1
|
Abstract
The retina is a very fine and layered neural tissue, which vitally depends on the preservation of cells, structure, connectivity and vasculature to maintain vision. There is an urgent need to find technical and biological solutions to major challenges associated with functional replacement of retinal cells. The major unmet challenges include generating sufficient numbers of specific cell types, achieving functional integration of transplanted cells, especially photoreceptors, and surgical delivery of retinal cells or tissue without triggering immune responses, inflammation and/or remodeling. The advances of regenerative medicine enabled generation of three-dimensional tissues (organoids), partially recreating the anatomical structure, biological complexity and physiology of several tissues, which are important targets for stem cell replacement therapies. Derivation of retinal tissue in a dish creates new opportunities for cell replacement therapies of blindness and addresses the need to preserve retinal architecture to restore vision. Retinal cell therapies aimed at preserving and improving vision have achieved many improvements in the past ten years. Retinal organoid technologies provide a number of solutions to technical and biological challenges associated with functional replacement of retinal cells to achieve long-term vision restoration. Our review summarizes the progress in cell therapies of retina, with focus on human pluripotent stem cell-derived retinal tissue, and critically evaluates the potential of retinal organoid approaches to solve a major unmet clinical need—retinal repair and vision restoration in conditions caused by retinal degeneration and traumatic ocular injuries. We also analyze obstacles in commercialization of retinal organoid technology for clinical application.
Collapse
|
2
|
Konobu T, Sessler F, Luo LY, Lehmann J. The hNT Human Neuronal Cell Line Survives and Migrates into Rat Retina. Cell Transplant 2017; 7:549-58. [PMID: 9853583 DOI: 10.1177/096368979800700605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present studies were undertaken to determine if hNT cells can survive in the vitreous of the eye and migrate into the retina. The hNT neuronal cell line represents a uniform source of human tissue that may be of use in retinal grafts. hNT cells stored in liquid nitrogen were thawed and labeled with the fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine Perchlorate (DiI). Thirty thousand cells in 1 μL were injected epiretinally in rat. At survival times of 3, 14, 28, or 56 days, retinal sections were examined quantitatively by epifluorescence to reveal DiI-labeled cells. hNT cells survived in the vitreous at all time points without evidence of vascularization. At 3 days, essentially no hNT cells were found in deep retina, and only very few were attached to retina. At days 14, 28, and 56, hNT cells were found to cluster on the vitreal/retinal interface, and in deeper layers. The clusters of hNT cells took on the shape of a funnel at 14 days, and inverted funnel at 28 days, and by 56 days, populated the photoreceptor layer as a stratum. It is possible that hNT cells took on the morphology and function of photoreceptors. These results suggest that hNT cells injected epiretinally survive in the vitreous at least 56 days, migrate to the retinal/vitreous interface, and may migrate through the retina. This system permits the independent and quantitative evaluation of survival and migratory trophic responses. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- T Konobu
- Department of Neurosurgery, Allegheny University of the Health Sciences, Philadelphia, PA 19102-1192, USA
| | | | | | | |
Collapse
|
3
|
Abstract
OBJECTIVE To create an animal (rat) model of force percussion injury (FPI) to the optic nerve for clinical and experimental research. METHODS Seventy-one healthy female Wister rats, with no ocular disorders, were used in this study. Sixty-six rats were subjected to bilateral blunt trauma to the eyes via FPI; five rats were not subjected to trauma. According to the degree of optic nerve injury, injured eyes were divided into two groups: severe optic nerve injury group, with beat pressures of 699.14 ± 60.79 kPa and mild optic nerve injury group, with beat pressures of 243.18 ± 20.26 kPa. Eight rats were examined using flash visual-evoked potential (F-VEP) monitoring and magnetic resonance imaging (MRI) before, 1 and 3 days, and 1, 2, 4, 6, and 8 weeks after optic nerve injury. Fifty-six rats were examined by histopathology and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay for apoptosis at 1 and 3 days, and 1, 2, 4, 6, and 8 weeks after optic nerve injury. Two rats were examined by transmission electron microscopy (TEM) 4 and 8 weeks after optic nerve injury. The presence or absence of optic nerve injury was evaluated in all trauma eyes. RESULTS Latency was prolonged in the severe injury group compared with controls 1 day after optic nerve injury (p < .05). Amplitude decreased during the first 2 weeks after optic nerve injury (p < .05) and then stabilized (p > .05). Latency was prolonged in the mild optic nerve injury group compared with controls 1 day after optic nerve injury (p < .05) Amplitude decreased during the first 4 weeks (p < .05) following injury and then stabilized (p > .05). As measured by MRI, an abnormally high signal was seen 1 day after injury and remained significantly high 8 weeks after injury. A ruptured capillary was detected in the ganglion cell layer (GCL) 1 day after injury. Acellular regions in the ganglion cell layer were observed 4 weeks after optic nerve injury. TUNEL-positive cells were present in each layer of the retina 3 days after injury. The number of TUNEL-positive cells began to increase 1-2 weeks after injury, and then gradually decreased 4 weeks after injury (p < .05). CONCLUSION We successfully created a reproducible experimental animal (rat) model of optic nerve injury using FPI. Optic nerve injury was demonstrated by F-VEP and MRI, and confirmed histologically. Our model is a simple, reliable, reproducible, and stable tool for use in investigations on the mechanism(s) of and treatment for optic nerve injury.
Collapse
Affiliation(s)
- Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.
| | | | | |
Collapse
|
4
|
Ellenberg D, Shi J, Jain S, Chang JH, Ripps H, Brady S, Melhem ER, Lakkis F, Adamis A, Chen DF, Ellis-Behnke R, Langer RS, Strittmatter SM, Azar DT. Impediments to eye transplantation: ocular viability following optic-nerve transection or enucleation. Br J Ophthalmol 2009; 93:1134-40. [PMID: 19286686 DOI: 10.1136/bjo.2008.155267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maintenance of ocular viability is one of the major impediments to successful whole-eye transplantation. This review provides a comprehensive understanding of the current literature to help guide future studies in order to overcome this hurdle. A systematic multistage review of published literature was performed. Three specific questions were addressed: (1) Is recovery of visual function following eye transplantation greater in cold-blooded vertebrates when compared with mammals? (2) Is outer retina function following enucleation and reperfusion improved compared with enucleation alone? (3) Following optic-nerve transection, is there a correlation between retinal ganglion cell (RGC) survival and either time after transection or proximity of the transection to the globe? In a majority of the studies performed in the literature, recovery of visual function can occur after whole-eye transplantation in cold-blooded vertebrates. Following enucleation (and reperfusion), outer retinal function is maintained from 4 to 9 h. RGC survival following optic-nerve transection is inversely related to both the time since transection and the proximity of transection to the globe. Lastly, neurotrophins can increase RGC survival following optic-nerve transection. This review of the literature suggests that the use of a donor eye is feasible for whole-eye transplantation.
Collapse
Affiliation(s)
- D Ellenberg
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rzeczinski S, Victorov IV, Lyjin AA, Aleksandrova OP, Harms C, Kronenberg G, Freyer D, Scheibe F, Priller J, Endres M, Dirnagl U. Roller Culture of Free-Floating Retinal Slices: A New System of Organotypic Cultures of Adult Rat Retina. Ophthalmic Res 2006; 38:263-9. [PMID: 16974126 DOI: 10.1159/000095768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 02/01/2006] [Indexed: 11/19/2022]
Abstract
No experimental system exists to date for the in vitro study of retinal ganglion cell populations in a three-dimensional organotypic tissue environment. Here, we describe such a novel method for roller cultivation of adult retinas. Retinas of adult (1-3 months old) rats were cut into rectangular slices of approximately 1 mm(2). Free-floating slices were cultured on a horizontal rotating roller drum (50-60 rpm) in a dry incubator at 36.5 degrees C. During the first days of cultivation, primary flat retinal slices changed their configuration and transformed into ball-shaped tissue spheres (retinal bodies). Histological and immunocytochemical studies showed that the outer wall of the retinal bodies was formed by cell and fibre layers typical of mature retina with photoreceptors located on the outside. Initially, retinal bodies contained an inner cavity which later was completely obliterated and filled with glial cells, sprouting nerve fibres, and vascular structures. This culture system was further developed into a robust model of glutamate-induced neurotoxicity. Using a novel culture method of adult rat retina, preservation of the three-dimensional organotypic retinal cytoarchitecture was achieved, including survival of neurons in the ganglion cell layer and sprouting of nerve fibres of the axotomized retinal ganglion cells. This novel culture model promises to facilitate studies of retinal physiology and pathology.
Collapse
Affiliation(s)
- Stefan Rzeczinski
- Laboratory of Experimental Neurocytology, Brain Research Institute, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Qin Q, Patil K, Sharma SC. The role of Bax-inhibiting peptide in retinal ganglion cell apoptosis after optic nerve transection. Neurosci Lett 2004; 372:17-21. [PMID: 15531080 DOI: 10.1016/j.neulet.2004.08.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 08/30/2004] [Accepted: 08/31/2004] [Indexed: 01/30/2023]
Abstract
Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in mitochondria-dependent apoptosis. Bax normally resides in the cytosol in a quiescent state. Bax-inhibiting peptide (BIP) is a membrane permeable peptide comprised of five amino acids designed from the Bax-binding domain of Ku70 [M. Sawada, P. Hayes, S. Matsuyama, Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70, Nat. Cell Biol. 5 (2003) 352-357]. It inhibits Bax-mediated translocation of cytochrome c and suppresses mitochondria-dependent apoptosis. BIP was used in order to elucidate its role in preventing retinal ganglion cell (RGC) death from apoptosis after optic nerve transection (ONT) in adult Wistar rats. RGC survival was significantly higher in animals with intravitreal injection of BIP, when compared with control animals. These findings suggest that BIP prevented RGC apoptosis after ONT prompting the suggestion that Bax plays a central role in RGC apoptosis after ONT.
Collapse
Affiliation(s)
- Qiong Qin
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
7
|
Cheung ZH, Chan YM, Siu FKW, Yip HK, Wu W, Leung MCP, So KF. Regulation of caspase activation in axotomized retinal ganglion cells. Mol Cell Neurosci 2004; 25:383-93. [PMID: 15033167 DOI: 10.1016/j.mcn.2003.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 10/22/2003] [Accepted: 11/05/2003] [Indexed: 12/21/2022] Open
Abstract
Transection of the optic nerve initiates massive death of retinal ganglion cells (RGCs). Interestingly, despite the severity of the injury, RGC loss was not observed until several days after axotomy. The mechanisms responsible for this initial lack of RGC death remained unknown. In the current study, immunohistochemical analysis revealed that caspases-3 and -9 activation in the RGCs were not detected until day 3 post-axotomy, coinciding with the onset of axotomy-induced RGC loss. Interestingly, elevated Akt phosphorylation was observed in axotomized retinas during the absence of caspase activation. Inhibiting the increase in Akt phosphorylation by intravitreal injection of wortmannin and LY294002, inhibitors of PI3K, resulted in premature nuclear fragmentation, caspases-3 and -9 activation in the ganglion cell layer. Our findings thus indicate that the PI3K/Akt pathway may serve as an endogenous regulator of caspase activation in axotomized RGCs, thereby, contributing to the late onset of RGC death following axotomy.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Axotomized retinal ganglion cells (RGCs) in adult cats offer a good experimental model to understand mechanisms of RGC deteriorations in ophthalmic diseases such as glaucoma and optic neuritis. Alpha ganglion cells in the cat retina have higher ability to survive axotomy and regenerate their axons than beta and non-alpha or beta (NAB) ganglion cells. By contrast, beta cells suffer from rapid cell death by apoptosis between 3 and 7 days after axotomy. We introduced several methods to rescue the axotomized cat RGCs from apoptosis and regenerate their axons; transplantation of the peripheral nerve (PN), intraocular injections of neurotrophic factors, or an antiapoptotic drug. Apoptosis of beta cells can be prevented with intravitreal injections of BDNF+CNTF+forskolin or a caspase inhibitor. The injection of BDNF+CNTF+forskolin also increases the numbers of regenerated beta and NAB cells, but only slightly enhances axonal regeneration of alpha cells. Electrical stimulation to the cut end of optic nerve is effective for the survival of axotomized RGCs in cats as well as in rats. To recover function of impaired vision in cats, further studies should be directed to achieve the following goals: (1). substantial number of regenerating RGCs, (2). reconstruction of the retino-geniculo-cortical pathway, and (3). reconstruction of retinotopy in the target visual centers.
Collapse
Affiliation(s)
- Masami Watanabe
- Department of Physiology, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan.
| | | |
Collapse
|
9
|
Takao M, Miyoshi T, Watanabe M, Fukuda Y. Changes in visual response properties of cat retinal ganglion cells within two weeks after axotomy. Exp Neurol 2002; 177:171-82. [PMID: 12429220 DOI: 10.1006/exnr.2002.7958] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After optic nerve transection beta cells of cat retinal ganglion cells (RGCs) suffer from rapid cell death from 3 to 7 days, whereas alpha cells gradual cell death until 14 days. Here we report electrophysiological properties of Y- (morphological alpha) and X- (morphological beta) cells at 5 and 14 days after axotomy in comparison with those of intact Y- and X-cells. Most of the axotomized RGCs revealed characteristic visual response properties that enable us to classify them into Y- or X-cells. Physiological sampling ratio of X-cells sharply decreased from day 5 to 14 after axotomy, corresponding to the previous morphological results. As compared with intact RGCs, axotomized RGCs of both Y- and X-type revealed the following abnormalities: smaller receptive field centers, weaker visual responses and lower spontaneous activities. Intracellular injections of Lucifer yellow into axotomized and intact RGCs at eccentricities 0-6 mm from the area centralis revealed no sign of shrinkage in dendritic field size of either alpha or beta cells on day 5 and day 14 after axotomy, revealing that observed smaller receptive field centers of axotomized RGCs on day 5 were not due to the change of dendritic field sizes. These results suggest that the major events occurring shortly after axotomy are significant loss of synaptic inputs from afferent neurons in the retina and/or changes of membrane properties of axotomized RGCs. These events can also explain lower spontaneous activities and weaker visual responses of axotomized RGCs.
Collapse
Affiliation(s)
- Motoharu Takao
- Department of Physiology and Biosignaling, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | | | | | | |
Collapse
|
10
|
Nakazawa T, Tomita H, Yamaguchi K, Sato Y, Shimura M, Kuwahara S, Tamai M. Neuroprotective effect of nipradilol on axotomized rat retinal ganglion cells. Curr Eye Res 2002; 24:114-22. [PMID: 12187483 DOI: 10.1076/ceyr.24.2.114.8162] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To determine whether nipradilol, a new anti-glaucoma drug, can protect retinal ganglion cells (RGCs) from secondary cell death caused by transection of the optic nerve (ON). METHODS The ON was transected 0.7 mm from its exit from the eye in Sprague Dawley rats. Nipradilol (1 x 10(-8) - 10(-3) M), timolol, prazosin, or sodium nitroprusside (SNP) (1 x 10(-6) - 10(-4) M) was injected intravitreally fifteen-minutes before the ON transection. Control eyes received the same amount of phosphate buffered (PB). The RGCs were labeled retrogradely by placing gelfoam soaked in fluoro-gold (FG) on the stump of ON. RGCs density was determined by counting the FG-labeled RGCs in flat-mounted retinas 3 to 14 days post-transection. To determine whether the neuroprotective action of nipradilol was due to its NO-donor property, carboxy-PTIO, a NO-scavenger, or KT5832, a protein kinase G inhibitor, was injected with the nipradilol. RESULTS After ON transection, the number of surviving RGCs after intravitreal injection of 1 x 10(-4) M nipradilol was significantly higher than that following PB injection. This protective activity was dose-dependent. Neither timolol nor prazosin had a neuroprotective effect but SNP protected RGCs in a dose-dependent manner. Carboxy-PTIO and KT5832 decreased the neuroprotective effect of nipradilol. CONCLUSIONS These results indicate that nipradilol has a possibility of neuroprotective effect on axotomized RGCs, and the effect depended mainly on its NO-donor property.
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Ophthalmology, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Takano M, Horie H, Iijima Y, Dezawa M, Sawada H, Ishikawa Y. Brain-derived neurotrophic factor enhances neurite regeneration from retinal ganglion cells in aged human retina in vitro. Exp Eye Res 2002; 74:319-23. [PMID: 11950242 DOI: 10.1006/exer.2001.1118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the capability of neurite regeneration from retinal ganglion cells (RGCs) in an adult human retina and to evaluate the effect of neurotrophin on the neurite regeneration, an in vitro model for retinal explants was developed. A human retina was obtained from a 70 year old patient with retrobulbar carcinoma. The retina was excised and the retinal explants were cultured in serum-free medium with or without brain-derived neurotrophic factor. The capability of neurite regeneration was evaluated by counting the numbers of outgrowing neurites outside the retinal explants. In culture without brain-derived neurotrophic factor (control), there was no neurite outgrowth from the retinal explants after 2 days. And at 3 days in culture, a small number of outgrowing neurites were first observed outside the retinal explants. In contrast, within 24 hr in culture with brain-derived neurotrophic factor, there were a considerable number of elongating neurites with spread growth cones from the retinal explants. Immunohistochemical analysis revealed that these neurites were derived from RGCs. The addition of brain-derived neurotrophic factor increased the number of outgrowing neurites approximately 10-fold compared to that of the control at 3 days in culture. The enhancement of neurite regeneration induced by brain-derived neurotrophic factor continued for longer than 1 week in culture. In conclusion, an aged human retina can regenerate neurites from RGCs in vitro and brain-derived neurotrophic factor significantly promotes the regeneration.
Collapse
|
12
|
Phokeo V, Ball AK. Transection of dysmyelinated optic nerve axons in adult rats lacking myelin basic protein. Neuroreport 2000; 11:3375-9. [PMID: 11059905 DOI: 10.1097/00001756-200010200-00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Injury to myelin or oligodendrocytes may manifest as dysmyelinating or demyelinating conditions of the CNS. Previous studies using dysmyelinated animal models (myelin basic protein mutants) suggest possible axonal dysfunction with complete loss of myelin. In this present study, we evaluated retinal ganglion cell survival after axotomy in MBP mutants to determine if prolonged dysmyelination of CNS axons exerted a detrimental effect on neuronal survival. We demonstrated that the survival of retinal ganglion cells with dysmyelinated axons is identical to retinal ganglion cells with myelinated axons after survival times up to 180 days. In myelin diseases where axon transection is a consistent consequence of demyelination resulting in progressive neurological deterioration, the absence of myelin does not accelerate neuronal death.
Collapse
Affiliation(s)
- V Phokeo
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | | |
Collapse
|
13
|
Abstract
In a relatively short period of time covering the last 2 decades, regeneration of retinofugal axons has become one of most prominent experimental models in restorative neurobiology. There is now a significant knowledge both on the mechanisms governing retinal ganglion cell responses to transection of the optic nerve, and the subsequent cell-cell interactions accumulating in death of the neurons. In addition, retinofugal axons served as an excellent model to examine whether, and to conclude that these axons have remarkable abilities for re-growth. This last issue was of invaluable importance, because axons could regenerate in vivo, into peripheral nerve grafts, and last but not least within the white matter of the cut optic nerve. As it stands to date, the extremely complex aspects of axonal regeneration will probably be understood within the retinofugal pathway. Final elucidation of this delicate system will essentially lead to some revision of our knowledge concerning neurotraumatology and CNS-repair.
Collapse
Affiliation(s)
- P Heiduschka
- Department of Experimental Ophthalmology, University of Münster Eye Hospital, Domagkstrasse 15, 48149 Münster, Germany
| | | |
Collapse
|
14
|
Takano M, Sango K, Horie H, Sato M, Iijima Y, Ohno S, Inoue S, Ishikawa Y. Diabetes alters neurite regeneration from mouse retinal explants in culture. Neurosci Lett 1999; 275:175-8. [PMID: 10580703 DOI: 10.1016/s0304-3940(99)00768-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We examined the effect of experimental diabetes on neurite regeneration from adult mouse retinal explants cultured in the presence of different concentrations of glucose. The numbers of regenerating neurites at 3, 6 and 10 days in culture at normal glucose concentration (7 mM) were significantly smaller in streptozotocin-induced diabetic C57BL/6 mice than in normal control mice. In contrast, treatment of retinal explants with high glucose concentration (57 mM) significantly diminished the number of regenerating neurites in the control mice, but not in the diabetic mice. These results suggest that retina in diabetic mice has impaired capability of neurite regeneration in a normal glucose environment, but is adaptable to a high glucose environment in vitro.
Collapse
Affiliation(s)
- M Takano
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dybowski JA, Heacock AM, Agranoff BW. A vulnerable period of colchicine toxicity during goldfish optic nerve regeneration. Brain Res 1999; 842:62-72. [PMID: 10526096 DOI: 10.1016/s0006-8993(99)01810-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of intraocular (i.o.) administration of the alkaloid colchicine on visual recovery following axotomy of the goldfish optic nerve were investigated. Under the experimental conditions used, control goldfish recovered vision, measured behaviorally, within 5-7 weeks of retro-orbital optic nerve crush. Fish injected i. o. with 0.1 microg of colchicine within 3 days of optic nerve crush (post-crush; PC) recovered vision after some delay relative to control fish, while injection with colchicine between 7 and 14 days PC produced a much more profound inhibition of recovery of vision, in most cases a complete block for the duration of the study (98 days). Further evidence for a delayed susceptibility of the regenerating optic nerve to colchicine following crush was reflected in a suppression of neurite outgrowth normally seen in explanted retinal tissue taken from PC goldfish. In addition, retrograde transport of the fluorescent dye 4-(4-didecylaminostyryl)-N-methylpyridinium iodide from the optic tectum to the retina as a measure of axonal continuity revealed substantially less labeling following i.o. administration of colchicine 1 week PC when compared to retinas from fish receiving colchicine at the time of optic nerve crush. Histological sections of the retina showed no evidence of residual retinal damage resulting from the colchicine injections or from interactions of axotomy and the drug administration. These results indicate a period of increased vulnerability of the regenerating visual system to the toxic effects of i.o. administered colchicine, beginning 3-5 days PC, and remaining until regenerating optic nerve fibers have begun to reach the tectum. While colchicine has many known effects on nerve function, it is proposed that the delayed susceptibility to disruption of regeneration observed in these experiments is largely, if not entirely, attributable to a colchicine-induced accumulation of tubulin heterodimers, which are known to block microtubule assembly and to participate in a feedback inhibition of tubulin synthesis. Thus, it is during the maximal induction of tubulin synthesis and of microtubule formation which normally occurs several days following axotomy that colchicine has its greatest effect. The results suggest that colchicine may be especially neurotoxic during neural development and regeneration.
Collapse
Affiliation(s)
- J A Dybowski
- Toxicology Program, Department of Environmental and Industrial Health, University of Michigan, Ann Arbor, MI 48104-1687, USA
| | | | | |
Collapse
|
16
|
Abstract
Retinal ganglion cells (RGCs) and their projections in the optic nerve offer a convenient model to study survival and regeneration of mammalian central nervous system (CNS) nerve cells following injury. Possible factors affecting the death of RGCs following axotomy and various approaches to rescue the axotomized RGCs are discussed. In addition, two main strategies currently used to enhance axonal regeneration of damaged RGCs are described. The first focuses on overcoming the unfavorable extrinsic CNS environment and the second concentrates on upregulating the intrinsic growth potential of RGCs. Thus, the failure or success of RGC axonal regrowth after injury depends on the complicated interplay between the extrinsic and intrinsic factors.
Collapse
Affiliation(s)
- K F So
- Department of Anatomy, Faculty of Medicine, University of Hong Kong, China.
| | | |
Collapse
|
17
|
Shibayama M, Hattori S, Himes B, Murray M, Tessler A. Neurotrophin-3 prevents death of axotomized Clarke's nucleus neurons in adult rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980105)390:1<102::aid-cne9>3.0.co;2-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Watanabe M, Sawai H, Fukuda Y. Number and dendritic morphology of retinal ganglion cells that survived after axotomy in adult cats. JOURNAL OF NEUROBIOLOGY 1995; 27:189-203. [PMID: 7658200 DOI: 10.1002/neu.480270206] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinal ganglion cells (RGCs) of adult cats were labeled by injection of diI into the proximal stump of completely transected optic nerves. Approximately 2% to 5% of the RGC population appeared viable 2 months after these axotomies, based on diI retention. The morphological type and dendritic arbor of these surviving RGCs were examined after intracellular injections of Lucifer Yellow into diI-labeled RGCs. Postaxotomy survival rate was much higher for alpha-like cells than for beta-like cells. However, in one of four retinas examined, a large number of RGCs seemed to survive axotomy, and among these, beta cells survived at an unusually high rate. Dendritic arbors of surviving RGCs were also examined after intracellular injection of horseradish peroxidase. Some dendrites of these RGCs lacked branches and were thin in caliber. Other dendrites displayed many spiny processes and bulbous swellings. Essentially, these results confirm the previous suggestion that alpha cells survive axotomy longer than beta cells. The ability of alpha cells to regenerate axons may thus be attributable to their relatively high resistance to axotomy. The atypical dendritic profiles seen after optic nerve transection may reflect either degeneration or regrowth of dendrites.
Collapse
Affiliation(s)
- M Watanabe
- Department of Physiology, Aichi Human Service Center, Japan
| | | | | |
Collapse
|