1
|
González-Castro TB, Genis-Mendoza AD, León-Escalante DI, Hernández-Díaz Y, Juárez-Rojop IE, Tovilla-Zárate CA, López-Narváez ML, Marín-Medina A, Nicolini H, Castillo-Avila RG, Ramos-Méndez MÁ. Possible Association of Cholesterol as a Biomarker in Suicide Behavior. Biomedicines 2021; 9:biomedicines9111559. [PMID: 34829788 PMCID: PMC8615563 DOI: 10.3390/biomedicines9111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Suicides and suicidal behavior are major causes of mortality and morbidity in public health and are a global problem. Various authors have proposed changes in lipid metabolism (total cholesterol decrease) as a possible biological marker for suicidal behavior. The objective of this study was to review the studies that have demonstrated a relationship between serum cholesterol levels and suicidal behavior and to describe the possible pathophysiological mechanisms that associate changes in cholesterol concentration and suicidal behavior. Relevant literature related to serum cholesterol levels and suicidal behavior was identified through various database searches. The data from the existing literature present the findings that relate low cholesterol levels and possible pathophysiological mechanisms (neuroinflammation, serotonergic neurotransmission), genes related to cholesterol synthesis, pharmacological treatments that alter lipid metabolism and the possible participation in suicidal behavior. Nevertheless, future research is required to describe how serum cholesterol affects cholesterol metabolism in the CNS to establish and understand the role of cholesterol in suicidal behavior.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Tabasco, Mexico; (T.B.G.-C.); (Y.H.-D.)
| | - Alma Delia Genis-Mendoza
- Departamento de Genética Psiquiátrica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico;
| | - Dulce Ivannia León-Escalante
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Tabasco, Mexico;
| | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Tabasco, Mexico; (T.B.G.-C.); (Y.H.-D.)
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Tabasco, Mexico; (I.E.J.-R.); (R.G.C.-A.); (M.Á.R.-M.)
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Tabasco, Mexico;
- Correspondence: (C.A.T.-Z.); (H.N.); Tel.: +52-9933581500 (ext. 6900) (C.A.T.-Z.); +52-53501900 (ext. 1197) (H.N.)
| | - María Lilia López-Narváez
- Secretaría de Salud de Chiapas, Hospital Chiapas Nos Une “Dr. Gilberto Gómez Maza”, Tuxtla Gutiérrez 29045, Chiapas, Mexico;
| | | | - Humberto Nicolini
- Departamento de Genética Psiquiátrica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico;
- Correspondence: (C.A.T.-Z.); (H.N.); Tel.: +52-9933581500 (ext. 6900) (C.A.T.-Z.); +52-53501900 (ext. 1197) (H.N.)
| | - Rosa Giannina Castillo-Avila
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Tabasco, Mexico; (I.E.J.-R.); (R.G.C.-A.); (M.Á.R.-M.)
| | - Miguel Ángel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Tabasco, Mexico; (I.E.J.-R.); (R.G.C.-A.); (M.Á.R.-M.)
| |
Collapse
|
2
|
Du J, Zhu M, Bao H, Li B, Dong Y, Xiao C, Zhang GY, Henter I, Rudorfer M, Vitiello B. The Role of Nutrients in Protecting Mitochondrial Function and Neurotransmitter Signaling: Implications for the Treatment of Depression, PTSD, and Suicidal Behaviors. Crit Rev Food Sci Nutr 2017; 56:2560-2578. [PMID: 25365455 DOI: 10.1080/10408398.2013.876960] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous studies have linked severe stress to the development of major depressive disorder (MDD) and suicidal behaviors. Furthermore, recent preclinical studies from our laboratory and others have demonstrated that in rodents, chronic stress and the stress hormone cortisol cause oxidative damage to mitochondrial function and membrane lipids in the brain. Mitochondria play a key role in synaptic neurotransmitter signaling by providing adenosine triphosphate (ATP), mediating lipid and protein synthesis, buffering intracellular calcium, and regulating apoptotic and resilience pathways. Membrane lipids are similarly essential to central nervous system (CNS) function because cholesterol, polyunsaturated fatty acids, and sphingolipids form a lipid raft region, a special lipid region on the membrane that mediates neurotransmitter signaling through G-protein-coupled receptors and ion channels. Low serum cholesterol levels, low antioxidant capacity, and abnormal early morning cortisol levels are biomarkers consistently associated with both depression and suicidal behaviors. In this review, we summarize the manner in which nutrients can protect against oxidative damage to mitochondria and lipids in the neuronal circuits associated with cognitive and affective behaviors. These nutrients include ω3 fatty acids, antioxidants (vitamin C and zinc), members of the vitamin B family (Vitamin B12 and folic acid), and magnesium. Accumulating data have shown that these nutrients can enhance neurocognitive function, and may have therapeutic benefits for depression and suicidal behaviors. A growing body of studies suggests the intriguing possibility that regular consumption of these nutrients may help prevent the onset of mood disorders and suicidal behaviors in vulnerable individuals, or significantly augment the therapeutic effect of available antidepressants. These findings have important implications for the health of both military and civilian populations.
Collapse
Affiliation(s)
- Jing Du
- a School of Medicine, Yunnan University , Kunming , Yunnan , China.,c Laboratory of Molecular Pathophysiology, Intramural Research Program, NIMH, NIH , Bethesda , Maryland , USA
| | - Ming Zhu
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Hongkun Bao
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Bai Li
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Yilong Dong
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Chunjie Xiao
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Grace Y Zhang
- c Laboratory of Molecular Pathophysiology, Intramural Research Program, NIMH, NIH , Bethesda , Maryland , USA
| | - Ioline Henter
- d Molecular Imaging Branch, Intramural Research Program, NIMH, NIH , Bethesda , Maryland , USA
| | - Matthew Rudorfer
- b Division of Service and Intervention Research, NIMH, NIH , Rockville , Maryland , USA
| | - Benedetto Vitiello
- b Division of Service and Intervention Research, NIMH, NIH , Rockville , Maryland , USA
| |
Collapse
|
3
|
Deacon G, Kettle C, Hayes D, Dennis C, Tucci J. Omega 3 polyunsaturated fatty acids and the treatment of depression. Crit Rev Food Sci Nutr 2015; 57:212-223. [DOI: 10.1080/10408398.2013.876959] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gelinda Deacon
- Pharmacy and Applied Science, La Trobe University, Victoria, Australia
| | - Christine Kettle
- Pharmacy and Applied Science, La Trobe University, Victoria, Australia
| | - David Hayes
- School of Pharmacy, La Trobe University, Victoria, Australia
| | | | - Joseph Tucci
- School of Pharmacy, La Trobe University, Victoria, Australia
| |
Collapse
|
4
|
Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F, Caraci F. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:313570. [PMID: 24757497 PMCID: PMC3976923 DOI: 10.1155/2014/313570] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
Abstract
The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA) in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries' diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.
Collapse
Affiliation(s)
- Giuseppe Grosso
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Fabio Galvano
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Stefano Marventano
- Department of "G.F. Ingrassia", Section of Hygiene and Public Health, University of Catania, Via S. Sofia 85, 95123 Catania, Italy
| | - Michele Malaguarnera
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Educational Sciences, University of Catania, Via Teatro Greco 84, 95124 Catania, Italy ; IRCCS Associazione Oasi Maria S.S.-Institute for Research on Mental Retardation and Brain Aging, Via Conte Ruggiero 73, Enna, 94018 Troina, Italy
| |
Collapse
|
5
|
Abstract
Significant interactions exist between fatty acids and the endocrine system. Dietary fatty acids alter both hormone and neuropeptide concentrations and also their receptors. In addition, hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn leads to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are also involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids are also precursors for eicosanoids including prostaglandins, leucotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn affect the endocrine system. Saturated and trans fatty acids decrease insulin concentration leading to insulin resistance. In contrast, polyunsaturated fatty acids increase plasma insulin concentration and decrease insulin resistance. In humans, omega3 polyunsaturated fatty acids alter the levels of opioid peptides in plasma. Free fatty acids have been reported to inhibit glucagon release. Fatty acids also affect receptors for hormones and neuropeptides.
Collapse
Affiliation(s)
- Sam J Bhathena
- Phytonutrients Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705-2350, USA.
| |
Collapse
|
6
|
Kavraal S, Oncu SK, Bitiktas S, Artis AS, Dolu N, Gunes T, Suer C. Maternal intake of Omega-3 essential fatty acids improves long term potentiation in the dentate gyrus and Morris water maze performance in rats. Brain Res 2012; 1482:32-9. [DOI: 10.1016/j.brainres.2012.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/03/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
|
7
|
Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem N. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids 2010; 82:305-14. [PMID: 20188533 DOI: 10.1016/j.plefa.2010.02.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) are critical for infant and childhood brain development, but levels of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are often low in the Western diet. Increasing evidence from both epidemiological and intervention studies, reviewed here, indicates that DHA supplementation, during pregnancy, lactation, or childhood plays an important role in childhood neurodevelopment. Arachidonic acid (ARA) is also important for infant growth and development. Several studies have demonstrated positive associations between blood DHA levels and improvements on tests of cognitive and visual function in healthy children. Controlled trials also have shown that supplementation with DHA and EPA may help in the management of childhood psychiatric disorders, and improve visual and motor functions in children with phenylketonuria. In all studies, DHA and EPA supplementation is typically well tolerated. Further research is needed to determine optimal doses for efficacy at different developmental ages. The potential long-term benefits of early LCPUFA supplementation also require consideration.
Collapse
Affiliation(s)
- Alan S Ryan
- Martek Biosciences Corporation, Columbia, MD 21045, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. RECENT FINDINGS In-vitro and ex-vivo studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may exert immunosuppressive and anticancer effects through changes in lipid raft organization. In addition, gangliosides and cholesterol may modulate lipid raft organization in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth. The roles of fatty acids and gangliosides, especially in relation to lipid rafts, in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer's disease are poorly understood and require further investigation. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are starting to emerge, and indicate compelling evidence for the growing importance of membrane microdomains in health and disease. SUMMARY In-vitro and animal studies show that n-3 PUFAs, cholesterol, and gangliosides modulate the structure and composition of lipid rafts, potentially influencing a wide range of biological processes, including immune function, neuronal signaling, cancer cell growth, entry of pathogens through the gut barrier, and insulin resistance in metabolic disorders. The physiological, clinical, and nutritional relevance of these observations remains to be determined.
Collapse
Affiliation(s)
- Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| | | |
Collapse
|
9
|
Affiliation(s)
- Parveen Yaqoob
- School of Chemistry, Food Biosciences and Pharmacy, The University of Reading, Reading RG6 6AP, United Kingdom;
| |
Collapse
|
10
|
Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, Hussein N, Bhattacharjee AK, Ma K, Esposito G, Majchrzak S, Herscovitch P, Eckelman WC, Kurdziel KA, Salem N. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res 2009; 50:1259-68. [PMID: 19112173 PMCID: PMC2694326 DOI: 10.1194/jlr.m800530-jlr200] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 12/22/2008] [Indexed: 11/20/2022] Open
Abstract
Docosahexaenoic acid (DHA; 22:6n-3) is a critical constituent of the brain, but its metabolism has not been measured in the human brain in vivo. In monkeys, using positron emission tomography (PET), we first showed that intravenously injected [1-(11)C]DHA mostly entered nonbrain organs, with approximately 0.5% entering the brain. Then, using PET and intravenous [1-(11)C]DHA in 14 healthy adult humans, we quantitatively imaged regional rates of incorporation (K*) of DHA. We also imaged regional cerebral blood flow (rCBF) using PET and intravenous [(15)O]water. Values of K* for DHA were higher in gray than white matter regions and correlated significantly with values of rCBF in 12 of 14 subjects despite evidence that rCBF does not directly influence K*. For the entire human brain, the net DHA incorporation rate J(in), the product of K*, and the unesterified plasma DHA concentration equaled 3.8 +/- 1.7 mg/day. This net rate is equivalent to the net rate of DHA consumption by brain and, considering the reported amount of DHA in brain, indicates that the half-life of DHA in the human brain approximates 2.5 years. Thus, PET with [1-(11)C]DHA can be used to quantify regional and global human brain DHA metabolism in relation to health and disease.
Collapse
Affiliation(s)
- John C Umhau
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 2008; 155:751-9. [PMID: 18620024 DOI: 10.1016/j.neuroscience.2008.05.061] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 01/09/2023]
Abstract
Omega-3 fatty acids (i.e. docosahexaenoic acid; DHA), similar to exercise, improve cognitive function, promote neuroplasticity, and protect against neurological lesion. In this study, we investigated a possible synergistic action between DHA dietary supplementation and voluntary exercise on modulating synaptic plasticity and cognition. Rats received DHA dietary supplementation (1.25% DHA) with or without voluntary exercise for 12 days. We found that the DHA-enriched diet significantly increased spatial learning ability, and these effects were enhanced by exercise. The DHA-enriched diet increased levels of pro-brain-derived neurotrophic factor (BDNF) and mature BDNF, whereas the additional application of exercise boosted the levels of both. Furthermore, the levels of the activated forms of CREB and synapsin I were incremented by the DHA-enriched diet with greater elevation by the concurrent application of exercise. While the DHA diet reduced hippocampal oxidized protein levels, a combination of a DHA diet and exercise resulted in a greater reduction rate. The levels of activated forms of hippocampal Akt and CaMKII were increased by the DHA-enriched diet, and with even greater elevation by a combination of diet and exercise. Akt and CaMKII signaling are crucial step by which BDNF exerts its action on synaptic plasticity and learning and memory. These results indicate that the DHA diet enhanced the effects of exercise on cognition and BDNF-related synaptic plasticity, a capacity that may be used to promote mental health and reduce risk of neurological disorders.
Collapse
Affiliation(s)
- A Wu
- Department of Physiological Science, University of California at Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
12
|
Rao JS, Ertley RN, Lee HJ, DeMar JC, Arnold JT, Rapoport SI, Bazinet RP. n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 2007; 12:36-46. [PMID: 16983391 DOI: 10.1038/sj.mp.4001888] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/13/2006] [Accepted: 07/24/2006] [Indexed: 11/08/2022]
Abstract
Decreased docosahexaenoic acid (DHA) and brain-derived neurotrophic factor (BDNF) have been implicated in bipolar disorder. It also has been reported that dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) for 15 weeks in rats, increased their depression and aggression scores. Here, we show that n-3 PUFA deprivation for 15 weeks decreased the frontal cortex DHA level and reduced frontal cortex BDNF expression, cAMP response element binding protein (CREB) transcription factor activity and p38 mitogen-activated protein kinase (MAPK) activity. Activities of other CREB activating protein kinases were not significantly changed. The addition of DHA to rat primary cortical astrocytes in vitro, induced BDNF protein expression and this was blocked by a p38 MAPK inhibitor. DHA's ability to regulate BDNF via a p38 MAPK-dependent mechanism may contribute to its therapeutic efficacy in brain diseases having disordered cell survival and neuroplasticity.
Collapse
Affiliation(s)
- J S Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Lifestyle involves our preference to engage in behaviors that can remarkably influence the fitness level of our body and brain. Dietary factors are a powerful means to influence brain function on a daily basis. We have shown that the consumption of a diet rich in saturated fat decreases learning and memory and increases metabolic distress. Conversely, diets supplemented either with omega-3 fatty acids, vitamin E or the curry spice curcumin benefit cognitive function. Equally impressive is the action of exercise on cognitive function as documented by studies showing that exercise enhances learning and memory. The beneficial action of exercise on the brain can be used therapeutically to overcome the effects of consuming a poor diet. We suggest that the managed use of diet and exercise can help the brain to cope with several types of insults and ultimately benefit brain function.
Collapse
Affiliation(s)
- Fernando Gomez Pinilla
- Department of Neurosurgery, Brain Injury Research Center, UCLA School of Medicine, Los Angeles, California 90095, USA.
| |
Collapse
|
14
|
Kuperstein F, Yakubov E, Dinerman P, Gil S, Eylam R, Salem N, Yavin E. Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J Neurochem 2005; 95:1550-62. [PMID: 16305626 DOI: 10.1111/j.1471-4159.2005.03513.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A combination of PCR-Select cDNA subtraction and gene array hybridization was used to identify differentially expressed genomic markers in brains of rats fed for 3 weeks in utero and 2 weeks after birth on an n-3 polyunsaturated fatty acid (PUFA)-deficient diet supplied to dams. Total RNA was isolated, switch mechanism at 5'-end of the RNA transcripts (SMART) applied and used for PCR-Select subtraction of PUFA-deficient and adequately-fed control preparations. Subtracted and amplified ds-cDNA end-products were fragmented, terminally labeled with biotin-ddUTP and hybridized with a RN-U34A gene array. A 10-fold increase in potential genes with log2(Tester/Driver) = 1.4 was found compared with traditional gene array technology when the same chip was tested using non-subtracted targets. Reverse transcription-real-time relative PCR confirmed 30% of the transcripts. Among the validated transcripts, D1 and D2 receptors for dopamine (DA), were most prominent among a number of over-expressed neurotransmitter receptors and retinoic acid receptor (RXR alpha-2 and alpha-1). Immunohistochemical staining of brain sections from 2-week-old pups revealed a substantial enrichment of the D2 receptor in discrete regions of the mesolimbic and mesocortical pathways as well as in a large number of brain areas from the n-3 PUFA-deficient pups. Punches of the same areas run on western blots showed similar results. The overwhelming expression of D1 and D2 receptors may be attributed to a behavioral hypersensitivity caused by the possible impairment of DA production during brain development, which may have implications in certain disorders of the nervous system.
Collapse
Affiliation(s)
- F Kuperstein
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, Halver JE, Puskás LG. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 2004; 101:10931-6. [PMID: 15263092 PMCID: PMC503722 DOI: 10.1073/pnas.0402342101] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are essential structural components of the central nervous system. Their role in controlling learning and memory has been well documented. A nutrigenomic approach with high-density microarrays was used to reveal brain gene-expression changes in response to different PUFA-enriched diets in rats. In aged rats fed throughout life with PUFA-enriched diets, genes with altered expressions included transthyretin, alpha-synuclein, and calmodulins, which play important roles in synaptic plasticity and learning. The effect of perinatal omega-3 PUFA supply on gene expression later in life also was studied. Several genes showed similar changes in expression in rats fed omega-3-deficient diets in the perinatal period, regardless of whether they or their mothers were fed omega-3 PUFA-sufficient diets after giving birth. In this experiment, among the down-regulated genes were a kainate glutamate receptor and a DEAD-box polypeptide. Among the up-regulated genes were a chemokine-like factor, a tumor necrosis factor receptor, and cytochrome c. The possible involvement of the genes with altered expression attributable to different diets in different brain regions in young and aged rats and the possible mode of regulatory action of PUFA also are discussed. We conclude that PUFA-enriched diets lead to significant changes in expression of several genes in the central nervous tissue, and these effects appear to be mainly independent of their effects on membrane composition. The direct effects of PUFA on transcriptional modulators, the downstream developmentally and tissue-specifically activated elements might be one of the clues to understanding the beneficial effects of the omega-3 PUFA on the nervous system.
Collapse
Affiliation(s)
- Klára Kitajka
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cejas JR, Almansa E, Jérez S, Bolaños A, Samper M, Lorenzo A. Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comp Biochem Physiol B Biochem Mol Biol 2004; 138:91-102. [PMID: 15142540 DOI: 10.1016/j.cbpc.2004.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/27/2004] [Accepted: 03/04/2004] [Indexed: 11/30/2022]
Abstract
Total lipids (TL), lipid classes, and their associated fatty acids from muscle and liver of captive and wild mature female broodstocks were investigated in order to estimate the fatty acid requirements of white seabream (Diplodus sargus). The results showed that the percentage of triacylglycerol was higher in liver and muscle of captive fish than in wild fish. The distribution of phospholipid classes in liver and muscle of both fish groups was similar, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol being the predominant lipid classes. The general pattern of fatty acid distribution in total lipid of liver and muscle from captive and wild fish was similar. However, the relative percentage of specific fatty acids differed in captive and wild fish. The most noteworthy difference was the lower proportion of arachidonic acid (20:4n-6, AA) and the higher proportion of eicosapentaenoic acid (20:5n-3, EPA) in liver and muscle of captive fish with respect to those of wild fish. The proportion of docosahexaenoic acid (22:6n-3, DHA) did not differ between the two fish groups. The differences in EPA and AA proportions between captive and wild fish implied that captive fish presented a higher EPA/AA ratio and a lower DHA/EPA ratio than wild fish. In general terms, in both liver and muscle, the differences in fatty acid composition observed for TL were extended to all lipid classes. The results suggest that the different AA, EPA and DHA proportions in liver and muscle between captive and wild broodstocks are attributed to different levels of these fatty acids in broodstock diets.
Collapse
Affiliation(s)
- Juana Rosa Cejas
- Centro Oceanográfico de Canarias (I.E.O.), Crta. de San Andrés s/n, 38120, Santa Cruz de Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Almansa E, Sánchez JJ, Cozzi S, Rodríguez C, Díaz M. Temperature-activity relationship for the intestinal Na+-K+-ATPase of Sparus aurata. A role for the phospholipid microenvironment? J Comp Physiol B 2003; 173:231-7. [PMID: 12743726 DOI: 10.1007/s00360-003-0327-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2002] [Indexed: 10/25/2022]
Abstract
The temperature dependence for Na(+)-K(+)-ATPase has been examined in the proximal-distal axis of the intestine of gilthead seabream (Sparus aurata), i.e. pyloric caeca (PC), anterior intestine (AI) and posterior intestine (PI). Data derived from the Arrhenius plots showed differences in terms of temperature discontinuity points ( Td) (13.29 degrees C, 16.39 degrees C and 17.48 degrees C for PC, AI and PI, respectively) and activation energy ratios (Ea(2)/Ea(1)) obtained at both sides of Td (2.38, 1.98 and 1.78, for PC, AI and PI, respectively). The analyses of polar lipids showed differences in the levels of certain fatty acids among intestinal regions. The content of each fatty acid and different fatty acid ratios were correlated with the corresponding Td and Ea(2)/Ea(1) values. Regression analyses revealed the existence of strong negative correlations between docosahexaenoic acid (22:6n-3, DHA) or the DHA/monoenes ratio and Td. No obvious relationships were observed for other polyunsaturated fatty acids (PUFA) nor saturated fatty acids. The results obtained in the present study indicate that the heterogeneous values of Td displayed by the Na(+)-K(+)-ATPase along the intestinal tract could be related to a modulatory role of certain fatty acid within the lipid microenvironment of the enzyme.
Collapse
Affiliation(s)
- E Almansa
- Laboratorio de Fisiología Animal, Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, 38206 Tenerife, Spain
| | | | | | | | | |
Collapse
|
18
|
Puskás LG, Kitajka K, Nyakas C, Barcelo-Coblijn G, Farkas T. Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc Natl Acad Sci U S A 2003; 100:1580-5. [PMID: 12566565 PMCID: PMC149875 DOI: 10.1073/pnas.0337683100] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reduced brain levels of long chain polyunsaturated fatty acids [arachidonic acid and docosahexanoic acid (DHA)] are observed in elderly subjects and patients with Alzheimer's disease. To determine the effects of n-3 fatty acids on aged rat brain, 2-year-old rats were fed fish oil (27% DHA content) for 1 month, and gene expression analysis and fatty acid and molecular species composition of the major phospholipid species were assessed. No significant alteration could be observed in the fatty acid composition of ethanolamine phosphoglycerides and phosphatidylserines with the exception of DHA, which was slightly higher in brains of rats receiving fish oil. However, a drastic reduction in arachidonic acid in phosphatidylinositoles was observed. The expression of 23 genes was altered in response to fish oil feeding in the hippocampus. The transcription of transthyretin (TTR) was induced by 10-fold as evidenced by microarray analysis and confirmed by real-time quantitative RT-PCR. Expression of IL-1 and NO synthase, which has been implicated in the prevention of neurological diseases, was unaltered. TTR is an amyloid beta protein scavenger, so an increase in its expression could prevent amyloid aggregate formation. We believe the beneficial effects of fish oil might be common to other agents, i.e., induce TTR expression, like nicotine and Ginkgo biloba extract.
Collapse
Affiliation(s)
- László G Puskás
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary.
| | | | | | | | | |
Collapse
|
19
|
Abstract
This review examines the data pertaining to an important and often underrated EFA, alpha-linolenic acid (ALA). It examines its sources, metabolism, and biological effects in various population studies, in vitro, animal, and human intervention studies. The main role of ALA was assumed to be as a precursor to the longer-chain n-3 PUFA, EPA and DHA, and particularly for supplying DHA for neural tissue. This paper reveals that the major metabolic route of ALA metabolism is beta-oxidation. Furthermore, ALA accumulates in specific sites in the body of mammals (carcass, adipose, and skin), and only a small proportion of the fed ALA is converted to DHA. There is some evidence that ALA may be involved with skin and fur function. There is continuing debate regarding whether ALA has actions of its own in relation to the cardiovascular system and neural function. Cardiovascular disease and cancer are two of the major burdens of disease in the 21st century, and emerging evidence suggests that diets containing ALA are associated with reductions in total deaths and sudden cardiac death. There may be aspects of the action and, more importantly, the metabolism of ALA that need to be elucidated, and these will help us understand the biological effects of this compound better. Additionally, we must not forget that ALA is part of the whole diet and should be seen in this context, not in isolation.
Collapse
Affiliation(s)
- Andrew J Sinclair
- Department of Food Science, RMIT University, Melbourne, Victoria, 3001, Australia.
| | | | | |
Collapse
|
20
|
Chapter 8 Molecular species of phospholipids during brain development. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0167-7306(02)35037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Contreras MA, Greiner RS, Chang MC, Myers CS, Salem N, Rapoport SI. Nutritional deprivation of alpha-linolenic acid decreases but does not abolish turnover and availability of unacylated docosahexaenoic acid and docosahexaenoyl-CoA in rat brain. J Neurochem 2000; 75:2392-400. [PMID: 11080190 DOI: 10.1046/j.1471-4159.2000.0752392.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We applied our in vivo fatty acid method to examine concentrations, incorporation, and turnover rates of docosahexaenoic acid (22:6 n-3) in brains of rats subject to a dietary deficiency of alpha-linolenic acid (18:3 n-3) for three generations. Adult deficient and adequate rats of the F3 generation were infused intravenously with [4, 5-(3)H]docosahexaenoic acid over 5 min, after which brain uptake and distribution of tracer were measured. Before infusion, the plasma 22:6 n-3 level was 0.2 nmol ml(-1) in 18:3 n-3-deficient compared with 10.6 nmol ml(-1) in control rats. Brain unesterified 22:6 n-3 was not detectable, whereas docosahexaenoyl-CoA content was reduced by 95%, and 22:6 n-3 content in different phospholipid classes was reduced by 83-88% in deficient rats. Neither plasma or brain arachidonic acid (20:4 n-6) level was significantly changed with diet. Docosapentaenoic acid (22:5 n-6) reciprocally replaced 22:6 n-3 in brain phospholipids. Calculations using operational equations from our model indicated that 22:6 n-3 incorporation from plasma into brain was reduced 40-fold by 18:3 n-3 deficiency. Recycling of 22:6 n-3 due to deacylation-reacylation within phospholipids was reduced by 30-70% with the deficient diet, but animals nevertheless continued to produce 22:6 n-3 and docosahexaenoyl-CoA for brain function. We propose that functional brain effects of n-3 deficiency reflect altered ratios of n-6 to n-3 fatty acids.
Collapse
Affiliation(s)
- M A Contreras
- Section on Brain Physiology and Metabolism, National Institute on Aging, Bethesda 20892, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Mostofsky DI, Yehuda S, Rabinovitz S, Carasso R. The control of blepharospasm by essential fatty acids. Neuropsychobiology 2000; 41:154-7. [PMID: 10754430 DOI: 10.1159/000026648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dopamine depletion induced by administration of Ro4-1284 produces a condition of rapid and repeated eye blinking in rats. This condition mimics the human disorder, blepharospasm, which often accompanies parkinsonism and other dopamine deficiency disorders. When given a 3-week course of a compound (SR-3) developed from a specific ratio of two free polyunsaturated fatty acids - linoleic acid and alpha-linolenic acid - the eye blinking rate following administration of Ro4-1284 is reduced to saline and no drug control levels. These results suggest a favorable prospect for essential fatty acids in general, and SR-3 in particular, to provide an improved therapeutic option for the clinical management of benign essential blepharospasm.
Collapse
Affiliation(s)
- D I Mostofsky
- Psychopharmacology Laboratory, Department of Psychology, Bar Ilan University, Ramat Gan, Israel.
| | | | | | | |
Collapse
|
23
|
Abstract
Significant interactions exist between fatty acids and the endocrine system. Hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn lead to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids (PUFA) are also precursors for eicosanoids including prostaglandins, leukotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn alter both hormone and neuropeptide concentrations and their receptors. Saturated and trans fatty acids (TFA) decrease insulin concentration leading to insulin resistance. In contrast, PUFA increase plasma insulin concentration and decrease insulin resistance. In humans, omega-3 PUFA alter the levels of opioid peptides in plasma.
Collapse
Affiliation(s)
- S J Bhathena
- Phytonutrients Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, MD 20705, USA.
| |
Collapse
|
24
|
Green P, Glozman S, Kamensky B, Yavin E. Developmental changes in rat brain membrane lipids and fatty acids: the preferential prenatal accumulation of docosahexaenoic acid. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32132-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Topham MK, Prescott SM. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 1999; 274:11447-50. [PMID: 10206945 DOI: 10.1074/jbc.274.17.11447] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- M K Topham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
26
|
Kurlak LO, Stephenson TJ. Plausible explanations for effects of long chain polyunsaturated fatty acids (LCPUFA) on neonates. Arch Dis Child Fetal Neonatal Ed 1999; 80:F148-54. [PMID: 10325796 PMCID: PMC1720895 DOI: 10.1136/fn.80.2.f148] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- L O Kurlak
- Division of Child Health, School of Human Development, University Hospital Queens Medical Centre, Nottingham
| | | |
Collapse
|
27
|
Yehuda S, Rabinovitz S, Mostofsky DI. Treatment with a polyunsaturated fatty acid prevents deleterious effects of Ro4-1284. Eur J Pharmacol 1999; 365:27-34. [PMID: 9988119 DOI: 10.1016/s0014-2999(98)00850-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ro4-1284 (2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy-2H-benzo[a] quinolizin-2-ol hydrochloride), a benzoquinolizine, is a potent dopamine depletion agent whose acute and chronic administration results in a (1) deterioration of learning in the Morris Water Maze and passive avoidance tasks, (2) decrease in locomotion and rearing, (3) intense hypothermia, and (4) decrease in the percentage of polyunsaturated fatty acids and an increase in the level of cholesterol in neuronal membranes. Pretreatment with a specific mixture of free polyunsaturated fatty acids prevents most of the behavioral, physiological, and biochemical effects of Ro4-1284 except for rearing. We propose that the dopamine-mediated functions tested in this study are dependent on the interaction of intact dopamine D1 and D2 receptors. Rearing, which is controlled only by dopamine D1 receptors, remained, therefore, unaffected. Our hypothesis is that SR-3 exerts its beneficial effects by normalizing the structure and function of the neuronal membrane and by restoring dopamine D2 receptor functions.
Collapse
MESH Headings
- 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy-/pharmacology
- Analysis of Variance
- Animals
- Avoidance Learning/drug effects
- Body Temperature/drug effects
- Cholesterol/metabolism
- Fatty Acids, Unsaturated/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Learning Disabilities/chemically induced
- Learning Disabilities/prevention & control
- Maze Learning/drug effects
- Motor Activity/drug effects
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- S Yehuda
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel.
| | | | | |
Collapse
|
28
|
Abstract
The role of fatty acids (FA) as a mediator and modulator of central nervous system activity in general, and peptides in particular, is only recently becoming understood. This paper reviews numerous findings concerned with the activity of fatty acids, particularly with their interaction with diverse neurochemical systems and their consequences for better understanding neurotransmitters, hormones and peptides. The effects include FA as precursors in the manufacture of neurochemical elements, including enzymes, neurotransmitters, and hormones. Of particular interest is the important changes in neuronal membrane composition that have been attributed to FA. Such changes may account for the changes in thermoregulation, learning, and other functions that accompany dietary manipulation of FA intake. While the total level of FA has been the object of many investigations, this report addresses the need to focus on the ratio of FA, especially alpha-linolenic/linoleic acid, which has been shown to be a critical factor in a number of research studies.
Collapse
Affiliation(s)
- S Yehuda
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel.
| | | | | | | |
Collapse
|
29
|
Kim KS, Park EJ, Lee CW, Joo HT, Yeo YK. Dietary alpha-linolenic acid increases the biosynthesis of the choline glycerophospholipids from [14C]CDPcholine in rat liver and kidney but not in brain. Neurochem Res 1997; 22:1291-7. [PMID: 9342734 DOI: 10.1023/a:1021945316218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of feeding rats for 30 days with diets containing high levels of linoleic acid (sunflower oil, SO) or alpha-linolenic acid (perilla oil, PO) was studied in the liver, kidney and brain. The PO group showed a higher labeling of choline glycerophospholipids (CGP) in liver and kidney but no difference with the SO group in ethanolamine glycerophospholipids (EGP) labeling. The brain displayed the lowest incorporation of both precursors and no difference between the two diets. Analyses of brain CGP and EGP fatty acid composition showed that in the PO group the ratio n-6/n-3 was lower than in the SO group, mainly as a consequence of lower levels of n-6 fatty acids. The mole % of docosahexaenoate (DHA) in these lipids was the same for both groups and only triacylglycerols (TAG) displayed a higher DHA. Therefore, at least in the brain, the magnitude of fatty acid changes observed in CGP and EGP for the PO group does not affect the uptake/incorporation of the precursors into phospholipids.
Collapse
Affiliation(s)
- K S Kim
- Lipid Chemistry Laboratory, Kyungpook National University, Taegu, Korea
| | | | | | | | | |
Collapse
|
30
|
Abstract
Synaptic plasma membranes (SPM) isolated from rat cerebral cortex contain lipid kinases for conversion of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and diacylglycerol (DG) to PIP, phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA), respectively. These anionic phospholipids are important in signal transduction mechanisms and are required for synaptic function. The effect of ethanol and other aliphatic alcohols on phosphorylation of these lipids in SPM has not been established. Incubation of SPM with [gamma-32P]ATP resulted in labeling of PIP, lyso-PIP, PIP2, and PA. Ethanol (50-200 mM) added to the incubation system showed a dose-dependent decrease in labeling of PIP2, but not PIP or PA. To a lesser extent, labeling of PIP2 was also inhibited by 1-propanol, but neither isopropanol nor 1-butanol could alter the PIP2 labeling pattern. Under similar incubation conditions, labeling of PIP and PA in SPM was not altered by ethanol, 1-propanol, iso-propanol, but 1-butanol stimulated PIP labeling with a peak at 25 mM. Addition of exogenous PIP to the incubation mixture led to an increase in labeling of PIP2, suggesting that the endogenous PIP pool in SPM is limiting for the synthesis of PIP2 in SPM. Interestingly, when SPM were incubated with exogenous PIP, addition of ethanol (50-100 mM) to this incubation mixture resulted in an increase in PIP2 labeling. Taken together, these results suggest a specific effect of ethanol on PIP kinase in SPM, and this effect seems to be dependent on the location and/or amount of PIP in the membrane.
Collapse
Affiliation(s)
- W Tong
- Biochemistry Department, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|