1
|
Isidro F. Brain aging and Alzheimer's disease, a perspective from non-human primates. Aging (Albany NY) 2024; 16:13145-13171. [PMID: 39475348 PMCID: PMC11552644 DOI: 10.18632/aging.206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Brain aging is compared between Cercopithecinae (macaques and baboons), non-human Hominidae (chimpanzees, orangutans, and gorillas), and their close relative, humans. β-amyloid deposition in the form of senile plaques (SPs) and cerebral β-amyloid angiopathy (CAA) is a frequent neuropathological change in non-human primate brain aging. SPs are usually diffuse, whereas SPs with dystrophic neurites are rare. Tau pathology, if present, appears later, and it is generally mild or moderate, with rare exceptions in rhesus macaques and chimpanzees. Behavior and cognitive impairment are usually mild or moderate in aged non-human primates. In contrast, human brain aging is characterized by early tau pathology manifested as neurofibrillary tangles (NFTs), composed of paired helical filaments (PHFs), progressing from the entorhinal cortex, hippocampus, temporal cortex, and limbic system to other brain regions. β-amyloid pathology appears decades later, involves the neocortex, and progresses to the paleocortex, diencephalon, brain stem, and cerebellum. SPs with dystrophic neurites containing PHFs and CAA are common. Cognitive impairment and dementia of Alzheimer's type occur in about 1-5% of humans aged 65 and about 25% aged 85. In addition, other proteinopathies, such as limbic-predominant TDP-43 encephalopathy, amygdala-predominant Lewy body disease, and argyrophilic grain disease, primarily affecting the archicortex, paleocortex, and amygdala, are common in aged humans but non-existent in non-human primates. These observations show that human brain aging differs from brain aging in non-human primates, and humans constitute the exception among primates in terms of severity and extent of brain aging damage.
Collapse
Affiliation(s)
- Ferrer Isidro
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Reial Acadèmia de Medicina de Catalunya, Barcelona, Spain
| |
Collapse
|
2
|
Ferrer I. Amyloid-β Pathology Is the Common Nominator Proteinopathy of the Primate Brain Aging. J Alzheimers Dis 2024; 100:S153-S164. [PMID: 39031364 PMCID: PMC11380266 DOI: 10.3233/jad-240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
Senile plaques, mainly diffuse, and cerebral amyloid-β (Aβ) angiopathy are prevalent in the aging brain of non-human primates, from lemurs to non-human Hominidae. Aβ but not hyper-phosphorylated tau (HPtau) pathology is the common nominator proteinopathy of non-human primate brain aging. The abundance of Aβ in the aging primate brain is well tolerated, and the impact on cognitive functions is usually limited to particular tasks. In contrast, human brain aging is characterized by the early appearance of HPtau pathology, mainly forming neurofibrillary tangles, dystrophic neurites of neuritic plaques, and neuropil threads, preceding Aβ deposits by several decades and by its severity progressing from selected nuclei of the brain stem, entorhinal cortex, and hippocampus to the limbic system, neocortex, and other brain regions. Neurofibrillary tangles correlate with cognitive impairment and dementia in advanced cases. Aβ pathology is linked in humans to altered membrane protein and lipid composition, particularly involving lipid rafts. Although similar membrane alterations are unknown in non-human primates, membrane senescence is postulated to cause the activated β-amyloidogenic pathway, and Aβ pathology is the prevailing signature of non-human and human primate brain aging.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Neiworth JJ, Thall ME, Liu S, Leon-Moffly E, Rankin M, LoRusso MA, Thandi S, Garay-Hernandez J. A recognition test in monkeys to differentiate recollection from familiarity memory. Sci Rep 2023; 13:17579. [PMID: 37845334 PMCID: PMC10579227 DOI: 10.1038/s41598-023-44804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Episodic memory is memory for experiences within a specific temporal and spatial context. Episodic memories decline early in Alzheimer's Disease (AD). Recollection of episodic memories can fail with both AD and aging, but familiarity and recollection memory uniquely fail in AD. Finding a means to differentiate specific memory failures in animal models is critical for translational research. Four cotton top tamarins participated in an object recognition test. They were exposed to two unique objects placed in a consistent context for 5 daily sessions. Next a delay of 1 day or 1 week was imposed. Subjects' memory of the objects was tested by replacing one of the familiarized objects with a novel one. The tamarins looked longer at the novel object after both delays, an indication of remembering the familiar object. In other tests, the test pair was relocated to a new location or presented at a different time of day. With context changes, tamarins showed greater interest in the novel object after a 1-week delay but not after a 1-day delay. It seems that context changes disrupted their recollection of recent events. But the monkeys showed accurate familiarity memory across context changes with longer delays.
Collapse
|
4
|
Yokoyama M, Kobayashi H, Tatsumi L, Tomita T. Mouse Models of Alzheimer's Disease. Front Mol Neurosci 2022; 15:912995. [PMID: 35799899 PMCID: PMC9254908 DOI: 10.3389/fnmol.2022.912995] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes, eventually leading to dementia. The pathological hallmarks of AD are senile plaques and neurofibrillary tangles, which comprise abnormally aggregated β-amyloid peptide (Aβ) and hyperphosphorylated tau protein. To develop preventive, diagnostic, and therapeutic strategies for AD, it is essential to establish animal models that recapitulate the pathophysiological process of AD. In this review, we will summarize the advantages and limitations of various mouse models of AD, including transgenic, knock-in, and injection models based on Aβ and tau. We will also discuss other mouse models based on neuroinflammation because recent genetic studies have suggested that microglia are crucial in the pathogenesis of AD. Although each mouse model has its advantages and disadvantages, further research on AD pathobiology will lead to the establishment of more accurate mouse models, and accelerate the development of innovative therapeutics.
Collapse
Affiliation(s)
| | | | | | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Freire-Cobo C, Edler MK, Varghese M, Munger E, Laffey J, Raia S, In SS, Wicinski B, Medalla M, Perez SE, Mufson EJ, Erwin JM, Guevara EE, Sherwood CC, Luebke JI, Lacreuse A, Raghanti MA, Hof PR. Comparative neuropathology in aging primates: A perspective. Am J Primatol 2021; 83:e23299. [PMID: 34255875 PMCID: PMC8551009 DOI: 10.1002/ajp.23299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa K Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jessie Laffey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sophia Raia
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena S In
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph M Erwin
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Elaine E Guevara
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mary A Raghanti
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Fiorini M, Bongianni M, Benedetti MD, Monaco S, Zanusso G. Reappraisal of Aβ40 and Aβ42 Peptides Measurements in Cerebrospinal Fluid of Patients with Alzheimer's Disease. J Alzheimers Dis 2019; 66:219-227. [PMID: 30282368 DOI: 10.3233/jad-180616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cerebrospinal fluid (CSF) biomarkers are currently included in the diagnostic criteria for Alzheimer's disease (AD), in particular, decreased concentrations of amyloid-β peptide 1-42 (Aβ42) in the CSF, coupled with increased levels of tau and phosphorylated tau proteins, are supportive of AD diagnosis. To date, the quantification of Aβ42 levels with antibody-dependent immunoassay shows a marked variability among different laboratories and is also affected by different pre-analytical factors, suggesting that part of Aβ42 peptides might be aggregated and thus undetected by antibodies. To bypass an antibody-dependent measurement, we determined the Aβ40 and Aβ42 levels by immunoblot. We analyzed CSF samples from 35 patients with clinical diagnosis of probable AD and from 15 age-matched normal controls; CSF Aβ levels were determined by two different ELISA kits and by immunoblot analysis. Aβ40 levels measured by ELISA were comparable to those obtained by immunoblot, whereas CSF concentrations of Aβ42 measured by ELISA were significantly lower compared to values obtained by immunoblot quantification. Biochemical analysis, following 1D- and 2D-PAGE analysis, showed that the qualitative composition of Aβ peptides in the CSF is similar in AD and controls but different from that of AD brain tissues. Moreover, sedimentation velocity in sucrose gradient of CSF and brain homogenate from AD demonstrated that Aβ42 in CSF is different from Aβ42 in brain in terms of solubility and aggregation state.
Collapse
Affiliation(s)
- Michele Fiorini
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Matilde Bongianni
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Maria Donata Benedetti
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Salvatore Monaco
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Animal models of cerebral amyloid angiopathy. Clin Sci (Lond) 2017; 131:2469-2488. [PMID: 28963121 DOI: 10.1042/cs20170033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023]
Abstract
Cerebral amyloid angiopathy (CAA), due to vascular amyloid β (Aβ) deposition, is a risk factor for intracerebral haemorrhage and dementia. CAA can occur in sporadic or rare hereditary forms, and is almost invariably associated with Alzheimer's disease (AD). Experimental (animal) models are of great interest in studying mechanisms and potential treatments for CAA. Naturally occurring animal models of CAA exist, including cats, dogs and non-human primates, which can be used for longitudinal studies. However, due to ethical considerations and low throughput of these models, other animal models are more favourable for research. In the past two decades, a variety of transgenic mouse models expressing the human Aβ precursor protein (APP) has been developed. Many of these mouse models develop CAA in addition to senile plaques, whereas some of these models were generated specifically to study CAA. In addition, other animal models make use of a second stimulus, such as hypoperfusion or hyperhomocysteinemia (HHcy), to accelerate CAA. In this manuscript, we provide a comprehensive review of existing animal models for CAA, which can aid in understanding the pathophysiology of CAA and explore the response to potential therapies.
Collapse
|
8
|
Youssef SA, Capucchio MT, Rofina JE, Chambers JK, Uchida K, Nakayama H, Head E. Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases. Vet Pathol 2016; 53:327-48. [DOI: 10.1177/0300985815623997] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world’s population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer’s disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson’s disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases.
Collapse
Affiliation(s)
- S. A. Youssef
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - M. T. Capucchio
- Department of Veterinary Sciences, Torino University, Torino, Italy
| | - J. E. Rofina
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J. K. Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K. Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - H. Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - E. Head
- Sanders Brown Center on Aging, Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, UK, USA
| |
Collapse
|
9
|
El Kadmiri N, Slassi I, El Moutawakil B, Nadifi S, Tadevosyan A, Hachem A, Soukri A. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease. ACTA ACUST UNITED AC 2014; 62:333-6. [PMID: 25246025 DOI: 10.1016/j.patbio.2014.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/29/2014] [Indexed: 01/23/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme that catalyzes the sixth step of glycolysis and thus, serves to break down glucose for energy production. Beyond the traditional aerobic metabolism of glucose, recent studies have highlighted additional roles played by GAPDH in non-metabolic processes, such as control of gene expression and redox post-translational modifications. Neuroproteomics have revealed high affinity interactions between GAPDH and Alzheimer's disease-associated proteins, including the β-amyloid, β-amyloid precursor protein and tau. This neuronal protein interaction may lead to impairment of the GAPDH glycolytic function in Alzheimer's disease and may be a forerunner of its participation in apoptosis. The present review examines the crucial implication of GAPDH in neurodegenerative processes and clarifies its role in apoptotic cell death.
Collapse
Affiliation(s)
- N El Kadmiri
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco.
| | - I Slassi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - B El Moutawakil
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - S Nadifi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - A Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - A Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
| | - A Soukri
- Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
10
|
Zhu H, Bhadelia RA, Liu Z, Vu L, Li H, Scott T, Bergethon P, Mwamburi M, Rosenzweig JL, Rosenberg I, Qiu WQ. The association between small vessel infarcts and the activities of amyloid-β peptide degrading proteases in apolipoprotein E4 allele carriers. Angiology 2012; 64:614-20. [PMID: 23076436 DOI: 10.1177/0003319712462125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small vessel (SV) and large vessel (LV) brain infarcts are distinct pathologies. Using a homebound elderly sample, the numbers of either infarct subtypes were similar between those apolipoprotein E4 allele (ApoE4) carriers (n = 80) and noncarriers (n = 243). We found that the higher the number of SV infarcts, but not LV infarcts, a participant had, the higher the activity of substrate V degradation in serum especially among ApoE4 carriers (β = +0.154, SE = 0.031, P < .0001) after adjusting for the confounders. Since substrate V degradation could be mediated by insulin-degrading enzyme (IDE) or/and angiotensin-converting enzyme (ACE), but no relationship was found between SV infarcts and specific ACE activities, blood IDE may be a useful biomarker to distinguish the brain infarct subtypes. Insulin-degrading enzyme in blood may also imply an important biomarker and a pathological event in Alzheimer disease through SV infarcts in the presence of ApoE4.
Collapse
Affiliation(s)
- Haihao Zhu
- 1Department of Pharmacology & Experimental Therapeutics, Boston University Medical Campus, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nishimura M, Nakamura SI, Kimura N, Liu L, Suzuki T, Tooyama I. Age-related modulation of γ-secretase activity in non-human primate brains. J Neurochem 2012; 123:21-8. [DOI: 10.1111/j.1471-4159.2012.07884.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ndung'u M, Härtig W, Wegner F, Mwenda JM, Low RWC, Akinyemi RO, Kalaria RN. Cerebral amyloid β(42) deposits and microvascular pathology in ageing baboons. Neuropathol Appl Neurobiol 2012; 38:487-99. [DOI: 10.1111/j.1365-2990.2011.01246.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm (Vienna) 2011; 119:173-95. [PMID: 22086139 DOI: 10.1007/s00702-011-0731-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/24/2011] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common origin of dementia in the elderly. Although the cause of AD remains unknown, several factors have been identified that appear to play a critical role in the development of this debilitating disorder. In particular, amyloid precursor protein (APP), tau hyperphosphorylation, and the secretase enzymes, have become the focal point of recent research. Over the last two decades, several transgenic and non-transgenic animal models have been developed to elucidate the mechanistic aspects of AD and to validate potential therapeutic targets. Transgenic rodent models over-expressing human β-amyloid precursor protein (β-APP) and mutant forms of tau have become precious tools to study and understand the pathogenesis of AD at the molecular, cellular and behavioural levels, and to test new therapeutic agents. Nevertheless, none of the transgenic models of AD recapitulate fully all of the pathological features of the disease. Octodon degu, a South American rodent has been recently found to spontaneously develop neuropathological signs of AD in old age. This review aims to address the limitations and clinical relevance of transgenic rodent models in AD, and to highlight the potential for O. degu as a natural model for the study of AD neuropathology.
Collapse
|
14
|
Tardif SD, Mansfield KG, Ratnam R, Ross CN, Ziegler TE. The marmoset as a model of aging and age-related diseases. ILAR J 2011; 52:54-65. [PMID: 21411858 PMCID: PMC3775658 DOI: 10.1093/ilar.52.1.54] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate aging model. With an average lifespan of 5 to 7 years and a maximum lifespan of 16½ years, marmosets are the shortest-lived anthropoid primates. They display age-related changes in pathologies that mirror those seen in humans, such as cancer, amyloidosis, diabetes, and chronic renal disease. They also display predictable age-related differences in lean mass, calf circumference, circulating albumin, hemoglobin, and hematocrit. Features of spontaneous sensory and neurodegenerative change--for example, reduced neurogenesis, ß-amyloid deposition in the cerebral cortex, loss of calbindin D(28k) binding, and evidence of presbycusis--appear between the ages of 7 and 10 years. Variation among colonies in the age at which neurodegenerative change occurs suggests the interesting possibility that marmosets could be specifically managed to produce earlier versus later occurrence of degenerative conditions associated with differing rates of damage accumulation. In addition to the established value of the marmoset as a model of age-related neurodegenerative change, this primate can serve as a model of the integrated effects of aging and obesity on metabolic dysfunction, as it displays evidence of such dysfunction associated with high body weight as early as 6 to 8 years of age.
Collapse
Affiliation(s)
- Suzette D Tardif
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM Bldg 2.200.08, San Antonio, TX 78245, USA.
| | | | | | | | | |
Collapse
|
15
|
Härtig W, Goldhammer S, Bauer U, Wegner F, Wirths O, Bayer TA, Grosche J. Concomitant detection of beta-amyloid peptides with N-terminal truncation and different C-terminal endings in cortical plaques from cases with Alzheimer's disease, senile monkeys and triple transgenic mice. J Chem Neuroanat 2010; 40:82-92. [PMID: 20347032 DOI: 10.1016/j.jchemneu.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/26/2022]
Abstract
The disturbed metabolism of beta-amyloid peptides generated from amyloid precursor protein is widely considered as a main factor during the pathogenesis of Alzheimer's disease. A neuropathological hallmark in the brains from cases with Alzheimer's disease are senile plaques mainly composed of hardly soluble beta-amyloid peptides comprising up to 43 amino acids. Age-dependent cortical beta-amyloidosis was also shown in several transgenic mice and old individuals from various mammalian species, e.g., non-human primates. Beta-amyloid(1-42) is believed to be the main component in the core of senile plaques, whereas less hydrophobic beta-amyloid(1-40) predominantly occurs in the outer rim of plaques. Amino-terminally truncated pyroglutamyl-beta-amyloid(pE3-x) was recently found to be a beta-amyloid species of high relevance to the progression of the disease. While a few biochemical studies provided data on the co-occurrence of several beta-amyloid forms, their concomitant histochemical detection is still lacking. Here, we present a novel triple immunofluorescence labelling of amino- and differently carboxy-terminally truncated beta-amyloid peptides in cortical plaques from a case with Alzheimer's disease, senile macaques and baboons, and triple transgenic mice with age-dependent beta-amyloidosis and tau hyperphosphorylation. Additionally, beta-amyloid(pE3-x) and total beta-amyloid were concomitantly detected with beta-amyloid peptides ending with amino acid 40 or 42, respectively. Simultaneous staining of several beta-amyloid species reveals for instance vascular amyloid containing beta-amyloid(pE3-x) in Alzheimer's disease and monkeys, and may contribute to the further elucidation of beta-amyloidosis in neurodegenerative disorders and animal models.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Faculty of Medicine, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Alzheimer-type tau pathology in advanced aged nonhuman primate brains harboring substantial amyloid deposition. Brain Res 2010; 1315:137-49. [DOI: 10.1016/j.brainres.2009.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 11/22/2022]
|
17
|
Cerebral Amyloid-Beta Protein Accumulation with Aging in Cotton-Top Tamarins: A Model of Early Alzheimer's Disease? Rejuvenation Res 2008; 11:321-32. [DOI: 10.1089/rej.2008.0677] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
Ridley RM, Baker HF, Windle CP, Cummings RM. Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm (Vienna) 2005; 113:1243-51. [PMID: 16362635 DOI: 10.1007/s00702-005-0385-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/10/2005] [Indexed: 11/28/2022]
Abstract
Cerebral beta-amyloidosis was found in 16/18 marmosets aged <10 yrs and 8/9 marmosets aged >10 yrs, injected intracerebrally with human or marmoset brain homogenate containing beta-amyloid 1-8 years previously. It was found in only 2/12 marmosets aged <10 yrs and 1/15 marmosets aged >10 yrs, injected with synthetic Abeta-peptides, CSF, or brain tissue which did not contain beta-amyloid. Cerebral beta-amyloidosis was found in 0/11 uninjected marmosets aged <10 yrs and in 5/29 uninjected marmosets aged >10 yrs. The beta-amyloidosis comprised small and large vessel angiopathy and some plaques throughout cortex and was qualitatively similar in injected marmosets and, when present, in uninjected marmosets. Of those injected marmosets which were positive, the amount of beta-amyloidosis was unrelated to age or incubation times but the 3 injected marmosets without beta-amyloidosis had incubation times of <3.5 years. We conclude that beta-amyloid, or associated factors, can initiate or accelerate the process of cerebral amyloidosis in primates.
Collapse
Affiliation(s)
- R M Ridley
- MRC Comparative Cognition Team, Department of Experimental Psychology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
19
|
Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Zheng JB, Seabrook TJ, Louard D, Li D, Selkoe DJ, Palmour RM, Ervin FR. Alzheimer's disease abeta vaccine reduces central nervous system abeta levels in a non-human primate, the Caribbean vervet. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:283-97. [PMID: 15215183 PMCID: PMC1618542 DOI: 10.1016/s0002-9440(10)63296-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid beta (Abeta) protein immunotherapy lowers cerebral Abeta and improves cognition in mouse models of Alzheimer's disease (AD). Here we show that Caribbean vervet monkeys (Chlorocebus aethiops, SK) develop cerebral Abeta plaques with aging and that these deposits are associated with gliosis and neuritic dystrophy. Five aged vervets were immunized with Abeta peptide over 10 months. Plasma and cerebral spinal fluid (CSF) samples were collected periodically from the immunized vervets and five aged controls; one monkey per group expired during the study. By Day 42, immunized animals generated plasma Abeta antibodies that labeled Abeta plaques in human, AD transgenic mouse and vervet brains; bound Abeta1-7; and recognized monomeric and oligomeric Abeta but not full-length amyloid precursor protein nor its C-terminal fragments. Low anti-Abeta titers were detected in CSF. Abetax-40 levels were elevated approximately 2- to 5-fold in plasma and decreased up to 64% in CSF in immunized vervets. Insoluble Abetax-42 was decreased by 66% in brain homogenates of the four immunized animals compared to archival tissues from 13 age-matched control vervets. Abeta42-immunoreactive plaques were detected in frontal cortex in 11 of the 13 control animals, but not in six brain regions examined in each of the four immunized vervets. No T cell response or inflammation was observed. Our study is the first to demonstrate age-related Abeta deposition in the vervet monkey as well as the lowering of cerebral Abeta by Abeta vaccination in a non-human primate. The findings further support Abeta immunotherapy as a potential prevention and treatment of AD.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Center for Neurologic Diseases, HIM 622, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kimura N, Nakamura SI, Honda T, Takashima A, Nakayama H, Ono F, Sakakibara I, Doi K, Kawamura S, Yoshikawa Y. Age-related changes in the localization of presenilin-1 in cynomolgus monkey brain. Brain Res 2001; 922:30-41. [PMID: 11730699 DOI: 10.1016/s0006-8993(01)03146-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Age-related changes in PS-1 localization were examined in the brains of 22 cynomolgus monkeys ranging in age from embryonic day 87 to 35 years. In embryonic monkey brains, anti-PS-1 antibody N12, which recognizes the PS-1 N-terminal fragment (Ntf) and holo protein, stained immature neuronal cells. In juvenile monkeys, N12 stained large pyramidal neurons, cerebral neocortical neurons, and cerebellar Purkinje's cells. Cytoplasmic staining of these cells was granular in appearance. In aged monkeys, N12 stained neurons in all layers of the neocortex. In contrast, regardless of the age of the animals examined, M5, an anti-PS-1 antibody that specifically recognizes only the PS-1 C-terminal fragment (Ctf), stained neurons in all layers of the neocortex and neurons in the cerebellum. M5 also stained neuropil and white matter, and in aged monkeys, M5 stained swollen neurites of mature senile plaques. Age-related changes in PS-1 expression were further examined using Western blot analysis of mitochondrial, myelin, microsomal, nuclear, synaptosomal, and cytosol fractions isolated from 10 monkey brains ranging in age from embryonic day 87 to 32 years. In all brains, Ntf and Ctf were expressed most abundantly in the microsome fraction. The amount of PS-1 in the nuclear fraction dramatically increased with age. We conclude that the transport of PS-1 diminished with age and that PS-1 fragments accumulated in endoplasmic reticulum (ER) associated with the nuclear membrane.
Collapse
Affiliation(s)
- N Kimura
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sapolsky RM, Finch CE. Alzheimer's disease and some speculations about the evolution of its modifiers. Ann N Y Acad Sci 2001; 924:99-103. [PMID: 11193810 DOI: 10.1111/j.1749-6632.2000.tb05567.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we consider the evolution of Alzheimer's-like neuropathology in the aging primate brain. In particular, we examine the evolutionary pressures that have likely selected for the neuroprotective effects of estrogen and of the apolipoprotein E2 and E3 isoforms. We analyze this in the context of the altricial nature of new-born primates, their long period of dependency on competent maternal care, and the requirement of cognitive intactness for such competency.
Collapse
Affiliation(s)
- R M Sapolsky
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
22
|
Kimura N, Nakamura S, Goto N, Narushima E, Hara I, Shichiri S, Saitou K, Nose M, Hayashi T, Kawamura S, Yoshikawa Y. Senile plaques in an aged western lowland gorilla. Exp Anim 2001; 50:77-81. [PMID: 11326427 DOI: 10.1538/expanim.50.77] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Senile plaques (SPs) were found in the cerebral cortex of a 44-year-old Western lowland gorilla (Gorilla gorilla gorilla). All the SPs were obtained as dense assemblies consisting of fibrous materials by silver impregnation, but were not detected by Congo red. More SPs were detected by immunostaining for amyloid beta protein (A beta) and a half of A beta-positive-SPs were also immunoreactive for apolipoprotein E. Moreover, all SPs were immunoreactive for A beta 42 and A beta 43, but not for A beta 40. SPs also did not contain A beta precursor protein-positive structures. These findings suggested that SPs in this case were diffuse plaques. To our knowledge, this is the first report of SPs in the gorilla.
Collapse
Affiliation(s)
- N Kimura
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Finch CE, Sapolsky RM. The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging 1999; 20:407-28. [PMID: 10604433 DOI: 10.1016/s0197-4580(99)00053-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer disease (AD)-like neuropathology increases progressively during aging in most primates, and, in some species, is concurrent with reproductive decline in females and cognitive impairments. We consider how the schedule of AD may have evolved in early humans in relation to the apolipoprotein E (apoE) allele system, which is not found in other primates, and to the increasing duration of postnatal care. The delay of independence and the increasing length of maturation required that the schedule of AD-like neurodegeneration be slowed, otherwise parental caregivers would already have become impaired. We hypothesize that the uniquely human apoE epsilon3 allele evolved from the epsilon4 of primate ancestors during human evolution in relation to the rapid increases of brain size and the emergence of grandmothering. In discussing theses possibilities, we review the diverse bioactivities of apoE, which include involvement in hormone systems. The evolution of menopause is also considered in relation to the protective effect of estrogen on AD.
Collapse
Affiliation(s)
- C E Finch
- Neurogerontology Division, Andrus Gerontology Center and University of Southern California, Los Angeles 90089-0191, USA.
| | | |
Collapse
|
24
|
Nakamura S, Nakayama H, Goto N, Ono F, Sakakibara I, Yoshikawa Y. Histopathological studies of senile plaques and cerebral amyloidosis in cynomolgus monkeys. J Med Primatol 1998; 27:244-52. [PMID: 9926980 DOI: 10.1111/j.1600-0684.1998.tb00244.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Senile plaques (SPs) and cerebral amyloid angiopathy (CAA), pathological hallmarks of Alzheimer's disease, have not been thoroughly investigated histopathologically in nonhuman primates. To determine the onset age and histopathological characteristics of SPs and CAA, we examined the brains of 64 cynomolgus monkeys (Macaca fascicularis) from 2 to 35 years old. Mature (classical and primitive) plaques appeared in 16 out of 25 monkeys that were >20 years old. Moreover, mature plaques were observed more frequently than diffuse plaques and were located in the temporal cortex of the superior or inferior gyri and amygdala. Diffuse plaques in contrast to mature plaques did not show definite tendencies in onset age and distribution. CAA appeared in more than 22-year-old monkeys in 10 out of 16 animals and was frequently observed in capillaries and often found adjoining mature plaques. During immunohistochemical examination, an antiserum for amyloid beta protein (A beta) 1-40 could detect all SPs, whereas a monoclonal antibody for A beta 8-17 could not detect any diffuse plaques and only one third of the primitive plaques. As for CAA, the polyclonal antiserum was more sensitive than the monoclonal antibody. The present study describes the histopathological features of SPs and CAA in old cynomolgus monkeys.
Collapse
Affiliation(s)
- S Nakamura
- Department of Biomedical Science, Faculty of Agriculture, The University of Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Barelli H, Lebeau A, Vizzavona J, Delaere P, Chevallier N, Drouot C, Marambaud P, Ancolio K, Buxbaum JD, Khorkova O, Heroux J, Sahasrabudhe S, Martinez J, Warter JM, Mohr M, Checler F. Characterization of New Polyclonal Antibodies Specific for 40 and 42 Amino Acid-Long Amyloid β Peptides: Their Use to Examine the Cell Biology of Presenilins and the Immunohistochemistry of Sporadic Alzheimer’s Disease and Cerebral Amyloid Angiopathy Cases. Mol Med 1997. [DOI: 10.1007/bf03401708] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Abstract
Cerebral amyloid angiopathy (CAA) is a significant risk factor for hemorrhagic stroke in the elderly, and occurs as a sporadic disorder, as a frequent component of Alzheimer's disease, and in several rare, hereditary conditions. The most common type of amyloid found in the vasculature of the brain is beta-amyloid (A beta), the same peptide that occurs in senile plaques. A paucity of animal models has hindered the experimental analysis of CAA. Several transgenic mouse models of cerebral beta-amyloidosis have now been reported, but only one appears to develop significant cerebrovascular amyloid. However, well-characterized models of naturally occurring CAA, particularly aged dogs and non-human primates, have contributed unique insights into the biology of vascular amyloid in recent years. Some non-human primate species have a predilection for developing CAA; the squirrel monkey (Saimiri sciureus), for example, is particularly likely to manifest beta-amyloid deposition in the cerebral blood vessels with age, whereas the rhesus monkey (Macaca mulatta) develops more abundant parenchymal amyloid. These animals have been used to test in vivo beta-amyloid labeling strategies with monoclonal antibodies and radiolabeled A beta. Species-differences in the predominant site of A beta deposition also can be exploited to evaluate factors that direct amyloid selectively to a particular tissue compartment of the brain. For example, the cysteine protease inhibitor, cystatin C, in squirrel monkeys has an amino acid substitution that is similar to the mutant substitution found in some humans with a hereditary form of cystatin C amyloid angiopathy, possibly explaining the predisposition of squirrel monkeys to CAA. The existing animal models have shown considerable utility in deciphering the pathobiology of CAA, and in testing strategies that could be used to diagnose and treat this disorder in humans.
Collapse
Affiliation(s)
- L C Walker
- Parke-Davis Pharmaceutical Research, Division of Warner-Lambert, Ann Arbor, MI 48105, USA.
| |
Collapse
|
27
|
Härtig W, Brückner G, Schmidt C, Brauer K, Bodewitz G, Turner JD, Bigl V. Co-localization of beta-amyloid peptides, apolipoprotein E and glial markers in senile plaques in the prefrontal cortex of old rhesus monkeys. Brain Res 1997; 751:315-22. [PMID: 9099821 DOI: 10.1016/s0006-8993(96)01423-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Based on the homology of human and monkey amyloid precursor proteins and the derived beta-amyloid peptides (A beta) the investigation of brains from old monkeys might be useful for the understanding of beta-amyloidosis in the aetiology of Alzheimer's disease. In the present study, the prefrontal cortex, which is known to be highly susceptible to the deposition of A beta, was screened for the occurrence of senile plaques in perfused tissue of aged rhesus monkeys (Macaca mulatta). A beta deposits were immunocytochemically detected in five of six macaques aged about 28 years. Differently N-terminal truncated A beta species in the senile plaques were simultaneously detected by a carbocyanine double fluorescence method applying the bright red fluorescent Cy3 and the novel green fluorescent Cy2. In a few cases, immunoreactivity for the shortened fragment containing the amino acids 17-42 (A beta(17-42); p3 fragment with a molecular weight of 3 kDa) was demonstrated in deposits apparently devoid of A beta(8-17). Senile plaques were further characterized by carbocyanine double labelling of A beta and astrocytes, microglia and apolipoprotein E.
Collapse
Affiliation(s)
- W Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Kanemaru K, Iwatsubo T, Ihara Y. Comparable amyloid beta-protein (A beta) 42(43) and A beta 40 deposition in the aged monkey brain. Neurosci Lett 1996; 214:196-8. [PMID: 8878117 DOI: 10.1016/0304-3940(96)12893-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two distinct species of amyloid beta-protein (A beta), A beta 42(43) and A beta 40, are deposited in the brains of patients with Alzheimer's disease and normal aged individuals. A beta 42(43), the long tailed A beta, is the initially and predominantly deposited species in senile plaques. Deposition of A beta is also observed in the aged monkey brains. We investigated the A beta species in the aged monkey brains immunocytochemically using monoclonal antibodies that discriminate between the C-termini of A beta 42(43) and A beta 40. We report here that A beta 40 as well as A beta 42(43) deposit in various types of senile plaques, including diffuse plaques of the aged monkey brain and that the ratio of A beta 40 to A beta 42(43) is higher compared with that in human brain.
Collapse
Affiliation(s)
- K Kanemaru
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Japan
| | | | | |
Collapse
|
29
|
Nakamura S, Kiatipattanasakul W, Nakayama H, Ono F, Sakakibara I, Yoshikawa Y, Goto N, Doi K. Immunohistochemical characteristics of the constituents of senile plaques and amyloid angiopathy in aged cynomolgus monkeys. J Med Primatol 1996; 25:294-300. [PMID: 8906609 DOI: 10.1111/j.1600-0684.1996.tb00213.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we immunohistochemically examined the several constituents of senile plaques (SPs) and cerebral amyloid angiopathy (CAA) in aged cynomolgus monkeys. Apolipoprotein E (apoE) deposited in all mature plaques and CAA, and in half of the diffuse plaques. Alpha-1-antichymotripsin (alpha ACT) deposited in half of the mature plaques and in one third of the CAA. Amyloid precursor protein (APP), ubiquitin (Ub), and microtubule-associated protein-2 (MAP-2) accumulated in the swollen neurites of mature plaques. Glial fibrillary acidic protein (GFAP) was detected in the astrocytes and their processes surrounding the mature plaques. Tau was detected in neither the SPs nor CAA. Therefore, mature plaques involved extracellular A beta, apoE, and alpha ACT, and also astrocytes and swollen neurites. However, diffuse plaques involved only extracellular A beta and apoE. Since these features, except for tau, were consistent with those in humans, this animal model will be useful for studying the pathogenesis of cerebral amyloid deposition.
Collapse
Affiliation(s)
- S Nakamura
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|