammatory nociception, and anatomically where this modulation occurs. Spinal expression of Fos is widely used as a marker of nociceptive activation. This study used formalin-evoked nociception in ovariectomized (OVX) adult female rats and measured late-phase hindlimb flinching and Fos expression in the spinal cord, and their modification by acute estrogen supplementation similar to a proestrus surge. Six days after ovariectomy, female rats were injected subcutaneously (s.c.) with 10μg/kg E2 or vehicle. Twenty-four hours later, 50μL of 1.25% or 100μL of 5% formalin was injected into the right hindpaw; hindlimb flinches were counted, and spinal cords removed 2h after formalin injection. The numbers of Fos-expressing neurons in sections of the lumbar spinal cord were analyzed using immunohistochemistry. Formalin-induced inflammation produced a dose-dependent increase in late-phase hindlimb flinching, and E2 pretreatment increased flinching following 5%, but not 1.25% formalin injection. Despite the modification of behavior by E2, the number of spinal Fos-positive neurons was not altered by E2 pretreatment. These findings demonstrate that an acute proestrus-like surge in serum estrogen can produce a stimulus-intensity-dependent increase in inflammation-evoked nociceptive behavior. However, the lack of effect on spinal Fos expression suggests that this enhancement of nociceptive signaling by estrogen is independent of changes in peripheral activation of, expression of the immediate early gene Fos by, or signal throughput of spinal nociceptive neurons.
Collapse
Affiliation(s)
- Andrew Ralya
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS 66160, United States.
| | - Kenneth E McCarson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS 66160, United States.
| |
Collapse
|
20
|
Spinal 5-HT5A receptors mediate 5-HT-induced antinociception in several pain models in rats. Pharmacol Biochem Behav 2014; 120:25-32. [DOI: 10.1016/j.pbb.2014.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/24/2014] [Accepted: 02/01/2014] [Indexed: 01/20/2023]
|
21
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. Higher pain perception and lack of recovery from neuropathic pain in females: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Pain 2013; 155:388-402. [PMID: 24231652 DOI: 10.1016/j.pain.2013.10.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 01/23/2023]
Abstract
In experimental and clinical pain studies, the sex of subjects was rarely taken into account, even if nociceptive inputs appear to be processed and modulated by partially distinct neural mechanisms in each sex. In this study we analysed, in male and female mice, behavioural and neuronal responses in developing, maintaining, and recovering from neuropathic pain. Experiments were carried out in adult CD1 mice by using Chronic Constriction Injury (CCI) as neuropathic pain model. We investigated the temporal trend of mechanical nociceptive threshold together with functional recovery of the injured paw, and the immunofluorescence staining of proteins associated with nerve injury and repair and with spinal gliosis, 7 and 121days after CCI. A proteomic analysis on proteins extracted from sciatic nerves was also performed. Male mice showed a gradual decrease of CCI-induced allodynia, the complete recovery occurring 81days after the sciatic nerve ligation. On the contrary, in female mice, allodynia was still present 121days after CCI. Sex-dependent differences also resulted from immunofluorescence experiments: in sciatic nerve, the expression of P0 and Neu200 is greater in neuropathic males than in neuropathic females, suggesting faster nerve regeneration. Proteomic analysis confirmed sex-related differences of proteins associated with nerve regenerative processes. In addition, the reactive gliosis induced by CCI at day 7, as revealed by colocalization of glial fibrillary acidic protein (astrocytes) and CD11b (microglia) with phosphorylated p38, disappeared 121 days after CCI in male but not in female mice. These results may have important therapeutic implications for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR - National Research Council, Cell Biology and Neurobiology Institute, Roma, Italy IRCCS Santa Lucia Foundation, Roma, Italy Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", Roma, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Amandusson Å, Blomqvist A. Estrogenic influences in pain processing. Front Neuroendocrinol 2013; 34:329-49. [PMID: 23817054 DOI: 10.1016/j.yfrne.2013.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022]
Abstract
Gonadal hormones not only play a pivotal role in reproductive behavior and sexual differentiation, they also contribute to thermoregulation, feeding, memory, neuronal survival, and the perception of somatosensory stimuli. Numerous studies on both animals and human subjects have also demonstrated the potential effects of gonadal hormones, such as estrogens, on pain transmission. These effects most likely involve multiple neuroanatomical circuits as well as diverse neurochemical systems and they therefore need to be evaluated specifically to determine the localization and intrinsic characteristics of the neurons engaged. The aim of this review is to summarize the morphological as well as biochemical evidence in support for gonadal hormone modulation of nociceptive processing, with particular focus on estrogens and spinal cord mechanisms.
Collapse
Affiliation(s)
- Åsa Amandusson
- Department of Clinical Neurophysiology, Uppsala University, 751 85 Uppsala, Sweden.
| | | |
Collapse
|
23
|
Sex-specific differences in pain response by dopamine in the bed nucleus of the stria terminalis in rats. Neuroreport 2013; 24:181-5. [PMID: 23348592 DOI: 10.1097/wnr.0b013e32835d8540] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formalin test for nociception shows characteristic sex differences in the pain response during the interphase period of the test. However, the mechanism underlying these differences remains unclear. We have recently reported the sex-specific involvement of the lateral subdivision of the bed nucleus of the stria terminalis (BSTL) in the formalin test in rats. Here, we evaluated whether sex-specific differences in the pain response were modulated by the dopamine system in the BSTL. We first examined the effects of injecting a dopamine D1 receptor agonist, dihydrexidine, or antagonist, SCH23390, into the BSTL on the formalin test. During the interphase of the formalin test, injection of the D1 receptor agonist exerted no effect in male or female rats. The antagonist significantly enhanced the nociceptive response in female rats but not in males, indicating a sex difference in the involvement of the dopamine system in the formalin test. Next, we examined the expression of dopamine D1 receptors in the BSTL. Immunohistochemical analysis showed that the dopamine D1 receptor was expressed in the BSTL in both sexes but showed stronger immunoreactivity in male rats than in females. These results suggest sex-specific differences in the formalin test in which the response of dopamine neurons projecting to the BSTL plays a role in attenuating pain in female rats.
Collapse
|
24
|
Nazarian A, Tenayuca J, Almasarweh F, Armendariz A, Are D. Sex differences in formalin-evoked primary afferent release of substance P. Eur J Pain 2013; 18:39-46. [DOI: 10.1002/j.1532-2149.2013.00346.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 02/01/2023]
Affiliation(s)
- A. Nazarian
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| | - J.M. Tenayuca
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| | - F. Almasarweh
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| | - A. Armendariz
- Department of Psychology; California State Polytechnic University; Pomona USA
| | - D. Are
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| |
Collapse
|
25
|
Low formalin concentrations induce fine-tuned responses that are sex and age-dependent: a developmental study. PLoS One 2013; 8:e53384. [PMID: 23308208 PMCID: PMC3538774 DOI: 10.1371/journal.pone.0053384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
The formalin test is increasingly applied as a model of inflammatory pain using high formalin concentrations (5–15%). However, little is known about the effects of low formalin concentrations on related behavioural responses. To examine this, rat pups were subjected to various concentrations of formalin at four developmental stages: 7, 13, 22, and 82 days of age. At postnatal day (PND) 7, sex differences in flinching but not licking responses were observed with 0.5% formalin evoking higher flinching in males than in females. A dose response was evident in that 0.5% formalin also produced higher licking responses compared to 0.3% or 0.4% formalin. At PND 13, a concentration of 0.8% formalin evoked a biphasic response. At PND 22, a concentration of 1.1% evoked higher flinching and licking responses during the late phase (10–30 min) in both males and females. During the early phase (0–5 min), 1.1% evoked higher licking responses compared to 0.9% or 1% formalin. 1.1% formalin produced a biphasic response that was not evident with 0.9 or 1%. At PND 82, rats displayed a biphasic pattern in response to three formalin concentrations (1.25%, 1.75% and 2.25%) with the presence of an interphase for both 1.75% and 2.25% but not for 1.25%. These data suggest that low formalin concentrations induce fine-tuned responses that are not apparent with the high formalin concentration commonly used in the formalin test. These data also show that the developing nociceptive system is very sensitive to subtle changes in formalin concentrations.
Collapse
|
26
|
Babb JA, Masini CV, Day HEW, Campeau S. Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic-pituitary-adrenocortical axis hormones following restraint in rats. Neuroscience 2013; 234:40-52. [PMID: 23305762 DOI: 10.1016/j.neuroscience.2012.12.051] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023]
Abstract
Women may be more vulnerable to certain stress-related psychiatric illnesses than men due to differences in hypothalamic-pituitary-adrenocortical (HPA) axis function. To investigate potential sex differences in forebrain regions associated with HPA axis activation in rats, these experiments utilized acute exposure to a psychological stressor. Male and female rats in various stages of the estrous cycle were exposed to 30min of restraint, producing a robust HPA axis hormonal response in all animals, the magnitude of which was significantly higher in female rats. Although both male and female animals displayed equivalent c-fos expression in many brain regions known to be involved in the detection of threatening stimuli, three regions had significantly higher expression in females: the paraventricular nucleus of the hypothalamus (PVN), the anteroventral division of the bed nucleus of the stria terminalis (BSTav), and the medial preoptic area (MPOA). Dual fluorescence in situ hybridization analysis of neurons containing c-fos and corticotropin-releasing factor (CRF) mRNA in these regions revealed significantly more c-fos and CRF single-labeled neurons, as well as significantly more double-labeled neurons in females. Surprisingly, there was no effect of the estrous cycle on any measure analyzed, and an additional experiment revealed no demonstrable effect of estradiol replacement following ovariectomy on HPA axis hormone induction following stress. Taken together, these data suggest sex differences in HPA axis activation in response to perceived threat may be influenced by specific populations of CRF neurons in key stress-related brain regions, the BSTav, MPOA, and PVN, which may be independent of circulating sex steroids.
Collapse
Affiliation(s)
- J A Babb
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA
| | | | | | | |
Collapse
|
27
|
Hendrich J, Alvarez P, Joseph EK, Ferrari LF, Chen X, Levine JD. In vivo and in vitro comparison of female and male nociceptors. THE JOURNAL OF PAIN 2012; 13:1224-31. [PMID: 23146406 DOI: 10.1016/j.jpain.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022]
Abstract
UNLABELLED While it is generally accepted that women have lower pain thresholds for diverse forms of noxious stimuli, the mechanistic basis for this sexual dimorphism in nociceptive pain remains to be elucidated. We confirmed, in the rat, that females have lower cutaneous mechanical nociceptive thresholds and established a similar sexual dimorphism in muscle. To determine if a peripheral mechanism underlies this sexual dimorphism in pain threshold, we compared biophysical properties of cultured dorsal root ganglion (DRG) neurons that innervated the gastrocnemius muscle in female and male rats. DRG neurons from female rats, which innervated the gastrocnemius muscle, had a more hyperpolarized resting membrane potential. To determine if this was associated with a higher mechanical nociceptive threshold, in contradiction to our working hypothesis, we compared the function, in vivo, of nociceptive afferents innervating the gastrocnemius muscle in male and female rats. C-fiber nociceptors innervating muscle in female rats had higher mechanical thresholds than those in males. Other response characteristics of these nociceptors were not significantly different. Thus, both in vitro and in vivo electrophysiology experiments support the idea that lower mechanical nociceptive threshold in females may be due to sexual dimorphism in central nervous system mechanisms, a difference large enough to overcome an opposing difference in peripheral pain mechanisms. PERSPECTIVE This article unifies in vivo and in vitro electrophysiology with behavioral data examining the differences in mechanical nociceptive threshold between male and female rats. The data provide a novel perspective on the peripheral and behavioral outcomes of noxious mechanical stimulation.
Collapse
Affiliation(s)
- Jan Hendrich
- Department of Oral and Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The cutaneous somatosensory system contains multiple types of mechanoreceptors that detect different mechanical stimuli (Johnson, 2001). These stimuli, either alone or in combination, are ultimately interpreted by the brain as different aspects of the sense of touch. Psychophysical and electrophysiological experiments in humans and other mammals implicate one of these mechanoreceptors, the Merkel cell/neurite complex, in two-point discrimination and the detection of curvature, shape, and texture (Johnson and Lamb, 1981; Johnson et al., 2000; Johnson, 2001). However, whether Merkel cell/neurite complex function is required for the detection of these stimuli is unknown. We genetically engineered mice that lack Merkel cells (Maricich et al., 2009; Morrison et al., 2009) to directly test the hypothesis that Merkel cell/neurite complexes are necessary to perform these types of sensory discrimination tasks. We found that mice devoid of Merkel cells could not detect textured surfaces with their feet while other measures of motor and sensory function were unaffected. Interestingly, these mice retained the ability to discriminate both texture and shape using their whiskers, suggesting that other somatosensory afferents can functionally substitute for Merkel cell/neurite complexes in this sensory organ. These findings suggest that Merkel cell/neurite complexes are essential for texture discrimination tasks involving glabrous skin but not whiskers.
Collapse
|
29
|
Dominguez CA, Ström M, Gao T, Zhang L, Olsson T, Wiesenfeld-Hallin Z, Xu XJ, Piehl F. Genetic and sex influence on neuropathic pain-like behaviour after spinal cord injury in the rat. Eur J Pain 2012; 16:1368-77. [PMID: 22473909 DOI: 10.1002/j.1532-2149.2012.00144.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic pain of neuropathic nature after spinal cord injury (SCI) is common and its underlying mechanisms are poorly understood. Genes, as well as sex, have been implicated, but not thoroughly investigated in experimental genetic models for complex traits. We have previously found that inbred Dark-Agouti (DA) rats develop more severe SCI pain-like behaviour than a major histocompatibility complex-congenic Piebald Virol Glaxo (PVG)-RT1(av1) strain in a model of photochemically induced SCI. METHODS In this study, a genome-wide linkage study in an F2 cross between the susceptible DA and resistant PVG-RT1(av1) strains was performed in order to explore the influence of genes and sex for SCI pain. RESULTS A consistent finding was that female rats in parental, F1 and F2 generations displayed increased pain sensitivity at testing before injury and also developed mechanical hypersensitivity more rapidly and to a greater extent than male rats. In addition, we could identify three quantitative trait loci (QTLs) associated with pain-like behaviour: a sex-specific QTL on chromosome 2, one on chromosome 15 and on chromosome 6. Animals carrying DA alleles at each of these loci were more susceptible to development of mechanical hypersensitivity compared with rats with PVG alleles. CONCLUSION This is the first whole genome QTL mapping of neuropathic pain-like behaviour in a model of SCI. The results provide strong support for a significant genetic and sex component in development of pain after SCI and provide the basis for further genetic dissection and positional cloning of the underlying genes.
Collapse
Affiliation(s)
- C A Dominguez
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Duong A, Steinmaus C, McHale CM, Vaughan CP, Zhang L. Reproductive and developmental toxicity of formaldehyde: a systematic review. Mutat Res 2011; 728:118-38. [PMID: 21787879 PMCID: PMC3203331 DOI: 10.1016/j.mrrev.2011.07.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/09/2011] [Accepted: 07/09/2011] [Indexed: 11/30/2022]
Abstract
Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20-2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27-1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure.
Collapse
Affiliation(s)
- Anh Duong
- School of Public Health, University of California, Berkeley, CA 94720
| | - Craig Steinmaus
- School of Public Health, University of California, Berkeley, CA 94720
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency; Oakland, CA 94612
| | - Cliona M. McHale
- School of Public Health, University of California, Berkeley, CA 94720
| | - Charles P. Vaughan
- Global Health Sciences, University of California, San Francisco, CA 94143
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
31
|
Formalin-induced long-term secondary allodynia and hyperalgesia are maintained by descending facilitation. Pharmacol Biochem Behav 2011; 98:417-24. [DOI: 10.1016/j.pbb.2011.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/14/2011] [Indexed: 12/23/2022]
|
32
|
Golub MS, Wu KL, Kaufman FL, Li LH, Moran-Messen F, Zeise L, Alexeeff GV, Donald JM. Bisphenol A: developmental toxicity from early prenatal exposure. ACTA ACUST UNITED AC 2011; 89:441-66. [PMID: 21136531 DOI: 10.1002/bdrb.20275] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bisphenol A (BPA) exposure has been documented in pregnant women, but consequences for development are not yet widely studied in human populations. This review presents research on the consequences for offspring of BPA exposure during pregnancy. Extensive work in laboratory rodents has evaluated survival and growth of the conceptus, interference with embryonic programs of development, morphological sex differentiation, sex differentiation of the brain and behavior, immune responsiveness, and mechanism of action. Sensitive measures include RAR, aryl hydrocarbon receptor, and Hox A10 gene expression, anogenital distance, sex differentiation of affective and exploratory behavior, and immune hyperresponsiveness. Many BPA effects are reported at low doses (10-50 µg/kg d range) by the oral route of administration. At high doses (>500,000 µg/kg d) fetal viability is compromised. Much of the work has centered around the implications of the estrogenic actions of this agent. Some work related to thyroid mechanism of action has also been explored. BPA research has actively integrated current knowledge of developmental biology, concepts of endocrine disruption, and toxicological research to provide a basis for human health risk assessment.
Collapse
Affiliation(s)
- Mari S Golub
- Office of Environmental Health Hazard Assessment, Reproductive and Cancer Hazard Assessment Branch, Sacramento, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Roussy G, Beaudry H, Lafrance M, Belleville K, Beaudet N, Wada K, Gendron L, Sarret P. Altered morphine-induced analgesia in neurotensin type 1 receptor null mice. Neuroscience 2010; 170:1286-94. [PMID: 20727387 DOI: 10.1016/j.neuroscience.2010.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/02/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
Abstract
Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the antinociceptive action of mu opioid drugs. To this end, pain behavioral responses to formalin were determined following systemic administration of morphine in both male and female NTS1 knockout mice. Acute injection of morphine (2 or 5 mg/kg) produced strong antinociceptive effects in both male and female wild-type littermates, with no significant sex differences. On the other hand, morphine analgesia was considerably reduced in NTS1-deficient mice of both sexes compared to their respective controls, indicating that the NTS1 receptor actively participates in mu opioid alleviating pain. By examining specifically the flinching, licking and biting nociceptive behaviors, we also showed that the functional crosstalk between NTS1 and mu opioid receptors influences the supraspinally-mediated behaviors. Interestingly, sexual dimorphic action of morphine-induced pain inhibition was found in NTS1 null mice in the formalin test, suggesting that the endogenous NT system interacts differently with the opioid network in male and female mice. Altogether, these results demonstrated that NTS1 receptor activation operates downstream to the opioidergic transmission and that NTS1-selective agonists combined with morphine may act synergistically to reduce persistent pain.
Collapse
Affiliation(s)
- G Roussy
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Granados-Soto V, Argüelles CF, Rocha-González HI, Godínez-Chaparro B, Flores-Murrieta FJ, Villalón CM. The role of peripheral 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F serotonergic receptors in the reduction of nociception in rats. Neuroscience 2010; 165:561-8. [PMID: 19837141 DOI: 10.1016/j.neuroscience.2009.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
Abstract
This study assessed the possible antinociceptive role of peripheral 5-HT(1) receptor subtypes in the rat formalin test. Rats were injected into the dorsum of the hind paw with 50 microl of diluted formalin (1%). Nociceptive behavior was quantified as the number of flinches of the injected paw. Reduction of flinching was considered as antinociception. Ipsilateral, but not contralateral, peripheral administration of the 5-HT(1) receptor agonists R(+)-UH-301 (5-HT(1A); 0.1-3 microg/paw), CGS-12066A (5-HT(1B); 0.01-0.3 microg/paw), GR46611 (5-HT(1B/1D); 0.3-10 microg/paw), BRL54443 (5-HT(1E/1F); 3-300 microg/paw) or LY344864 (5-HT(1F); 3-300 microg/paw) significantly reduced formalin-induced flinching. The corresponding vehicle was devoid of any effect by itself. The local antinociceptive effect of R(+)-UH-301 (0.3 microg/paw) was significantly reduced by WAY-100635 (30-100 microg/paw; a 5-HT(1A) receptor antagonist). Moreover, the antagonists GR55562 (30-100 microg/paw; 5-HT(1B/D)) or SB224289 (30-100 microg/paw; 5-HT(1B)) dose-dependently reduced the antinociceptive effect of CGS-12066A (0.3 microg/paw) whereas GR55562 (30-100 microg/paw) or BRL15572 (30-100 microg/paw, 5-HT(1D)) reduced the antinociceptive effect of GR46611 (0.3 microg/paw). Interestingly, the effects of BRL54443 and LY344864 (300 microg/paw each) were partially reduced by methiothepin, but not by the highest doses of WAY-100635, SB224289 or BRL15572. The above antagonists did not produce any effect by themselves. These results suggest that peripheral activation of the 5-HT(1A,) 5-HT(1B), 5-HT(1D), 5-HT(1F) and, probably, 5-HT(1E) receptor subtypes leads to antinociception in the rat formalin test. Thus, the use of selective 5-HT(1) receptor agonists could be a therapeutic strategy to reduce inflammatory pain.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Female
- Formaldehyde
- Functional Laterality
- Hindlimb/drug effects
- Hindlimb/metabolism
- Pain/chemically induced
- Pain/drug therapy
- Pain/metabolism
- Pain Measurement
- Peripheral Nerves/drug effects
- Peripheral Nerves/metabolism
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1D/metabolism
- Receptors, Serotonin/metabolism
- Serotonin 5-HT1 Receptor Agonists
- Serotonin Receptor Agonists/administration & dosage
- Serotonin Receptor Agonists/pharmacology
- Receptor, Serotonin, 5-HT1F
Collapse
Affiliation(s)
- V Granados-Soto
- Departamento de Farmacobiología, Cinvestav, Sede Sur, Calzada Tenorios 235, México, DF, Mexico.
| | | | | | | | | | | |
Collapse
|
35
|
Hagiwara H, Ishida M, Arita J, Mitsushima D, Takahashi T, Kimura F, Funabashi T. The cAMP response element-binding protein in the bed nucleus of the stria terminalis modulates the formalin-induced pain behavior in the female rat. Eur J Neurosci 2009; 30:2379-86. [PMID: 19968712 DOI: 10.1111/j.1460-9568.2009.07002.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract Differences in male and female responses to pain are widely recognized in many species, including humans, but the cerebral mechanisms that generate these responses are unknown. Using the formalin test, we confirmed that proestrus female rats showed nociceptive behavior, modulated by estrogen that was distinct from male rats, particularly during the interphase period. We then explored the brain areas, which were involved in the female pattern of nociceptive behavior. We found that, after a formalin injection and at the time corresponding to the behavioral interphase, the number of phosphorylated cAMP response element-binding protein (pCREB)-immunoreactive neurons observed by immunocytochemistry increased in the dorsolateral division of the bed nucleus of the stria terminalis (BSTLD) in female but not male rats. There were no significant sex differences in pCREB expression following formalin in any region other than the BSTLD. The increased pCREB in female rats was eliminated after an ovariectomy and restored with 17beta-estradiol treatment. Neither an orchidectomy nor 17beta-estradiol treatment affected the pCREB response in male rats. The increase in pCREB expression in the BSTLD in female rats after formalin injection was confirmed with immunoblotting. To determine the role of CREB in the BSTLD, adenovirus-mediated expression of a dominant-negative form of CREB (mCREB) was carried out. The nociceptive behavior during interphase was significantly attenuated by injection of virus carrying mCREB into the BSTLD in female rats but not in male rats. These results suggest a novel role for CREB in the BSTLD as a modulator of the pain response in a female-specific, estrogen-dependent manner.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Ceccarelli I, Fiorenzani P, Della Seta D, Massafra C, Cinci G, Bocci A, Aloisi AM. Perinatal exposure to xenoestrogens affects pain in adult female rats. Neurotoxicol Teratol 2009; 31:203-9. [DOI: 10.1016/j.ntt.2009.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 01/27/2009] [Accepted: 02/16/2009] [Indexed: 11/25/2022]
|
37
|
Foo H, Crabtree K, Thrasher A, Mason P. Eating is a protected behavior even in the face of persistent pain in male rats. Physiol Behav 2009; 97:426-9. [PMID: 19321150 DOI: 10.1016/j.physbeh.2009.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/24/2009] [Accepted: 03/16/2009] [Indexed: 12/13/2022]
Abstract
Feeding is critical for survival. Yet, patients with chronic pain often lose their appetite and eat less. We previously showed that ad libitum fed male rats continue to feed rather than withdraw from a brief noxious stimulus. This study examined the effects of a sustained noxious stimulus on feeding by testing ad libitum fed male rats for five eating behaviors--latency to eat, time taken to eat each chip, pauses and scanning during eating, and the number of chocolate chips eaten--during the hour following a sham injection or an injection of a low (0.5%) or moderate (1.5%) dose of formalin into the hind paw. Sham-injected rats showed no pain-related behaviors, rats injected with 0.5% formalin showed very few pain-related behaviors, and rats injected with 1.5% formalin showed favoring, lifting and licking of the injured paw with a characteristic biphasic time course. Besides taking less time to commence eating during the first phase of formalin pain, rats injected with either dose of formalin did not differ from sham-injected rats on any of the other eating measures. Rats injected with 0.5% formalin showed no pain behaviors during eating, whereas those given 1.5% formalin typically ate while not exhibiting any pain behaviors but occasionally ate while favoring the paw, rarely while lifting the paw, and never while licking the paw. These results show that eating is a protected activity even in the presence of persistent pain in male rats.
Collapse
Affiliation(s)
- H Foo
- Department of Neurobiology, University of Chicago, MC 0926, 947 East 58th St., Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
38
|
Travers A. Gender and pain—is it an issue? SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2009. [DOI: 10.1080/22201173.2009.10872580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Butkevich I, Mikhailenko V, Semionov P, Bagaeva T, Otellin V, Aloisi AM. Effects of maternal corticosterone and stress on behavioral and hormonal indices of formalin pain in male and female offspring of different ages. Horm Behav 2009; 55:149-57. [PMID: 18955060 DOI: 10.1016/j.yhbeh.2008.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
In previous studies, we showed for the first time that prenatal stress in rats produces long-term alterations of formalin-induced pain behavior that are dependent on age and sex, and we demonstrated an important role of the serotonergic system in mechanisms of prenatal stress (Butkevich, I.P. and Vershinina, E.A., 2001; Butkevich, I.P. and Vershinina, E.A., 2003; Butkevich, I.P., Mikhailenko, V.A., Vershinina, E.A., Khozhai, L.I., Grigorev, I.P., Otellin, V.A., 2005; Butkevich, I.P., Mikhailenko, V.A., Khozhai, L.I., Otellin, V.A., 2006). In the present study, we focus on the influence of the maternal corticosterone milieu and its role in the effects of stress during pregnancy on formalin-induced pain and the corticosterone response to it in male and female offspring of different ages. For this purpose, we used adrenalectomy (AD) in female rats 3-4 weeks before mating (as distinct from AD typically performed at the beginning of pregnancy). Since AD is considered a reliable method to treat hypercortisolism, researches on the effects of long-term AD in dams on the systems responsible for adaptive behavior in offspring are important (such studies are not described in the literature). The results demonstrate that the differences in the corticosterone response to injection of formalin and saline are obvious in 90-day-old (adult) female offspring but masked in 25-day-old ones. AD promoted the corticosterone response to formalin-induced pain but not to injection of saline in prenatally non-stressed female offspring of both ages. Prenatal stress canceled the differences in corticosterone response to injection of formalin and saline in 25-day-old offspring of AD dams and in adult offspring of sham-operated (SH) dams but caused similar differences in adult offspring of AD dams. Sex differences were found in basal corticosterone levels in AD prenatally stressed rats of both age groups, with a higher level in females, and in the corticosterone response to formalin-induced pain in the adult rats of all groups investigated, with higher corticosterone levels in females. In regard to pain behavior, AD induced significant changes in flexing+shaking in prenatally non-stressed adult offspring and canceled the differences in this behavior between non-stressed and stressed 25-day-old offspring. There were sex differences in pain behavior of the adult rats: greater flexing+shaking in AD non-stressed males but in SH non-stressed females; greater licking in prenatally-stressed AD and SH females. These results indicate that the long-term influences of maternal corticosterone on formalin-induced pain and the corticosterone response to it are determined by the sex and age of the offspring and suggest that other mechanisms, including serotonergic ones revealed in our previous studies, are involved in the effects of prenatal stress on inflammatory pain behavior.
Collapse
Affiliation(s)
- Irina Butkevich
- Laboratory of Ontogeny of the Nervous System, IP Pavlov Institute of Physiology, Russian Academy of Sciences, Petersburg, Russia.
| | | | | | | | | | | |
Collapse
|
40
|
Yoshiyama M, Kobayashi H, Araki I, Du S, Zakoji H, Takeda M. Sex-related differences in activity of lower urinary tract in response to intravesical acid irritation in decerebrate unanesthetized mice. Am J Physiol Regul Integr Comp Physiol 2008; 295:R954-60. [DOI: 10.1152/ajpregu.90406.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sex-related differences in lower urinary tract (LUT) activity responding to intravesical infusion of diluted acetic acid (A/A, pH 3.0) were investigated during cystometrograms in decerebrate unanesthetized mice. A/A produced a decrease of intercontraction intervals in both female and male animals, and the extent of the decrease in male mice was much less than in female mice [19 ± 5% ( P = 0.03) vs. 65 ± 5% ( P = 0.03); n = 6 for each], exhibiting a marked difference between the two groups in response to acid irritation of the LUT ( P = 0.002). A/A reduced maximal voiding pressure (MVP) (19 ± 4%, P = 0.03) but had no effect on pressure threshold for inducing voiding contraction (PT) ( P = 0.56) in females, whereas A/A did not change MVP ( P = 1.00) but increased PT (16 ± 4%, P = 0.03) in males. A/A decreased bladder compliances of female and male mice in a similar fashion (44 ± 10% vs. 24 ± 7%, P = 0.03 for each). In male mice, A/A produced persistent dribbling of fluid after voiding contraction phase, which was virtually not seen in females. The present study demonstrates the differences between female and male mice in response to noxious stimulation in the LUT: the female bladder is more sensitive to the acid irritation, while the male urethra is more irritable to the noxious stimulus. Identification of mechanisms underlying sex-specific characteristics might be helpful for elucidating pathogenesis of painful bladder syndrome.
Collapse
|
41
|
Abstract
Traditionally, biomedical research in the field of pain has been conducted with male animals and subjects. Over the past 20-30 yr, it has been increasingly recognized that this narrow approach has missed an important variable: sex. An ever-increasing number of studies have established sex differences in response to pain and analgesics. These studies have demonstrated that the differences between the sexes appear to have a biological and psychological basis. We will provide brief review of the epidemiology, rodent, and human experimental findings. The controversies and widespread disagreement in the literature highlight the need for a progressive approach to the questions involving collaborative efforts between those trained in the basic and clinical biomedical sciences and those in the epidemiological and social sciences. In order for patients suffering from acute and/or chronic pain to benefit from this work, the approach has to involve the use or development of clinically relevant models of nociception or pain to answer the basic, but complex, question. The present state of the literature allows no translation of the work to our clinical decision-making.
Collapse
Affiliation(s)
- Robert W Hurley
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | |
Collapse
|
42
|
Henderson LA, Gandevia SC, Macefield VG. Gender differences in brain activity evoked by muscle and cutaneous pain: a retrospective study of single-trial fMRI data. Neuroimage 2007; 39:1867-76. [PMID: 18069004 DOI: 10.1016/j.neuroimage.2007.10.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 10/22/2007] [Accepted: 10/30/2007] [Indexed: 01/05/2023] Open
Abstract
Gender greatly influences pain processing. Not only do females display greater pain sensitivity, many chronic pain conditions affect females more than males. Although gender-based differences in pain sensitivity may be related to cultural and social factors, animal studies also reveal gender differences in pain sensitivity, suggesting that physiological factors may contribute to differences in the processing of pain in males and females. It has been recently reported that noxious cutaneous heat stimuli evoke gender-based differences in activity in some brain regions. Given that most chronic pain conditions, including those with gender bias are of "deep" origin (e.g. arising in muscle, joints or viscera), we investigated whether gender differences also exist in the central processing of muscle pain. In 24 healthy adults we used functional magnetic resonance imaging (fMRI) to measure signal intensity changes during muscle and cutaneous pain induced by intramuscular and subcutaneous injections of hypertonic saline, respectively. In addition to activating the "pain neuromatrix", i.e. cingulate, insular, somatosensory and cerebellar cortices, both muscle pain and cutaneous pain evoked gender-based differences in the mid-cingulate cortex, dorsolateral prefrontal cortex, hippocampus and cerebellar cortex. These differences may reflect differences in emotional processing of noxious information in men and women and may underlie the gender bias that exists in many chronic pain conditions.
Collapse
Affiliation(s)
- Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia.
| | | | | |
Collapse
|
43
|
Gaumond I, Spooner MF, Marchand S. Sex differences in opioid-mediated pain inhibitory mechanisms during the interphase in the formalin test. Neuroscience 2007; 146:366-74. [PMID: 17306464 DOI: 10.1016/j.neuroscience.2007.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/16/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Many chronic pain conditions are more prevalent in women than men and both fundamental and clinical research supports the implication of endogenous pain inhibitory mechanisms. The goal of this study was to verify if sex differences on endogenous pain inhibitory mechanisms during the formalin test are opioidergic and modulated by sex hormones. Formalin tests were performed with naloxone hydrochloride, a non-selective opioid antagonist in intact and gonadectomized Sprague-Dawley rats of both sexes. Considering the sexual dimorphisms we found, where naloxone preferentially blocked the interphase in female rats, injections of all the possible combinations of mu- (naltrexone hydrochloride), delta- (naltrindole hydrochloride) and kappa-selective antagonists (norbinaltorphimine dihydrochloride) were given to evaluate the contribution of these opioid-receptor subtypes to the inhibitory mechanism during the interphase in intact females. Finally, the systemic administration of naloxone methiodide and intrathecal administration of naloxone hydrochloride in intact females allowed us to verify if the action of endogenous opioids that are liberated during the interphase takes place at the periphery or spinally, respectively. The results show that the interphase was almost completely inhibited by naloxone in females while it produced only a slight blockade in males. These results permitted us to conclude that opioids play a major role in the pain inhibitory mechanism of the interphase in females while a non-opioid mechanism seems to be responsible for this inhibitory pathway in males. Using gonadectomized animals of both sexes, we demonstrated the modulation of the opioidergic system of the interphase by sex hormones. The administration of different combinations of selective antagonists for mu-, kappa- and delta-opioid receptors in intact females permitted us to conclude that only the combination of kappa- and delta-selective antagonists significantly blocked the interphase. The same result was obtained with the combination of the three antagonists, confirming the results with systemic naloxone hydrochloride. Finally, intrathecal administration permitted us to support that the action of naloxone is primarily at the spinal level, even if a supraspinal action cannot be ruled out. These results are of particular interest in showing sexual dimorphisms in endogenous pain modulation mechanisms during the interphase of the formalin test. A clearer understanding of the difference between male and female endogenous pain inhibitory pathways should lead to a better understanding of the role of endogenous pain modulation deficits in certain chronic pain conditions.
Collapse
Affiliation(s)
- I Gaumond
- Département des Sciences de la Santé, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard de l'Université, Rouyn-Noranda, Québec, Canada J9X 5E4
| | | | | |
Collapse
|
44
|
Butkevich IP, Barr GA, Vershinina EA. Sex differences in formalin-induced pain in prenatally stressed infant rats. Eur J Pain 2007; 11:888-94. [PMID: 17379552 DOI: 10.1016/j.ejpain.2007.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 01/29/2007] [Accepted: 02/05/2007] [Indexed: 11/27/2022]
Abstract
The aim of this work was to study the effects of prenatal stress on nociceptive responses in the formalin test in female and male infant (7-day-old) Long-Evans hooded rats. Prenatally stressed infant rats displayed biphasic flinching+ shaking behavior whereas non-stressed animals showed only a weak second phase. Pain sensitivity in prenatally stressed males was significantly greater than that of prenatally non-stressed males during the second phase only; there were no differences in pain sensitivity between prenatally stressed and non-stressed females. Moreover prenatally stressed male rats pups demonstrated that the second phase of the response to formalin was enhanced relative to the second phase in stressed females. The current and previous data [Butkevich IP, Barr GA, Mikhailenko VA, Otellin VA. Increased formalin-induced pain and expression of fos neurons in the lumbar spinal cord of prenatally stressed infants rats. Neurosci Lett 2006a;403:222-226] show increased tonic pain in prenatally stressed infant rats and a large increase in the number of formalin-induced fos-like immunoreactivity in the spinal cord dorsal horn. There is a concomitant decrease in serotonin-like immunoreactivity in the lumbar spinal cord dorsal horn [Butkevich IP, Barr GA, Otellin VA. Effect of prenatal stress on behavioral and neural indices of formalin-induced pain in infant rats. Abstracts, 35th Annual Meeting of Soc. For Neurosci. 2005a. Program No. 512.4 Washington, DC: Society for Neuroscience]. Given the decreased level of perinatal testosterone in prenatally stressed rats to which infant males are more sensitive than females, we suggest that these hormonal, behavioral and neuronal indices are strongly interrelated in prenatally stressed 7-day-old rat pups and that the decreased surge of testosterone may contribute to the increased behavioral response in the second phase in male rat pups. Mechanisms underlying the behavioral pain response induced by inflammation in prenatally stressed rat pups are characterized by sexual dimorphism even prior to the activational effects of sex hormones.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogeny of Nervous System, I.P. Pavlov Institute of Physiology, The Russian Academy of Sciences, St. Petersburg 199034, Russia.
| | | | | |
Collapse
|
45
|
Hagiwara H, Funabashi T, Mitsushima D, Kimura F. Effects of neonatal testosterone treatment on sex differences in formalin-induced nociceptive behavior in rats. Neurosci Lett 2006; 412:264-7. [PMID: 17145136 DOI: 10.1016/j.neulet.2006.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
There are sex differences in nociceptive behavior induced by formalin in rats. To determine whether these sex differences are the result of the sexual differentiation of the brain, that is masculinization and defeminization [A.P. Arnold, R.A. Gorski, Gonadal steroid induction of structural sex differences in the central nervous system, Annu. Rev. Neurosci. 7 (1984) 413-442; M.M. McCarthy, A.T.M. Konkle, When is a sex difference not a sex difference? Front Neuroendocrinol. 26 (2005) 85-102], some female rats were injected with testosterone propionate (TP, 100 microg/25 microl/rat) on the day of birth and on the following day. As controls, other female rats and all male rats were injected with the same volume of sesame oil. They were castrated at the age of 8 weeks, and implanted with a silicon tube containing 20% of 17beta-estradiol or cholesterol. Two weeks after the implantation, rats were injected with 50 microl of 2% formalin in the right hind paw and their behavioral changes were observed for 1h. In cholesterol-implanted rats, all rats exhibited three typical phases of pain response and there were no significant differences in the scores of nociceptive behavior. In 17beta-estradiol implanted rats, female and TP-treated female rats had a significantly higher score of nociceptive behavior than male rats. These results indicate that estrogen produces sex differences in nociceptive behavior induced by formalin, and suggest that these differences are not due to the sexual differentiation of the brain, since the dose and the timing of the TP treatment effectively defeminize and masculinize female rats. Alternatively, sexual differentiation of the brain response to formalin-induced nociceptive behavior may be different from ordinary sexual differentiation.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | | | | | | |
Collapse
|
46
|
Abstract
Inflammation and inflammatory diseases are sexually dimorphic, but the underlying causes for this observed sexual dimorphism are poorly understood. We discuss neural-immune mechanisms that underlie sexual dimorphism in three critical aspects of the inflammatory process-plasma extravasation, neutrophil function, and inflammatory hyperalgesia. Plasma extravasation and accumulation/activation of leukocytes into tissues are critical components in inflammation and are required for several other aspects of the inflammatory response. Pain (hyperalgesia) also markedly influences the magnitude of other components of the inflammatory response and induces a feedback control of plasma extravasation and neutrophil function. More important, this feedback control itself is powerfully modulated by vagal afferent activity and both the function of the primary afferent nociceptor and the modulation of inflammatory hyperalgesia by vagal afferent activity are highly sexually dimorphic.
Collapse
Affiliation(s)
- Jon D Levine
- Department of Medicine, NIH Pain Center, C522 Box 0440, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, California 94143-0440, USA.
| | | | | |
Collapse
|
47
|
Kowalczyk WJ, Evans SM, Bisaga AM, Sullivan MA, Comer SD. Sex differences and hormonal influences on response to cold pressor pain in humans. THE JOURNAL OF PAIN 2006; 7:151-60. [PMID: 16516820 DOI: 10.1016/j.jpain.2005.10.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/31/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
UNLABELLED Although most studies show that women have higher subjective pain ratings in response to painful stimuli, there is less consistency across studies with regard to the influence of gonadal hormones on pain responsivity. The present study evaluated sex differences in response to cold pressor pain in normally menstruating women (NMW), women maintained on oral contraceptives (OCW), and men. Testing occurred during 5 phases of the menstrual cycle. All participants completed 10 sessions (2 sessions per phase). During the cold pressor test, participants immersed the forearm into water maintained at 4 degrees C, and pain threshold and tolerance were measured. Subjective ratings of pain, physiologic indices, and plasma levels of estradiol and progesterone were also assessed. Both estradiol and progesterone levels varied as a function of menstrual cycle phase in NMW and were significantly higher in NMW compared with OCW and men. There were no significant differences in pain threshold or tolerance for any of the groups as a function of menstrual cycle phase. There were no significant differences in pain tolerance between groups. However, pain threshold was higher in NMW compared with OCW and men. When the data were reanalyzed across consecutive sessions, a significant sex-by-day interaction was observed for both threshold and tolerance. Specifically, pain threshold and tolerance were similar for NMW, OCW, and men, but these latencies changed at different rates across session days. Pain threshold remained relatively constant for both OCW and men, but it increased across days for NMW. Pain tolerance remained stable across sessions in OCW, a slow consistent increase was observed for men, whereas a sharper increase, followed by an asymptote, was observed for NMW. These results suggest that circulating gonadal hormones might mediate adaptation to cold pressor pain. PERSPECTIVE The present study supports the notion that differences in pain perception between the sexes and among menstrual cycle phases are subtle. However, normally menstruating women exhibited an increase in pain tolerance and threshold over repeated stimulation, whereas men exhibited a shallow increase in pain threshold only, suggesting a sex difference in the adaptation to painful stimuli in men and women.
Collapse
Affiliation(s)
- William J Kowalczyk
- Division on Substance Abuse, New York State Psychiatric Institute, and Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
48
|
Chanda ML, Mogil JS. Sex differences in the effects of amiloride on formalin test nociception in mice. Am J Physiol Regul Integr Comp Physiol 2006; 291:R335-42. [PMID: 16601256 DOI: 10.1152/ajpregu.00902.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amiloride is a nonspecific blocker of acid-sensing ion channels (ASICs) that have been recently implicated in the mediation of mechanical and chemical/inflammatory nociception. Preliminary data using a transgenic model are suggestive of sex differences in the role of ASICs. We report here that systemic administration of amiloride (10-70 mg/kg ip) produces a robust, dose-dependent blockade of late/tonic phase nociceptive behavior on the mouse formalin test (5%; 20 microl) in female but not male mice, completely abolishing the known sex difference in formalin test response. Adult gonadectomy produced a "switching" of sex differences in amiloride efficacy, with castrated males displaying an amiloride blockade and ovariectomized females rendered less sensitive to amiloride. Gonadectomized mice could be switched back to their intact status using chronic estrogen benzoate or testosterone propionate replacement via osmotic minipump (6 microg/day or 250 microg/day, respectively). It is unclear whether this striking sex difference is due to sex-specific involvement of ASICs in pain processing, but the present data represent one of the first demonstrations of pain-related sex differences with no obvious opioid involvement.
Collapse
Affiliation(s)
- Mona Lisa Chanda
- Department of Psychology nd Centre for Research on Pain, McGill University 1205 Dr. Penfield Ave., Montreal, QC H3A 1B1, Canada
| | | |
Collapse
|
49
|
Kuba T, Wu HBK, Nazarian A, Festa ED, Barr GA, Jenab S, Inturrisi CE, Quinones-Jenab V. Estradiol and progesterone differentially regulate formalin-induced nociception in ovariectomized female rats. Horm Behav 2006; 49:441-9. [PMID: 16257405 DOI: 10.1016/j.yhbeh.2005.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Clinical and preclinical studies have found sex-specific differences in the discrimination and perception of inflammatory stimuli. The emerging picture suggests that the biological basis of these differences resides in the regulatory activity of gonadal hormones in the central nervous system. This study describes the effects of ovarian hormones in inflammatory pain processes. Ovariectomized rats received estradiol and/or progesterone, and the number of paw flinches was measured after 1, 2.5 or 5% formalin administration. Both estradiol and progesterone altered the number of flinches only after 1% formalin administration. Estradiol significantly reduced the overall number of flinches during Phase II of the formalin nociceptive response while progesterone attenuated Phase I of the response. After co-administration of estradiol and progesterone, progesterone reversed estradiol's analgesic effect in Phase II, however, estradiol did not reverse progesterone's analgesic activity in Phase I. To determine if estradiol effects are receptor-mediated, tamoxifen (selective estrogen receptor mediator, 15 mg/kg) or alpha-estradiol (an inactive isomer of estradiol, 20 microg) were utilized. Tamoxifen decreased the number of formalin-induced flinches during Phase II while alpha-estradiol did not affect any formalin-induced responses. When co-administered with estradiol, tamoxifen failed to reverse estradiol's effect, suggesting both tamoxifen and estradiol activate similar intracellular mechanisms. Although Western blot analysis detected the presence of estradiol alpha and beta and progesterone B receptors in the spinal cord, hormone replacement treatments had no effects on the levels of these receptors. We postulate that the mechanisms by which estradiol and progesterone induce analgesia occur through the activation of their receptor at the spinal cord level.
Collapse
Affiliation(s)
- Tzipora Kuba
- Department of Psychology, Hunter College and The Graduate Center of the City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
You HJ, Cao DY, Yuan B, Arendt-Nielsen L. Sex differences in the responses of spinal wide-dynamic range neurons to subcutaneous formalin and in the effects of different frequencies of conditioning electrical stimulation. Neuroscience 2006; 138:1299-307. [PMID: 16426769 DOI: 10.1016/j.neuroscience.2005.11.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 11/14/2005] [Accepted: 11/20/2005] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate sex-related differences in nociception elicited by s.c. injection of different concentrations (1-5%) of formalin. S.c. formalin-induced biphasic (early and late phases) persistent nociception was assessed by extracellularly recording the spontaneous activities of single spinal dorsal horn wide-dynamic range neurons in anesthetized male and female rats. The nociceptive responses of the dorsal horn wide-dynamic range neurons following s.c. injection of 5%, but not 1% and 2.5%, formalin in female rats were significantly stronger than the responses obtained in male rats. However, these concentration-dependent differences with respect to different sexes existed only in the late, but not the early, phase of formalin-induced nociception in intact, not spinal rats. The 5% formalin-induced late phase nociception in male rats was significantly depressed by 15 min of repeated conditioning electrical stimulation at a frequency of 5 Hz as well as 50 Hz during and after the period of conditioning electrical stimulation (intensity: 1 mA; pulse duration: 1 ms). In contrast, the inhibitory effect of 50 Hz conditioning electrical stimulation on the 5% formalin-elicited late phase response in female rats was markedly greater in magnitude and longer in duration than that of 5 Hz conditioning electrical stimulation. No significant depressive effects of 5 Hz conditioning electrical stimulation on formalin-induced nociception were found in female rats, indicating that the distinct effects of conditioning electrical stimulation at different frequencies are different in animals of opposite sexes. In conclusion, s.c. administration of different concentrations of formalin shows a distinct sex-related difference in its late tonic nociception of spinal nociceptive sensory neurons. Sex differences in formalin-induced tonic nociception are stimulus intensity dependent and related to the modulation from the supraspinal regions. S.c. formalin-induced late phase nociception in female rats is only sensitive to depression at a frequency of 50 Hz, but not 5 Hz, of conditioning electrical stimulation. This suggests that the involvement of the central mechanisms in the antinociceptive effects of conditioning electrical stimulation may be different at various frequencies of stimulation.
Collapse
Affiliation(s)
- H-J You
- Center for Sensory-Motor Interaction, Laboratory for Experimental Pain Research, Aalborg University, Fredrik Bajers Vej 7 D-3, DK-9220 Aalborg, Denmark.
| | | | | | | |
Collapse
|