1
|
Mangano N, Torpey A, Devitt C, Wen GA, Doh C, Gupta A. Closed-Loop Spinal Cord Stimulation in Chronic Pain Management: Mechanisms, Clinical Evidence, and Emerging Perspectives. Biomedicines 2025; 13:1091. [PMID: 40426918 PMCID: PMC12108722 DOI: 10.3390/biomedicines13051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Chronic pain remains a major clinical challenge, which is often resistant to conventional treatments. Spinal cord stimulation has been used for decades to manage refractory pain, traditionally relying on open-loop systems with fixed-output stimulation. However, these systems fail to account for physiological variability, leading to inconsistent pain relief. Closed-loop spinal cord stimulation represents a significant advancement by utilizing evoked compound action potentials to continuously modulate stimulation intensity in real-time, ensuring more stable and effective pain management. Methods: A comprehensive literature review was conducted using PubMed and ClinicalTrials.gov to identify and synthesize relevant published and ongoing studies with a focus on open-loop spinal cord stimulation for managing lower back pain. Results: Clinical trials, including the Avalon and Evoke studies, have demonstrated that closed-loop spinal cord stimulation provides superior pain relief, functional improvement, and reduced opioid dependence compared to traditional open-loop systems. Patients receiving closed-loop stimulation reported significantly higher rates of sustained pain reduction, improved quality of life, and fewer complications related to overstimulation. Emerging studies suggest its potential for conditions beyond back pain, such as neuropathic pain, cancer-related pain, and Raynaud's phenomenon. Furthermore, cost-effectiveness analyses indicate that closed-loop spinal cord stimulation is a more economically viable treatment option compared to conventional medical management and open-loop systems. Conclusions: Closed-loop spinal cord stimulation represents a transformative development in neuromodulation, offering personalized and adaptive pain management that is distinct from open-loop spinal cord stimulation. Further research is warranted to explore its long-term durability, broader applications, and integration with emerging technologies in pain management.
Collapse
Affiliation(s)
- Nicholas Mangano
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA
| | - Andrew Torpey
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA
| | - Catherine Devitt
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA
| | - George A. Wen
- Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA
| | - Christopher Doh
- Department of Anesthesiology, Division of Chronic Pain, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA
| | - Abhishek Gupta
- Department of Anesthesiology, Division of Chronic Pain, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, New York, NY 11794, USA
| |
Collapse
|
2
|
Bayerl S, Paz-Solis J, Matis G, Rigoard P, Kallewaard JW, Canos-Verdecho MA, Vesper J, Llopis JE, Kyriakopoulos G, Gulve A, Raoul S, Papa A, Love-Jones S, Williams A. Two-Year Outcomes Using Fast-Acting, Sub-Perception Therapy for Spinal Cord Stimulation: A European, Real-World, Multicenter Experience. J Clin Med 2024; 13:6999. [PMID: 39598142 PMCID: PMC11595255 DOI: 10.3390/jcm13226999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Over the last 20 years, spinal cord stimulation (SCS) has seen the development of various paresthesia-free paradigms. Recently, a novel modality has emerged (Fast-Acting Sub-perception Therapy, FAST) that engages the surrounding inhibition mechanism of action. We evaluated long-term, real-world outcomes of preferential FAST-SCS use in patients with chronic pain. Methods: In this multi-center, observational, consecutive case series, medical chart data from chronic pain patients preferentially using FAST-SCS (no exclusions) were retrospectively reviewed. Results: Data from 167 patients in 13 European centers were analyzed; 74% of patients suffered from persistent spine pain syndrome type 2 and 87% presented with low back and/or leg pain. At the last follow-up (mean 1.6 years), the numerical rating scale (NRS) overall pain score decreased by 5.1 ± 2.5 points versus baseline, from 8.0 ± 1.2 to 2.9 ± 2.2 (n = 167, p < 0.0001). 87% of patients reported ≥50% pain relief, and 55% were "high responders" with overall NRS pain scores ≤2/10. At the last follow-up, functional disability improved significantly (the Oswestry Disability Index reduced by 29.2 ± 21.5 points, n = 65, p < 0.0001) and patients had a significant gain in quality of life (EQ-5D-5L visual analog scale increased by 52.0 ± 26.9 points, n = 86, p < 0.0001). Results at the 2-year follow-up showed a sustained, substantial reduction in pain; 67% of patients were high responders and the NRS overall pain score decreased by 5.6 ± 2.4 versus baseline (n = 52, p < 0.0001). Conclusions: Our real-world outcomes suggest that in patients with chronic low back and/or leg pain, FAST-SCS therapy provided durable and profound pain relief and led to significant improvements in disability and quality of life.
Collapse
Affiliation(s)
- Simon Bayerl
- Inter Neuro Berlin, 10629 Berlin, Germany
- Department of Neurosurgery, Charite University Hospital, 10117 Berlin, Germany
| | - Jose Paz-Solis
- Department of Neurosurgery, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Georgios Matis
- Department of Stereotactic and Functional Neurosurgery, Uniklinik Köln, 50937 Köln, Germany;
| | - Philippe Rigoard
- Department of Neuro-Spine and Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France
| | - Jan Willem Kallewaard
- Department of Anesthesiology and Pain Management, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - M. Angeles Canos-Verdecho
- Department of Anesthesiology and Pain Management, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Universitaetsklinikum Heinrich-Heine, 40225 Düsseldorf, Germany
| | - Jose Emilio Llopis
- Department of Anesthesiology and Pain Management, Hospital de la Ribera, 46600 Valencia, Spain
| | | | - Ashish Gulve
- Department of Anesthesiology and Pain Management, James Cook University Hospital, Middlesbrough TS4 3BW, UK
| | - Sylvie Raoul
- Department of Neurosurgery, Centre Hospitalier Universitaire Laennec, 44800 Nantes, France
| | - Alfonso Papa
- Department of Anesthesiology and Pain Management, A.O. Dei Colli -V. Monaldi Hospital, 80131 Napoli, Italy
| | - Sarah Love-Jones
- Anesthesiology, Pain Management and Neurosurgery, Southmead Hospital, Bristol BS10 5NB, UK
| | - Adam Williams
- Anesthesiology, Pain Management and Neurosurgery, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
3
|
Wang D, Yeop Lee K, Lee D, Kagan ZB, Bradley K. 10 kHz spinal cord stimulation improves metrics of spinal sensory processing in a male STZ rat model of diabetes. Neurosci Lett 2024; 842:137990. [PMID: 39278460 DOI: 10.1016/j.neulet.2024.137990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
To explore why clinical 10 kHz spinal cord stimulation (10 kHz SCS) might improve neurological function in a model of painful diabetic neuropathy (PDN), the short-term behavioral, electrophysiological, and histological effects of 10 kHz SCS were studied using adult male streptozotocin (STZ)-induced diabetic Sprague-Dawley rats. Four testing groups were established: Naïve controls (N = 8), STZ controls (N = 7), STZ+Sham SCS (N = 9), and STZ+10 kHz SCS (N = 11). After intraperitoneal injection (60 mg/kg) of STZ caused the rats to become hyperglycemic, SCS electrodes were implanted in the dorsal epidural space over the L5-L6 spinal segments in the STZ+Sham SCS and STZ+10 kHz SCS groups and were stimulated for 14 days. The von Frey filament paw withdrawal threshold was measured weekly. At termination, animals were anesthetized and the electrophysiologic response of dorsal horn neurons (receptive field size, vibration, radiant warmth) of the ipsilateral foot was measured. Tissue from the plantar paw surface was obtained post-euthanization for intraepidermal nerve fiber density measurements. In comparison to other control groups, while no significant effect of 10 kHz SCS on peripheral intraepidermal nerve fiber density was observed, 10 kHz SCS 'normalized' the central neural response to vibration, receptive field, and paw withdrawal threshold, and elevated the neural response to tissue recovery from warm stimuli. These results suggest that short-term, low intensity 10 kHz SCS operates in the spinal cord to ameliorate compromised sensory processing, and may compensate for reduced peripheral sensory functionality from chronic hyperglycemia, thereby treating a broader spectrum of the sensory symptoms in diabetic neuropathy.
Collapse
Affiliation(s)
- Dong Wang
- Nevro Corp, 1800 Bridge Pkwy, Redwood City, CA 94065, USA.
| | - Kwan Yeop Lee
- Nevro Corp, 1800 Bridge Pkwy, Redwood City, CA 94065, USA.
| | - Dongchul Lee
- Nevro Corp, 1800 Bridge Pkwy, Redwood City, CA 94065, USA.
| | | | - Kerry Bradley
- Nevro Corp, 1800 Bridge Pkwy, Redwood City, CA 94065, USA.
| |
Collapse
|
4
|
Halász L, Sajonz BEA, Miklós G, van Elswijk G, Hagh Gooie S, Várkuti B, Tamás G, Coenen VA, Erōss L. Predictive modeling of sensory responses in deep brain stimulation. Front Neurol 2024; 15:1467307. [PMID: 39410997 PMCID: PMC11473379 DOI: 10.3389/fneur.2024.1467307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Although stimulation-induced sensations are typically considered undesirable side effects in clinical DBS therapy, there are emerging scenarios, such as computer-brain interface applications, where these sensations may be intentionally created. The selection of stimulation parameters, whether to avoid or induce sensations, is a challenging task due to the vast parameter space involved. This study aims to streamline DBS parameter selection by employing a machine learning model to predict the occurrence and somatic location of paresthesias in response to thalamic DBS. Methods We used a dataset comprising 3,359 paresthetic sensations collected from 18 thalamic DBS leads from 10 individuals in two clinical centers. For each stimulation, we modeled the Volume of Tissue Activation (VTA). We then used the stimulation parameters and the VTA information to train a machine learning model to predict the occurrence of sensations and their corresponding somatic areas. Results Our results show fair to substantial agreement with ground truth in predicting the presence and somatic location of DBS-evoked paresthesias, with Kappa values ranging from 0.31 to 0.72. We observed comparable performance in predicting the presence of paresthesias for both seen and unseen cases (Kappa 0.72 vs. 0.60). However, Kappa agreement for predicting specific somatic locations was significantly lower for unseen cases (0.53 vs. 0.31). Conclusion The results suggest that machine learning can potentially be used to optimize DBS parameter selection, leading to faster and more efficient postoperative management. Outcome predictions may be used to guide clinical DBS programming or tuning of DBS based computer-brain interfaces.
Collapse
Affiliation(s)
- László Halász
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Albert Szent-Györgyi Medical School, Doctoral School of Clinical Medicine, Clinical and Experimental Research for Reconstructive and Organ-Sparing Surgery, University of Szeged, Szeged, Hungary
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University and Medical Faculty of Freiburg University, Freiburg, Germany
| | - Gabriella Miklós
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- CereGate GmbH, München, Germany
| | | | | | | | - Gertrúd Tamás
- Department of Neurology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University and Medical Faculty of Freiburg University, Freiburg, Germany
- Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| | - Loránd Erōss
- Institute of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Hasoon J, Vu PD, Mousa B, Markaryan AR, Sarwary ZB, Pinkhasova D, Chen GH, Gul F, Robinson CL, Simopoulos TT, Gill J, Viswanath O. Device-Related Complications Associated with Cylindrical Lead Spinal Cord Stimulator Implants: A Comprehensive Review. Curr Pain Headache Rep 2024; 28:941-947. [PMID: 38850491 DOI: 10.1007/s11916-024-01280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE OF REVIEW Spinal cord stimulation (SCS) is an increasingly utilized therapy for the treatment of neuropathic pain conditions. Though minimally invasive and reversable, there are several important device-related complications that physicians should be aware of before offering this therapy to patients. The aim of this review is to synthesize recent studies in device-related SCS complications pertaining to cylindrical lead implantation and to discuss etiologies, symptoms and presentations, diagnostic evaluation, clinical implications, and treatment options. RECENT FINDINGS Device-related complications are more common than biologic complications. Device-related complications covered in this review include lead migration, lead fracture, lead disconnection, generator failure, loss of charge, generator flipping, hardware related pain, and paresthesia intolerance. The use of SCS continues to be an effective option for neuropathic pain conditions. Consideration of complications prior to moving forward with SCS trials and implantation is a vital part of patient management and device selection. Knowledge of these complications can provide physicians and other healthcare professionals the ability to maximize patient outcomes.
Collapse
Affiliation(s)
- Jamal Hasoon
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA.
| | - Peter D Vu
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Bakir Mousa
- University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | | | | | - Grant H Chen
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Farah Gul
- Department of Internal Medicine, Khyber Medical College, Peshawar, Pakistan
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas T Simopoulos
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jatinder Gill
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Creighton University School of Medicine, Phoenix, AZ, USA
| |
Collapse
|
6
|
Deer TR, Russo M, Grider JS, Sayed D, Lamer TJ, Dickerson DM, Hagedorn JM, Petersen EA, Fishman MA, FitzGerald J, Baranidharan G, De Ridder D, Chakravarthy KV, Al-Kaisy A, Hunter CW, Buchser E, Chapman K, Gilligan C, Hayek SM, Thomson S, Strand N, Jameson J, Simopoulos TT, Yang A, De Coster O, Cremaschi F, Christo PJ, Varshney V, Bojanic S, Levy RM. The Neurostimulation Appropriateness Consensus Committee (NACC)®: Recommendations for Spinal Cord Stimulation Long-Term Outcome Optimization and Salvage Therapy. Neuromodulation 2024; 27:951-976. [PMID: 38904643 DOI: 10.1016/j.neurom.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION The International Neuromodulation Society (INS) has recognized a need to establish best practices for optimizing implantable devices and salvage when ideal outcomes are not realized. This group has established the Neurostimulation Appropriateness Consensus Committee (NACC)® to offer guidance on matters needed for both our members and the broader community of those affected by neuromodulation devices. MATERIALS AND METHODS The executive committee of the INS nominated faculty for this NACC® publication on the basis of expertise, publications, and career work on the issue. In addition, the faculty was chosen in consideration of diversity and inclusion of different career paths and demographic categories. Once chosen, the faculty was asked to grade current evidence and along with expert opinion create consensus recommendations to address the lapses in information on this topic. RESULTS The NACC® group established informative and authoritative recommendations on the salvage and optimization of care for those with indwelling devices. The recommendations are based on evidence and expert opinion and will be expected to evolve as new data are generated for each topic. CONCLUSIONS NACC® guidance should be considered for any patient with less-than-optimal outcomes with a stimulation device implanted for treating chronic pain. Consideration should be given to these consensus points to salvage a potentially failed device before explant.
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA.
| | - Marc Russo
- Hunter Pain Specialists, Newcastle, Australia
| | - Jay S Grider
- UKHealthCare Pain Services, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Dawood Sayed
- The University of Kansas Health System, Kansas City, KS, USA
| | | | | | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erika A Petersen
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Ganesan Baranidharan
- Leeds Teaching Hospital National Health Service (NHS) Trust, University of Leeds, Leeds, UK
| | - Dirk De Ridder
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Adnan Al-Kaisy
- Guy's and St Thomas NHS Foundation Trust, The Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Corey W Hunter
- Ainsworth Institute, Ichan School of Medicine, Mt Sinai Hospital, New York, NY, USA
| | | | | | - Chris Gilligan
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Salim M Hayek
- Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Simon Thomson
- Pain & Neuromodulation Consulting Ltd, Nuffield Health Brentwood and The London Clinic, Brentwood, UK; Pain & Neuromodulation Centre, Mid & South Essex University NHS Hospitals, Basildon, UK
| | - Natalie Strand
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Thomas T Simopoulos
- Arnold Warfield Pain Management Center, Harvard Medical School, Boston, MA, USA
| | - Ajax Yang
- Spine and Pain Consultant, PLLC, Staten Island, NY, USA
| | | | - Fabián Cremaschi
- Department of Neurosciences, National University of Cuyo, Mendoza, Argentina
| | - Paul J Christo
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishal Varshney
- Providence Healthcare, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stana Bojanic
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| |
Collapse
|
7
|
Ho JS, Poon C, North R, Grubb W, Lempka S, Bikson M. A Visual and Narrative Timeline Review of Spinal Cord Stimulation Technology and US Food and Drug Administration Milestones. Neuromodulation 2024; 27:1020-1025. [PMID: 38970616 DOI: 10.1016/j.neurom.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES The aim of this study was to present key technologic and regulatory milestones in spinal cord stimulation (SCS) for managing chronic pain on a narrative timeline with visual representation, relying on original sources to the extent possible. MATERIALS AND METHODS We identified technical advances in SCS that facilitated and enhanced treatment on the basis of scientific publications and approvals from the United States (US) Food and Drug Administration (FDA). We presented milestones limited to first use in key indications and in the context of new technology validation. We focused primarily on pain management, but other indications (eg, motor disorder in multiple sclerosis) were included when they affected technology development. RESULTS We developed a comprehensive visual and narrative timeline of SCS technology and US FDA milestones. Since its conception in the 1960s, the science and technology of SCS neuromodulation have continuously evolved. Advances span lead design (from paddle-type to percutaneous, and increased electrode contacts) and stimulator technology (from wireless power to internally powered and rechargeable, with miniaturized components, and programmable multichannel devices), with expanding stimulation program flexibility (such as burst and kilohertz stimulation frequencies), as well as usage features (such as remote programming and magnetic resonance imaging conditional compatibility). CONCLUSIONS This timeline represents the evolution of SCS technology alongside expanding FDA-approved indications for use.
Collapse
Affiliation(s)
- Johnson S Ho
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Cynthia Poon
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard North
- The Neuromodulation Foundation, Inc, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Grubb
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Scott Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
8
|
Deer TR, Russo MA, Sayed D, Pope JE, Grider JS, Hagedorn JM, Falowski SM, Al-Kaisy A, Slavin KV, Li S, Poree LR, Eldabe S, Meier K, Lamer TJ, Pilitsis JG, De Andrés J, Perruchoud C, Carayannopoulos AG, Moeschler SM, Hadanny A, Lee E, Varshney VP, Desai MJ, Pahapill P, Osborn J, Bojanic S, Antony A, Piedimonte F, Hayek SM, Levy RM. The Neurostimulation Appropriateness Consensus Committee (NACC)®: Recommendations for the Mitigation of Complications of Neurostimulation. Neuromodulation 2024; 27:977-1007. [PMID: 38878054 DOI: 10.1016/j.neurom.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION The International Neuromodulation Society convened a multispecialty group of physicians based on expertise and international representation to establish evidence-based guidance on the mitigation of neuromodulation complications. This Neurostimulation Appropriateness Consensus Committee (NACC)® project intends to update evidence-based guidance and offer expert opinion that will improve efficacy and safety. MATERIALS AND METHODS Authors were chosen on the basis of their clinical expertise, familiarity with the peer-reviewed literature, research productivity, and contributions to the neuromodulation literature. Section leaders supervised literature searches of MEDLINE, BioMed Central, Current Contents Connect, Embase, International Pharmaceutical Abstracts, Web of Science, Google Scholar, and PubMed from 2017 (when NACC last published guidelines) to October 2023. Identified studies were graded using the United States Preventive Services Task Force criteria for evidence and certainty of net benefit. Recommendations are based on the strength of evidence or consensus when evidence was scant. RESULTS The NACC examined the published literature and established evidence- and consensus-based recommendations to guide best practices. Additional guidance will occur as new evidence is developed in future iterations of this process. CONCLUSIONS The NACC recommends best practices regarding the mitigation of complications associated with neurostimulation to improve safety and efficacy. The evidence- and consensus-based recommendations should be used as a guide to assist decision-making when clinically appropriate.
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA.
| | | | - Dawood Sayed
- The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Jay S Grider
- UKHealthCare Pain Services, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Adnan Al-Kaisy
- Guy's and St. Thomas National Health Service (NHS) Foundation Trust, The Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA; Neurology Section, Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA
| | - Sean Li
- National Spine & Pain Centers, Shrewsbury, NJ, USA
| | - Lawrence R Poree
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA, USA
| | - Sam Eldabe
- The James Cook University Hospital, Middlesbrough, UK
| | - Kaare Meier
- Department of Anesthesiology (OPINord), Aarhus University Hospital, Aarhus, Arhus, Denmark; Department of Neurosurgery (Afd. NK), Aarhus University Hospital, Aarhus, Arhus, Denmark
| | | | | | - Jose De Andrés
- Valencia School of Medicine, Anesthesia Critical Care and Pain Management Department, General University Hospital, Valencia, Spain
| | | | - Alexios G Carayannopoulos
- Department of Physical Medicine and Rehabilitation and Comprehensive Spine Center, Rhode Island Hospital, Providence, RI, USA; Brown University Warren Alpert Medical School (Neurosurgery), Providence, RI, USA
| | - Susan M Moeschler
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Hadanny
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Eric Lee
- Mililani Pain Center, Mililani, HI, USA
| | - Vishal P Varshney
- Anesthesiology and Pain Medicine, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Mehul J Desai
- International Spine, Pain & Performance Center, Virginia Hospital Center, Monument Research Institute, George Washington University School of Medicine, Arlington, VA, USA
| | - Peter Pahapill
- Functional Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Osborn
- St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Stana Bojanic
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ajay Antony
- The Orthopaedic Institute, Gainesville, FL, USA
| | - Fabian Piedimonte
- School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Salim M Hayek
- Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| |
Collapse
|
9
|
Rogers ER, Capogrosso M, Lempka SF. Biophysics of Frequency-Dependent Variation in Paresthesia and Pain Relief during Spinal Cord Stimulation. J Neurosci 2024; 44:e2199232024. [PMID: 38744531 PMCID: PMC11211721 DOI: 10.1523/jneurosci.2199-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
The neurophysiological effects of spinal cord stimulation (SCS) for chronic pain are poorly understood, resulting in inefficient failure-prone programming protocols and inadequate pain relief. Nonetheless, novel stimulation patterns are regularly introduced and adopted clinically. Traditionally, paresthetic sensation is considered necessary for pain relief, although novel paradigms provide analgesia without paresthesia. However, like pain relief, the neurophysiological underpinnings of SCS-induced paresthesia are unknown. Here, we paired biophysical modeling with clinical paresthesia thresholds (of both sexes) to investigate how stimulation frequency affects the neural response to SCS relevant to paresthesia and analgesia. Specifically, we modeled the dorsal column (DC) axonal response, dorsal column nucleus (DCN) synaptic transmission, conduction failure within DC fiber collaterals, and dorsal horn network output. Importantly, we found that high-frequency stimulation reduces DC fiber activation thresholds, which in turn accurately predicts clinical paresthesia perception thresholds. Furthermore, we show that high-frequency SCS produces asynchronous DC fiber spiking and ultimately asynchronous DCN output, offering a plausible biophysical basis for why high-frequency SCS is less comfortable and produces qualitatively different sensation than low-frequency stimulation. Finally, we demonstrate that the model dorsal horn network output is sensitive to SCS-inherent variations in spike timing, which could contribute to heterogeneous pain relief across patients. Importantly, we show that model DC fiber collaterals cannot reliably follow high-frequency stimulation, strongly affecting the network output and typically producing antinociceptive effects at high frequencies. Altogether, these findings clarify how SCS affects the nervous system and provide insight into the biophysics of paresthesia generation and pain relief.
Collapse
Affiliation(s)
- Evan R Rogers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Marco Capogrosso
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
10
|
Wang D, Lee KY, Kagan ZB, Bradley K, Lee D. Frequency-Dependent Neural Modulation of Dorsal Horn Neurons by Kilohertz Spinal Cord Stimulation in Rats. Biomedicines 2024; 12:1346. [PMID: 38927553 PMCID: PMC11201430 DOI: 10.3390/biomedicines12061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Kilohertz high-frequency spinal cord stimulation (kHF-SCS) is a rapidly advancing neuromodulatory technique in the clinical management of chronic pain. However, the precise cellular mechanisms underlying kHF-SCS-induced paresthesia-free pain relief, as well as the neural responses within spinal pain circuits, remain largely unexplored. In this study, using a novel preparation, we investigated the impact of varying kilohertz frequency SCS on dorsal horn neuron activation. Employing calcium imaging on isolated spinal cord slices, we found that extracellular electric fields at kilohertz frequencies (1, 3, 5, 8, and 10 kHz) induce distinct patterns of activation in dorsal horn neurons. Notably, as the frequency of extracellular electric fields increased, there was a clear and significant monotonic escalation in neuronal activity. This phenomenon was observed not only in superficial dorsal horn neurons, but also in those located deeper within the dorsal horn. Our study demonstrates the unique patterns of dorsal horn neuron activation in response to varying kilohertz frequencies of extracellular electric fields, and we contribute to a deeper understanding of how kHF-SCS induces paresthesia-free pain relief. Furthermore, our study highlights the potential for kHF-SCS to modulate sensory information processing within spinal pain circuits. These insights pave the way for future research aimed at optimizing kHF-SCS parameters and refining its therapeutic applications in the clinical management of chronic pain.
Collapse
|
11
|
Bean LL, Goon M, McClure JJ, Aguiar RST, Kato N, DiMarzio M, Pilitsis JG. The Evolution of Surgical Technique in Spinal Cord Stimulation: A Scoping Review. Oper Neurosurg (Hagerstown) 2024; 26:372-380. [PMID: 37976139 DOI: 10.1227/ons.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023] Open
Abstract
Since the advent of spinal cord stimulation (SCS), its operative technique has consistently advanced. We performed a scoping review of the literature regarding SCS operative techniques to highlight key advancements. To review, summarize, and highlight key changes in SCS implantation techniques since their inception. The authors performed a MEDLINE search inclusive of articles from 1967 to June 2023 including human and modeling studies written in English examining the role of trialing, intraoperative neuromonitoring, and surgical adaptations. Using the Rayyan platform, two reviewers performed a blinded title screen. Of the 960 articles, 197 were included in the title screen, 107 were included in the abstract review, and ultimately 69 articles met inclusion criteria. We examined the utility of trialing and found that historical controls showed significant efficacy, whereas recent results are more equivocal. We discuss the significant improvement in outcomes with intraoperative neuromonitoring for asleep SCS placement. We highlight technique improvements that led to significant reductions in infection, lead migration, and inadequate pain relief. Physicians implanting SCS systems for chronic pain management must continually refine their surgical techniques to keep up with this rapidly evolving therapy. In addition, through collaborative efforts of neuromodulators and industry, SCS is safer and more effective for patients suffering from chronic pain.
Collapse
Affiliation(s)
- Lindsay L Bean
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Madison Goon
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Jesse J McClure
- Department of Surgery, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Rodrigo S T Aguiar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Nicholas Kato
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Marisa DiMarzio
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Julie G Pilitsis
- Department of Clinical Neurosciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| |
Collapse
|
12
|
Rogers ER, Lempka SF, Capogrosso M. Does high-frequency stimulation of sensory axons break the causal link between pain relief and paresthesia? Neuron 2024; 112:331-333. [PMID: 38330897 DOI: 10.1016/j.neuron.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Neurostimulation produces unnatural cutaneous sensations with potent analgesic effects in pain syndromes. In this issue of Neuron, Sagalajev et al.1 demonstrate that these sensations are an epiphenomenon and explain how high-frequency stimulation can provide analgesia without these unnecessary sensations.
Collapse
Affiliation(s)
- Evan R Rogers
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Sagalajev B, Zhang T, Abdollahi N, Yousefpour N, Medlock L, Al-Basha D, Ribeiro-da-Silva A, Esteller R, Ratté S, Prescott SA. Absence of paresthesia during high-rate spinal cord stimulation reveals importance of synchrony for sensations evoked by electrical stimulation. Neuron 2024; 112:404-420.e6. [PMID: 37972595 DOI: 10.1016/j.neuron.2023.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Electrically activating mechanoreceptive afferents inhibits pain. However, paresthesia evoked by spinal cord stimulation (SCS) at 40-60 Hz becomes uncomfortable at high pulse amplitudes, limiting SCS "dosage." Kilohertz-frequency SCS produces analgesia without paresthesia and is thought, therefore, not to activate afferent axons. We show that paresthesia is absent not because axons do not spike but because they spike asynchronously. In a pain patient, selectively increasing SCS frequency abolished paresthesia and epidurally recorded evoked compound action potentials (ECAPs). Dependence of ECAP amplitude on SCS frequency was reproduced in pigs, rats, and computer simulations and is explained by overdrive desynchronization: spikes desychronize when axons are stimulated faster than their refractory period. Unlike synchronous spikes, asynchronous spikes fail to produce paresthesia because their transmission to somatosensory cortex is blocked by feedforward inhibition. Our results demonstrate how stimulation frequency impacts synchrony based on axon properties and how synchrony impacts sensation based on circuit properties.
Collapse
Affiliation(s)
- Boriss Sagalajev
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Tianhe Zhang
- Boston Scientific Neuromodulation, Valencia, CA 25155, USA
| | - Nooshin Abdollahi
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Laura Medlock
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dhekra Al-Basha
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
North RB, Sung JH, Matthews LA, Zander HJ, Lempka SF. Postural Changes in Spinal Cord Stimulation Thresholds: Current and Voltage Sources. Neuromodulation 2024; 27:178-182. [PMID: 37804279 DOI: 10.1016/j.neurom.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) thresholds are known to change with body position; however, these changes have not been fully characterized for both "constant-voltage" and "constant-current" pulse generators. This study aimed to evaluate and quantify changes in psychophysical thresholds resulting from postural changes that may affect both conventional paresthesia-based SCS and novel paresthesia-free SCS technologies. MATERIALS AND METHODS We measured perceptual, usage, and discomfort thresholds in four body positions (prone, supine, sitting, standing) in 149 consecutive patients, with temporary lower thoracic percutaneous epidural electrodes placed for treating persistent low back and leg pain. We trialed 119 patients with constant-voltage stimulators and 30 patients with constant-current stimulators. RESULTS Moving from supine to the sitting, standing, or prone positions caused all three thresholds (perceptual, usage, and discomfort) to increase by 22% to 34% for constant-voltage stimulators and by 44% to 82% for constant-current stimulators. Changing from a seated to a supine position caused stimulation to exceed discomfort threshold significantly more often for constant-current (87%) than for constant-voltage (63%) stimulators (p = 0.01). CONCLUSIONS Posture-induced changes in SCS thresholds occurred consistently as patients moved from lying (supine or prone) to upright (standing or sitting) positions. These changes were more pronounced for constant-current than for constant-voltage pulse generators and more often led to stimulation-evoked discomfort. These observations are consistent with postural changes in spinal cord position measured in imaging studies, and with computer model predictions of neural recruitment for these different spinal cord positions. These observations have implications for the design, implantation, and clinical application of spinal cord stimulators, not only for conventional paresthesia-based SCS but also for paresthesia-free SCS.
Collapse
Affiliation(s)
- Richard B North
- Neuromodulation Foundation, Inc, Baltimore, MD; Departments of Neurosurgery, Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Jung H Sung
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liam A Matthews
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI; Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Chalil A, Santyr BG, Abbass M, Lau JC, Staudt MD. Spinal Nerve Root Stimulation for Chronic Pain: A Systematic Review. Neuromodulation 2024; 27:36-46. [PMID: 37642627 DOI: 10.1016/j.neurom.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) has been used as a minimally invasive and effective treatment modality for various chronic pain disorders, with the main target being stimulation of the dorsal columns; however, certain neuropathic pain areas involve dermatomes that are suboptimally covered by SCS. Stimulation of the spinal nerve roots has the advantage of targeting one or several dermatomes at the same time. The aim of this systematic review is to investigate the efficacy of spinal nerve root stimulation (SNRS) for chronic pain disorders. MATERIALS AND METHODS A detailed literature review was performed through the Ovid Embase and MEDLINE data bases in addition to reference searching. Gray literature was included by searching through common search engines using a simplified search strategy. Studies included were focused on adult patients (aged >18 years), diagnosis of chronic pain syndrome (including but not limited to complex regional pain syndrome, persistent spinal pain syndrome, neuropathic pain secondary to trauma or infection, postherpetic pain, and cancer pain). Patients must have undergone SNRS insertion, with ≥six months of documented pain intensity scores on follow-up. RESULTS A total of 40 studies underwent full text review, and 13 articles were included in final analysis. Mean preoperative pain intensity was 8.14 ± 0.74 on the visual analog scale, whereas mean postoperative pain intensity at one year was 3.18 ± 1.44. Of 119 patients, 83 (70%) achieved ≥50% reduction in pain intensity after SNRS, whereas 36 (30%) achieved <50% reduction in pain intensity. Only three studies assessed changes in analgesia medication dose and reported morphine equivalent doses varied by case series. Overall, there was a trend toward a reduction in analgesia medications in the postoperative period. CONCLUSIONS SNRS led to a mean 44% reduction in pain intensity, with a low level of certainty. In addition, there is some evidence to suggest that using SNRS is associated with reduced use of analgesics, including morphine and gabapentin.
Collapse
Affiliation(s)
- Alan Chalil
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Brendan G Santyr
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Jonathan C Lau
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Michael D Staudt
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, USA; Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
16
|
Ege E, Olevson C, D'Souza RS, Moeschler SM, Lamer T, Hagedorn JM. A Bibliometric Analysis of Top-Cited Journal Articles Related to Neuromodulation for Chronic Pain. Neuromodulation 2023; 26:1510-1517. [PMID: 36192282 DOI: 10.1016/j.neurom.2022.08.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Since its foundation in the 1960s, neuromodulation has become an increasingly used treatment option for chronic pain. This bibliometric analysis examines the most cited research in this field with the aim of uncovering existing trends and future directions. MATERIALS AND METHODS Clarivate's Web of Science data base was searched for the top 25 most cited studies focusing on neuromodulation for chronic pain. Various bibliometric parameters were then extracted and analyzed. Randomized controlled trials (RCTs) were compared with non-RCTs. RESULTS The top 25 articles had a mean of 347 citations and 22.2 citations per year, with more recent articles having a higher citation rate. Most were published in the last two decades and predominantly originated from the United States. There were 13 RCTs, which were significantly more recent (p = 0.004) and more cited per year (p = 0.001) than the 12 non-RCTs. Sources included 15 journals with a mean impact factor of 13.896. The most studied modality was spinal cord stimulation with 20 articles (76.9%), followed by intrathecal drug delivery (15.4%), dorsal root ganglion stimulation (3.8%), and peripheral nerve stimulation (3.8%). CONCLUSIONS Analysis of the most cited articles on neuromodulation reveals a focal shift from historical reports to innovative RCTs that have increasingly guided pain practice in the recent years. As novel techniques and technologies continue to develop, high-quality evidence coupled with broadening indications will likely direct further expansion of this field.
Collapse
Affiliation(s)
- Eliana Ege
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Susan M Moeschler
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tim Lamer
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
17
|
Rogers ER, Mirzakhalili E, Lempka SF. Model-based analysis of subthreshold mechanisms of spinal cord stimulation for pain. J Neural Eng 2023; 20:066003. [PMID: 37906966 PMCID: PMC10632558 DOI: 10.1088/1741-2552/ad0858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Objective.Spinal cord stimulation (SCS) is a common treatment for chronic pain. For decades, SCS maximized overlap between stimulation-induced paresthesias and the patient's painful areas. Recently developed SCS paradigms relieve pain at sub-perceptible amplitudes, yet little is known about the neural response to these new waveforms or their analgesic mechanisms of action. Therefore, in this study, we investigated the neural response to multiple forms of paresthesia-free SCS.Approach.We used computational modeling to investigate the neurophysiological effects and the plausibility of commonly proposed mechanisms of three paresthesia-free SCS paradigms: burst, 1 kHz, and 10 kHz SCS. Specifically, in C- and Aβ-fibers, we investigated the effects of different SCS waveforms on spike timing and activation thresholds, as well as how stochastic ion channel gating affects the response of dorsal column axons. Finally, we characterized membrane polarization of superficial dorsal horn neurons.Main results.We found that none of the SCS waveforms activate nor modulate spike timing in C-fibers. Spike timing was modulated in Aβ-fibers only at suprathreshold amplitudes. Ion channel stochasticity had little effect on Aβ-fiber activation thresholds but produced heterogeneous spike timings at suprathreshold amplitudes. Finally, local cells were preferentially polarized in their axon terminals, and the magnitude of this polarization was dependent on cellular morphology and position relative to the stimulation electrodes.Significance.Overall, the mechanisms of action of subparesthetic SCS remain unclear. Our results suggest that no SCS waveforms directly activate C-fibers, and modulation of spike timing is unlikely at subthreshold amplitudes. We conclude that potential subthreshold neuromodulatory effects of SCS on local cells are likely to be presynaptic in nature, as axons are preferentially depolarized during SCS.
Collapse
Affiliation(s)
- Evan R Rogers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Ehsan Mirzakhalili
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
18
|
Mironer YE, Hutcheson JK, Haasis JC, Worobel MA, Sakla ES. Epidural Laterality and Pain Relief With Burst Spinal Cord Stimulation. Neuromodulation 2023; 26:1465-1470. [PMID: 36180323 DOI: 10.1016/j.neurom.2022.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Burst spinal cord stimulation (SCS) can achieve excellent clinical reduction of pain, alongside improvements in function, quality of life, and related outcomes. Good outcomes likely depend on good lead placement, thereby enabling recruitment of the relevant neural targets. Several competing approaches exist for lead implantation, such as the use of single vs bilateral leads and leads lateralized vs placed at midline. The objective of this study was to examine the relationship between paresthesia locations and pain relief with burst SCS in a prospective double-blind crossover design. MATERIALS AND METHODS All participants had bilateral back and leg pain, with more intense pain experienced on one side of the body. A trial SCS system was placed, during which brief intraoperative mapping with conventional stimulation was used to characterize paresthesia locations. Two programs for subperception burst SCS treatment were then applied for two days each, in random order: bilateral paresthesia coverage vs unilateral paresthesia coverage contralateral to the side of the body with more intense pain. Pain ratings (visual analog scale [VAS]) and pain reductions (scaling pain relief [SPR]) were reported for each. RESULTS Of the 30 participants who completed the study, 24 (80%) had good pain relief with at least one program. A baseline VAS score of 8.75 was reduced to 5.98 with contralateral stimulation and to 2.88 with bilateral stimulation; with SPR, this equated to 31.25% and 67.50% improvement, respectively. The incremental benefit of bilateral stimulation over contralateral stimulation was statistically significant (p < 0.001). Of the 24 participants, 87.5% preferred bilateral stimulation, whereas 12.5% preferred unilateral stimulation. The six participants who failed the trial had no preference. DISCUSSION When burst stimulation is delivered to spinal targets that can generate paresthesias contralateral to the side of worst pain, suboptimal therapy is achieved. Thus, attention to laterality and pain coverage is critical for successful therapy, and it may be important to carefully consider lead implantation techniques.
Collapse
Affiliation(s)
| | | | - John C Haasis
- Carolinas Center for Advanced Management of Pain, Greenville, SC, USA
| | - Michael A Worobel
- Carolinas Center for Advanced Management of Pain, Greenville, SC, USA
| | - Emmanuel S Sakla
- Carolinas Center for Advanced Management of Pain, Greenville, SC, USA
| |
Collapse
|
19
|
Fisher LE, Lempka SF. Neurotechnology for Pain. Annu Rev Biomed Eng 2023; 25:387-412. [PMID: 37068766 DOI: 10.1146/annurev-bioeng-111022-121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Neurotechnologies for treating pain rely on electrical stimulation of the central or peripheral nervous system to disrupt or block pain signaling and have been commercialized to treat a variety of pain conditions. While their adoption is accelerating, neurotechnologies are still frequently viewed as a last resort, after many other treatment options have been explored. We review the pain conditions commonly treated with electrical stimulation, as well as the specific neurotechnologies used for treating those conditions. We identify barriers to adoption, including a limited understanding of mechanisms of action, inconsistent efficacy across patients, and challenges related to selectivity of stimulation and off-target side effects. We describe design improvements that have recently been implemented, as well as some cutting-edge technologies that may address the limitations of existing neurotechnologies. Addressing these challenges will accelerate adoption and change neurotechnologies from last-line to first-line treatments for people living with chronic pain.
Collapse
Affiliation(s)
- Lee E Fisher
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, Biointerfaces Institute, and Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
20
|
Shanthanna H, Eldabe S, Provenzano DA, Bouche B, Buchser E, Chadwick R, Doshi TL, Duarte R, Hunt C, Huygen FJPM, Knight J, Kohan L, North R, Rosenow J, Winfree CJ, Narouze S. Evidence-based consensus guidelines on patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain. Reg Anesth Pain Med 2023; 48:273-287. [PMID: 37001888 PMCID: PMC10370290 DOI: 10.1136/rapm-2022-104097] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Spinal cord stimulation (SCS) has demonstrated effectiveness for neuropathic pain. Unfortunately, some patients report inadequate long-term pain relief. Patient selection is emphasized for this therapy; however, the prognostic capabilities and deployment strategies of existing selection techniques, including an SCS trial, have been questioned. After approval by the Board of Directors of the American Society of Regional Anesthesia and Pain Medicine, a steering committee was formed to develop evidence-based guidelines for patient selection and the role of an SCS trial. Representatives of professional organizations with clinical expertize were invited to participate as committee members. A comprehensive literature review was carried out by the steering committee, and the results organized into narrative reports, which were circulated to all the committee members. Individual statements and recommendations within each of seven sections were formulated by the steering committee and circulated to members for voting. We used a modified Delphi method wherein drafts were circulated to each member in a blinded fashion for voting. Comments were incorporated in the subsequent revisions, which were recirculated for voting to achieve consensus. Seven sections with a total of 39 recommendations were approved with 100% consensus from all the members. Sections included definitions and terminology of SCS trial; benefits of SCS trial; screening for psychosocial characteristics; patient perceptions on SCS therapy and the use of trial; other patient predictors of SCS therapy; conduct of SCS trials; and evaluation of SCS trials including minimum criteria for success. Recommendations included that SCS trial should be performed before a definitive SCS implant except in anginal pain (grade B). All patients must be screened with an objective validated instrument for psychosocial factors, and this must include depression (grade B). Despite some limitations, a trial helps patient selection and provides patients with an opportunity to experience the therapy. These recommendations are expected to guide practicing physicians and other stakeholders and should not be mistaken as practice standards. Physicians should continue to make their best judgment based on individual patient considerations and preferences.
Collapse
Affiliation(s)
| | - Sam Eldabe
- James Cook University Hospital, Middlesbrough, UK
| | | | | | - Eric Buchser
- Pain Management and Neuromodulation Centre, EHC, Morges, Switzerland
- Pain, EHC, Morges, Switzerland
| | | | - Tina L Doshi
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rui Duarte
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Christine Hunt
- Anesthesiology - Pain Medicine, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | | | - Judy Knight
- Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| | - Lynn Kohan
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Richard North
- Neurosurgery, Anesthesiology and Critical Care Medicine (ret.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Samer Narouze
- Center for Pain Medicine, Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
21
|
Shanthanna H, Eldabe S, Provenzano DA, Chang Y, Adams D, Kashir I, Goel A, Tian C, Couban RJ, Levit T, Hagedorn JM, Narouze S. Role of patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain: a comprehensive narrative review. Reg Anesth Pain Med 2023; 48:251-272. [PMID: 37001887 DOI: 10.1136/rapm-2022-103820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 04/03/2023]
Abstract
Background/importancePatient selection for spinal cord stimulation (SCS) therapy is crucial and is traditionally performed with clinical selection followed by a screening trial. The factors influencing patient selection and the importance of trialing have not been systematically evaluated.ObjectiveWe report a narrative review conducted to synthesize evidence regarding patient selection and the role of SCS trials.Evidence reviewMedline, EMBASE and Cochrane databases were searched for reports (any design) of SCS in adult patients, from their inception until March 30, 2022. Study selection and data extraction were carried out using DistillerSR. Data were organized into tables and narrative summaries, categorized by study design. Importance of patient variables and trialing was considered by looking at their influence on the long-term therapy success.FindingsAmong 7321 citations, 201 reports consisting of 60 systematic reviews, 36 randomized controlled trials (RCTs), 41 observational studies (OSs), 51 registry-based reports, and 13 case reports on complications during trialing were included. Based on RCTs and OSs, the median trial success rate was 72% and 82%, and therapy success was 65% and 61% at 12 months, respectively. Although several psychological and non-psychological determinants have been investigated, studies do not report a consistent approach to patient selection. Among psychological factors, untreated depression was associated with poor long-term outcomes, but the effect of others was inconsistent. Most RCTs except for chronic angina involved trialing and only one RCT compared patient selection with or without trial. The median (range) trial duration was 10 (0–30) and 7 (0–56) days among RCTs and OSs, respectively.ConclusionsDue to lack of a consistent approach to identify responders for SCS therapy, trialing complements patient selection to exclude patients who do not find the therapy helpful and/or intolerant of the SCS system. However, more rigorous and large studies are necessary to better evaluate its role.
Collapse
Affiliation(s)
| | - Sam Eldabe
- James Cook University Hospital, Middlesbrough, UK
| | | | - Yaping Chang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Adams
- Center for Pain Medicine, Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| | - Imad Kashir
- University of Waterloo, Waterloo, Ontario, Canada
| | - Akash Goel
- Anesthesiology & Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chenchen Tian
- Anesthesiology & Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Tal Levit
- Michael G DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan M Hagedorn
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Samer Narouze
- Center for Pain Medicine, Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
22
|
Lam CM, Latif U, Sack A, Govindan S, Sanderson M, Vu DT, Smith G, Sayed D, Khan T. Advances in Spinal Cord Stimulation. Bioengineering (Basel) 2023; 10:185. [PMID: 36829678 PMCID: PMC9951889 DOI: 10.3390/bioengineering10020185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Neuromodulation, specifically spinal cord stimulation (SCS), has become a staple of chronic pain management for various conditions including failed back syndrome, chronic regional pain syndrome, refractory radiculopathy, and chronic post operative pain. Since its conceptualization, it has undergone several advances to increase safety and convenience for patients and implanting physicians. Current research and efforts are aimed towards novel programming modalities and modifications of existing hardware. Here we review the recent advances and future directions in spinal cord stimulation including a brief review of the history of SCS, SCS waveforms, new materials for SCS electrodes (including artificial skins, new materials, and injectable electrodes), closed loop systems, and neurorestorative devices.
Collapse
Affiliation(s)
- Christopher M. Lam
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Usman Latif
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Andrew Sack
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Susheel Govindan
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Miles Sanderson
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Dan T. Vu
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Gabriella Smith
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Talal Khan
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| |
Collapse
|
23
|
Spinal Cord Stimulation in Chronic Low Back Pain Syndrome: Mechanisms of Modulation, Technical Features and Clinical Application. Healthcare (Basel) 2022; 10:healthcare10101953. [PMID: 36292400 PMCID: PMC9601444 DOI: 10.3390/healthcare10101953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
Chronic low-back pain (CLBP) is a common disease with several negative consequences on the quality of life, work and activity ability and increased costs to the health-care system. When pharmacological, psychological, physical and occupational therapies or surgery fail to reduce CLBP, patients may be a candidate for Spinal Cord Stimulation (SCS). SCS consists of the transcutaneous or surgical implantation of different types of electrodes in the epidural space; electrodes are then connected to an Implanted Pulse Generator (IPG) that generates stimulating currents. Through spinal and supraspinal mechanisms based on the “gate control theory for pain transmission”, SCS reduces symptoms of CLBP in the almost totality of well-selected patients and its effect lasts up to eight years in around 75% of patients. However, the evidence in favor of SCS still remains weak, mainly due to poor trial methodology and design. This narrative review is mainly addressed to those professionals that may encounter patients with CLBP failing conventional treatments. For this reason, we report the mechanisms of pain relief during SCS, the technical features and some clinical considerations about the application of SCS in patients with CLBP.
Collapse
|
24
|
Palackdkharry CS, Wottrich S, Dienes E, Bydon M, Steinmetz MP, Traynelis VC. The leptomeninges as a critical organ for normal CNS development and function: First patient and public involved systematic review of arachnoiditis (chronic meningitis). PLoS One 2022; 17:e0274634. [PMID: 36178925 PMCID: PMC9524710 DOI: 10.1371/journal.pone.0274634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND & IMPORTANCE This patient and public-involved systematic review originally focused on arachnoiditis, a supposedly rare "iatrogenic chronic meningitis" causing permanent neurologic damage and intractable pain. We sought to prove disease existence, causation, symptoms, and inform future directions. After 63 terms for the same pathology were found, the study was renamed Diseases of the Leptomeninges (DLMs). We present results that nullify traditional clinical thinking about DLMs, answer study questions, and create a unified path forward. METHODS The prospective PRISMA protocol is published at Arcsology.org. We used four platforms, 10 sources, extraction software, and critical review with ≥2 researchers at each phase. All human sources to 12/6/2020 were eligible for qualitative synthesis utilizing R. Weekly updates since cutoff strengthen conclusions. RESULTS Included were 887/14286 sources containing 12721 DLMs patients. Pathology involves the subarachnoid space (SAS) and pia. DLMs occurred in all countries as a contributor to the top 10 causes of disability-adjusted life years lost, with communicable diseases (CDs) predominating. In the USA, the ratio of CDs to iatrogenic causes is 2.4:1, contradicting arachnoiditis literature. Spinal fusion surgery comprised 54.7% of the iatrogenic category, with rhBMP-2 resulting in 2.4x more DLMs than no use (p<0.0001). Spinal injections and neuraxial anesthesia procedures cause 1.1%, and 0.2% permanent DLMs, respectively. Syringomyelia, hydrocephalus, and arachnoid cysts are complications caused by blocked CSF flow. CNS neuron death occurs due to insufficient arterial supply from compromised vasculature and nerves traversing the SAS. Contrast MRI is currently the diagnostic test of choice. Lack of radiologist recognition is problematic. DISCUSSION & CONCLUSION DLMs are common. The LM clinically functions as an organ with critical CNS-sustaining roles involving the SAS-pia structure, enclosed cells, lymphatics, and biologic pathways. Cases involve all specialties. Causes are numerous, symptoms predictable, and outcomes dependent on time to treatment and extent of residual SAS damage. An international disease classification and possible treatment trials are proposed.
Collapse
Affiliation(s)
| | - Stephanie Wottrich
- Case Western Reserve School of Medicine, Cleveland, Ohio, United States of America
| | - Erin Dienes
- Arcsology®, Mead, Colorado, United States of America
| | - Mohamad Bydon
- Department of Neurologic Surgery, Orthopedic Surgery, and Health Services Research, Mayo Clinic School of Medicine, Rochester, Minnesota, United States of America
| | - Michael P. Steinmetz
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine Neurologic Institute, Cleveland, Ohio, United States of America
| | - Vincent C. Traynelis
- Department of Neurosurgery, Rush University School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
25
|
Petersen EA, Stauss TG, Scowcroft JA, Brooks ES, White JL, Sills SM, Amirdelfan K, Guirguis MN, Xu J, Yu C, Nairizi A, Patterson DG, Tsoulfas KC, Creamer MJ, Galan V, Bundschu RH, Mehta ND, Sayed D, Lad SP, DiBenedetto DJ, Sethi KA, Goree JH, Bennett MT, Harrison NJ, Israel AF, Chang P, Wu PW, Argoff CE, Nasr CE, Taylor RS, Caraway DL, Mekhail NA. High-Frequency 10-kHz Spinal Cord Stimulation Improves Health-Related Quality of Life in Patients With Refractory Painful Diabetic Neuropathy: 12-Month Results From a Randomized Controlled Trial. Mayo Clin Proc Innov Qual Outcomes 2022; 6:347-360. [PMID: 35814185 PMCID: PMC9256824 DOI: 10.1016/j.mayocpiqo.2022.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective To evaluate high-frequency (10-kHz) spinal cord stimulation (SCS) treatment in refractory painful diabetic neuropathy. Patients and Methods A prospective, multicenter randomized controlled trial was conducted between Aug 28, 2017 and March 16, 2021, comparing conventional medical management (CMM) with 10-kHz SCS+CMM. The participants had hemoglobin A1c level of less than or equal to 10% and pain greater than or equal to 5 of 10 cm on visual analog scale, with painful diabetic neuropathy symptoms 12 months or more refractory to gabapentinoids and at least 1 other analgesic class. Assessments included measures of pain, neurologic function, and health-related quality of life (HRQoL) over 12 months with optional crossover at 6 months. Results The participants were randomized 1:1 to CMM (n=103) or 10-kHz SCS+CMM (n=113). At 6 months, 77 of 95 (81%) CMM group participants opted for crossover, whereas none of the 10-kHz SCS group participants did so. At 12 months, the mean pain relief from baseline among participants implanted with 10-kHz SCS was 74.3% (95% CI, 70.1-78.5), and 121 of 142 (85%) participants were treatment responders (≥50% pain relief). Treatment with 10-kHz SCS improved HRQoL, including a mean improvement in the EuroQol 5-dimensional questionnaire index score of 0.136 (95% CI, 0.104-0.169). The participants also reported significantly less pain interference with sleep, mood, and daily activities. At 12 months, 131 of 142 (92%) participants were "satisfied" or "very satisfied" with the 10-kHz SCS treatment. Conclusion The 10-kHz SCS treatment resulted in substantial pain relief and improvement in overall HRQoL 2.5- to 4.5-fold higher than the minimal clinically important difference. The outcomes were durable over 12 months and support 10-kHz SCS treatment in patients with refractory painful diabetic neuropathy. Trial registration clincaltrials.gov Identifier: NCT03228420.
Collapse
Key Words
- CMM, conventional medical management
- DN4, Douleur Neuropathique
- DSPN, diabetic sensorimotor peripheral neuropathy
- EQ-5D-5L, EuroQol 5-Dimension 5-Level questionnaire
- HRQoL, health-related quality of life
- HbA1c, hemoglobin A1c
- IPG, implantable pulse generator
- NNT, number needed to treat
- PDN, painful diabetic neuropathy
- RCT, randomized controlled trial
- SCS, spinal cord stimulation
- VAS, visual analog scale
Collapse
Affiliation(s)
- Erika A. Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock,Correspondence: Address to Erika A. Petersen, MD, Department of Neurosurgery, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205.
| | | | | | | | | | | | | | | | - Jijun Xu
- Department of Pain Management, Cleveland Clinic Foundation, Cleveland, OH
| | - Cong Yu
- Swedish Medical Center, Seattle, WA
| | | | | | | | | | | | | | - Neel D. Mehta
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, University of Kansas Medical Center, Kansas City, KS
| | | | | | - Khalid A. Sethi
- Department of Neurosurgery, United Health Services, Johnson City, NY
| | - Johnathan H. Goree
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock
| | | | | | | | | | - Paul W. Wu
- Holy Cross Hospital, Fort Lauderdale, FL
| | | | - Christian E. Nasr
- Department of Endocrinology, Cleveland Clinic Foundation, Cleveland, OH
| | - Rod S. Taylor
- MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, University of Glasgow, Glasgow, United Kingdom
| | | | - Nagy A. Mekhail
- Department of Pain Management, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
26
|
Evaluating optimized temporal patterns of spinal cord stimulation (SCS). Brain Stimul 2022; 15:1051-1062. [DOI: 10.1016/j.brs.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
|
27
|
Dura JL, Solanes C, De Andres J, Saiz J. Effect of Lead Position and Polarity on Paresthesia Coverage in Spinal Cord Stimulation Therapy: A Computational Study. Neuromodulation 2022; 25:680-692. [DOI: 10.1016/j.neurom.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
|
28
|
Lee KY, Lee D, Wang D, Kagan ZB, Bradley K. Simultaneous 10 kHz and 40 Hz spinal cord stimulation increases dorsal horn inhibitory interneuron activity. Neurosci Lett 2022; 782:136705. [PMID: 35660650 DOI: 10.1016/j.neulet.2022.136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Since 1967, spinal cord stimulation (SCS) has been used to manage chronic intractable pain of the trunk and limbs. Low-intensity, paresthesia-free, 10 kHz SCS has demonstrated statistically- and clinically-superior long-term pain relief compared to conventional SCS. 10 kHz SCS has been proposed to operate via selective activation of inhibitory interneurons in the superficial dorsal horn. In contrast, 40 Hz SCS is presumed to operate largely via dorsal column fiber activation. To determine if these mechanisms may be implemented synergistically, we examined the effect of each type of stimulation both independently and simultaneously on putatively inhibitory and putatively excitatory neurons in the superficial dorsal horn. When 10 kHz SCS was applied relatively caudally to the measured spinal segment, simultaneous with 40 Hz SCS applied relatively rostrally to that spinal segment, inhibitory interneurons demonstrated a median increase of 26 spikes/s compared to their baseline firing rates. Median firing rate increases of inhibitory interneurons were 8.7 and 5.1 spikes/s during 40 Hz SCS applied rostrally and 10 kHz SCS applied caudally, respectively. By comparison, the median firing rate of excitatory interneurons increased by 4.1 spikes/s during simultaneous 40 Hz SCS applied rostrally and 10 kHz SCS applied caudally. Median firing rate increases of excitatory interneurons were 13 and 0.8 spikes/s during 40 Hz SCS applied rostrally and 10 kHz SCS applied caudally, respectively. This suggests that simultaneously applying 10 kHz SCS caudally and 40 Hz SCS rostrally may provide greater pain relief than either type of SCS alone by increasing the firing rates of inhibitory interneurons, albeit with greater excitatory interneuron activation.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Nevro Corporation, 1800 Bridge Parkway, Redwood City, CA, USA
| | - Dongchul Lee
- Nevro Corporation, 1800 Bridge Parkway, Redwood City, CA, USA
| | - Dong Wang
- Nevro Corporation, 1800 Bridge Parkway, Redwood City, CA, USA
| | - Zachary B Kagan
- Nevro Corporation, 1800 Bridge Parkway, Redwood City, CA, USA.
| | - Kerry Bradley
- Nevro Corporation, 1800 Bridge Parkway, Redwood City, CA, USA
| |
Collapse
|
29
|
Wang D, Lee KY, Lee D, Kagan ZB, Bradley K. Low-Intensity 10 kHz Spinal Cord Stimulation Reduces Behavioral and Neural Hypersensitivity in a Rat Model of Painful Diabetic Neuropathy. J Pain Res 2022; 15:1503-1513. [PMID: 35637766 PMCID: PMC9148201 DOI: 10.2147/jpr.s358427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Dong Wang
- Nevro Corp, Redwood City, CA, 94065, USA
| | | | | | | | - Kerry Bradley
- Nevro Corp, Redwood City, CA, 94065, USA
- Correspondence: Kerry Bradley, Nevro Corp, 1800 Bridge Pkwy, Redwood City, CA, 94065, USA, Email
| |
Collapse
|
30
|
Edinoff AN, Kaufman S, Alpaugh ES, Lawson J, Apgar TL, Imani F, Khademi SH, Cornett EM, Kaye AD. Burst Spinal Cord Stimulation in the Management of Chronic Pain: Current Perspectives. Anesth Pain Med 2022; 12:e126416. [PMID: 36158139 PMCID: PMC9364520 DOI: 10.5812/aapm-126416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last several decades, opioid diversion, misuse, and over-prescription have run rampant in the United States. Spinal cord stimulation (SCS) has been FDA approved for treatment for a primary indication of neuropathic limb pain that is resistant to more conservative medical therapy. The disorders qualified for treatment include neuropathic, post-surgical, post-amputation, osteodegenerative, and pain related to vascular disease. Some of the most frequently cited conditions for treatment of SCS include failed back surgery syndrome, complex regional pain syndrome (CRPS) Type I and Type II, and post-herpetic neuralgias. Developments in SCS systems have led to the differentiation between the delivered electromechanical waveform patterns, including tonic, burst, and high-frequency. Burst SCS mitigates traditional paresthesia due to expedited action potential and offers improved pain relief. Burst SCS has been shown in available studies to be non-inferior to the traditional SCS, which can cause pain paresthesia in patients who already have chronic pain. Burst SCS does not seem to cause or need the paresthesia seen in traditional SCS, making SCS not tolerable to patients. Moreover, some studies suggest that burst SCS may decrease opioid consumption in patients with chronic pain. This can make burst SCS an extremely useful tool in the battle against chronic pain and the raging opioid epidemic. As of now, more research needs to be performed to further delineate the effectiveness and long-term safety of this device.
Collapse
Affiliation(s)
- Amber N. Edinoff
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Sarah Kaufman
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - E. Saunders Alpaugh
- Department of Anesthesiology, Louisiana State University Health Science Center New Orleans, LA, USA
| | - Jesse Lawson
- Department of Emergency Medicine, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Tucker L. Apgar
- Department of Chemical Biology and Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University, Shreveport, LA, USA
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University, Shreveport, LA, USA
| |
Collapse
|
31
|
Strand NH, Burkey AR. Neuromodulation in the Treatment of Painful Diabetic Neuropathy: A Review of Evidence for Spinal Cord Stimulation. J Diabetes Sci Technol 2022; 16:332-340. [PMID: 34842478 PMCID: PMC8861784 DOI: 10.1177/19322968211060075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neuropathies, the most common complication of diabetes, manifest in various forms, including entrapments, mononeuropathies or, most frequently, a distal symmetric polyneuropathy. Painful diabetic neuropathy (PDN) in the classic "stocking" distribution is a disease of increasing prevalence worldwide and a condition for which standard medical treatment only provides modest relief. Neuromodulation offers a potential alternative to pharmacotherapies given its demonstrated efficacy in other refractory chronic neuropathic pain syndromes. High-quality evidence from randomized controlled trials (RCTs) is available in these other settings for two approaches to spinal cord stimulation (SCS): (1) conventional low-frequency SCS (LF-SCS), which modulates axonal activity in the dorsal column and is paresthesia-dependent, and (2) high-frequency SCS delivered at 10 kilohertz (10 kHz SCS), which targets neurons in the superficial dorsal horn and is paresthesia-independent. METHOD This review examines the evidence for SCS from published RCTs as well as prospective studies exploring the safety and effectiveness of treating PDN with neuromodulation. RESULTS Two RCTs enrolling 60 and 36 participants with PDN showed treatment with LF-SCS reduced daytime pain by 45% to 55% for up to two years. An RCT testing 10 kHz SCS versus conventional medical management (CMM) in 216 participants with PDN revealed 76% mean pain relief after six months of stimulation. None of the studies revealed unexpected safety issues in the use of neuromodulation in this patient population. CONCLUSION These well-designed RCTs address the unmet need for improved PDN therapies and provide data on the safety, effectiveness, and durability of SCS therapy.
Collapse
Affiliation(s)
- Natalie H. Strand
- Division of Pain Medicine, Department
of Anesthesiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Natalie H. Strand, MD, Division of Pain
Medicine, Department of Anesthesiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd,
Phoenix, AZ 85054, USA.
| | - Adam R. Burkey
- Chair of Pain Section, American Academy
of Neurology, Minneapolis, MI, USA
- Anesis Spine & Pain Care, Renton,
WA, USA
| |
Collapse
|
32
|
Rogers ER, Zander HJ, Lempka SF. Neural Recruitment During Conventional, Burst, and 10-kHz Spinal Cord Stimulation for Pain. THE JOURNAL OF PAIN 2022; 23:434-449. [PMID: 34583022 PMCID: PMC8925309 DOI: 10.1016/j.jpain.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord stimulation (SCS) is a popular neurostimulation therapy for severe chronic pain. To improve stimulation efficacy, multiple modes are now used clinically, including conventional, burst, and 10-kHz SCS. Clinical observations have produced speculation that these modes target different neural elements and/or work via distinct mechanisms of action. However, in humans, these hypotheses cannot be conclusively answered via experimental methods. Therefore, we utilized computational modeling to assess the response of primary afferents, interneurons, and projection neurons to conventional, burst, and 10-kHz SCS. We found that local cell thresholds were always higher than afferent thresholds, arguing against direct recruitment of these local cells. Furthermore, although we observed relative threshold differences between conventional, burst, and 10-kHz SCS, the recruitment order was the same. Finally, contrary to previous reports, axon collateralization produced complex changes in activation thresholds of primary afferents. These results motivate future work to contextualize clinical observations across SCS paradigms. PERSPECTIVE: This article presents the first computational modeling study to investigate neural recruitment during conventional, burst, and 10-kilohertz spinal cord stimulation for chronic pain within a single modeling framework. The results provide insight into these treatments' unknown mechanisms of action and offer context to interpreting clinical observations.
Collapse
Affiliation(s)
- Evan R. Rogers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hans J. Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
34
|
Singer A, Robinson JT. Wireless Power Delivery Techniques for Miniature Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100664. [PMID: 34114368 PMCID: PMC8754427 DOI: 10.1002/adhm.202100664] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Progress in implanted bioelectronic technology offers the opportunity to develop more effective tools for personalized electronic medicine. While there are numerous clinical and pre-clinical applications for these devices, power delivery to these systems can be challenging. Wireless battery-free devices offer advantages such as a smaller and lighter device footprint and reduced failures and infections by eliminating lead wires. However, with the development of wireless technologies, there are fundamental tradeoffs between five essential factors: power, miniaturization, depth, alignment tolerance, and transmitter distance, while still allowing devices to work within safety limits. These tradeoffs mean that multiple forms of wireless power transfer are necessary for different devices to best meet the needs for a given biological target. Here six different types of wireless power transfer technologies used in bioelectronic implants-inductive coupling, radio frequency, mid-field, ultrasound, magnetoelectrics, and light-are reviewed in context of the five tradeoffs listed above. This core group of wireless power modalities is then used to suggest possible future bioelectronic technologies and their biological applications.
Collapse
Affiliation(s)
- Amanda Singer
- Department of Electrical and Computer EngineeringRice University6100 Main StHoustonTX77005USA
| | - Jacob T. Robinson
- Department of Electrical and Computer EngineeringRice University6100 Main StHoustonTX77005USA
| |
Collapse
|
35
|
Jervis Rademeyer H, Gauthier C, Masani K, Pakosh M, Musselman KE. The effects of epidural stimulation on individuals living with spinal cord injury or disease: a scoping review. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1962051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hope Jervis Rademeyer
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | - Cindy Gauthier
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Maureen Pakosh
- Library and Information Services, University Health Network - Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Kristin E. Musselman
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Davanzo J, Brandmeir NJ. Surgical Technique and Patient Selection for Spinal Cord Stimulation for Chronic Pain. Neurol India 2021; 68:S213-S217. [PMID: 33318353 DOI: 10.4103/0028-3886.302462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Spinal cord stimulation (SCS) is a neuromodulation surgical technique that allows the treatment of various causes of chronic pain. SCS is effective in the treatment of chronic low back pain, neuropathic pain, chronic regional pain syndrome, and failed back surgery syndrome, among others. The mechanisms underlying the efficacy are still under investigation and different mechanisms are likely responsible for the effects of different waveforms used in the therapy. Successful application of SCS to individual patients depends on patient selection and meticulous surgical technique. Important factors in patient selection depend on preoperative imaging, maximizing noninvasive therapy, and neuropsychological evaluation. Percutaneous and open techniques exist for placing both paddle-shaped epidural leads as well as typical cylindrical leads. Benefits and risks exist for both techniques and the exact technique that is optimal depends on surgeon experience and surgeon and patient preference. Complications are rare and can be minimized and managed with appropriate preoperative mitigation.
Collapse
Affiliation(s)
- Justin Davanzo
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - Nicholas J Brandmeir
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
37
|
Solcà M, Krishna V, Young N, Deogaonkar M, Herbelin B, Orepic P, Mange R, Rognini G, Serino A, Rezai A, Blanke O. Enhancing analgesic spinal cord stimulation for chronic pain with personalized immersive virtual reality. Pain 2021; 162:1641-1649. [PMID: 33259460 DOI: 10.1097/j.pain.0000000000002160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/02/2020] [Indexed: 01/24/2023]
Abstract
ABSTRACT Spinal cord stimulation (SCS) is an approved treatment for truncal and limb neuropathic pain. However, pain relief is often suboptimal and SCS efficacy may reduce over time, requiring sometimes the addition of other pain therapies, stimulator revision, or even explantation. We designed and tested a new procedure by combining SCS with immersive virtual reality (VR) to enable analgesia in patients with chronic leg pain. We coupled SCS and VR by linking SCS-induced paresthesia with personalized visual bodily feedback that was provided by VR and matched to the spatiotemporal patterns of SCS-induced paresthesia. In this cross-sectional prospective interventional study, 15 patients with severe chronic pain and an SCS implant underwent congruent SCS-VR (personalized visual feedback of the perceived SCS-induced paresthesia displayed on the patient's virtual body) and 2 control conditions (incongruent SCS-VR and VR alone). We demonstrate the efficacy of neuromodulation-enhanced VR for the treatment of chronic pain by showing that congruent SCS-VR reduced pain ratings on average by 44%. Spinal cord stimulation-VR analgesia was stronger than that in both control conditions (enabling stronger analgesic effects than incongruent SCS-VR analgesia or VR alone) and kept increasing over successive stimulations, revealing the selectivity and consistency of the observed effects. We also show that analgesia persists after congruent SCS-VR had stopped, indicating carry over effects and underlining its therapeutic potential. Linking latest VR technology with recent insights from the neuroscience of body perception and SCS neuromodulation, our personalized new SCS-VR platform highlights the impact of immersive digiceutical therapies for chronic pain.Registration: clinicaltrials.gov, Identifier: NCT02970006.
Collapse
Affiliation(s)
- Marco Solcà
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Vibhor Krishna
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, United States
| | - Nicole Young
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, United States
| | - Milind Deogaonkar
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Bruno Herbelin
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pavo Orepic
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Robin Mange
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Giulio Rognini
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- MySpace, Department of Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
38
|
Differential Modulation of Dorsal Horn Neurons by Various Spinal Cord Stimulation Strategies. Biomedicines 2021; 9:biomedicines9050568. [PMID: 34070113 PMCID: PMC8158340 DOI: 10.3390/biomedicines9050568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
New strategies for spinal cord stimulation (SCS) for chronic pain have emerged in recent years, which may work better via different analgesic mechanisms than traditional low-frequency (e.g., 50 Hz) paresthesia-based SCS. To determine if 10 kHz and burst SCS waveforms might have a similar mechanistic basis, we examined whether these SCS strategies at intensities ostensibly below sensory thresholds would modulate spinal dorsal horn (DH) neuronal function in a neuron type-dependent manner. By using an in vivo electrophysiological approach in rodents, we found that low-intensity 10 kHz SCS, but not burst SCS, selectively activates inhibitory interneurons in the spinal DH. This study suggests that low-intensity 10 kHz SCS may inhibit pain-sensory processing in the spinal DH by activating inhibitory interneurons without activating DC fibers, resulting in paresthesia-free pain relief, whereas burst SCS likely operates via other mechanisms.
Collapse
|
39
|
Spinal cord stimulation in chronic neuropathic pain: mechanisms of action, new locations, new paradigms. Pain 2021; 161 Suppl 1:S104-S113. [PMID: 33090743 PMCID: PMC7434213 DOI: 10.1097/j.pain.0000000000001854] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Metzger CS, Hammond MB, Paz-Solis JF, Newton WJ, Thomson SJ, Pei Y, Jain R, Moffitt M, Annecchino L, Doan Q. A novel fast-acting sub-perception spinal cord stimulation therapy enables rapid onset of analgesia in patients with chronic pain. Expert Rev Med Devices 2021; 18:299-306. [PMID: 33656411 DOI: 10.1080/17434440.2021.1890580] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Treating chronic pain using sub-perception Spinal Cord Stimulation (SCS) does not elicit paresthesia but is associated with long analgesic 'wash-in' (i.e. duration until maximum pain relief) and prolonged assessment of therapy. We describe the attainment of clinically meaningful and rapid-onset analgesic outcomes using a novel sub-perception SCS approach.Methods: This observational case-series evaluated patients implanted with an SCS device for chronic pain, who underwent re-programming utilizing a new methodology in which paresthesia was used to guide sub-perception stimulation field targeting at specific parameters including charge-balanced symmetrical pulses at 90 Hz (termed Fast-Acting Sub-Perception Therapy, FAST). Pain scores (NRS) were collected as reported per standard-of-care from patient charts.Results: Mean overall pain score at baseline was 8.4 ± 0.2 (n = 41). After activation of FAST, a 7.1-point reduction in overall pain score was (1.3 ± 0.2, p < 0.0001) reported within 11.2 ± 1.9 minutes (n = 34). This decrease in pain score was sustained out to 3-month (1.6 ± 0.3, n = 26) and 6-month follow-up (1.7 ± 0.4, n = 18). At last follow up (mean = 223 ± 132 days), a pain score of 1.6 ± 0.3, n = 30 was determined.Conclusions: After FAST implementation, a profound analgesic response, requiring substantially less energy than conventional sub-perception methodologies, was observed. This rapid analgesic onset achieved with the novel FAST technique suggests the potential for an alternative mechanism of action(s) of sub-perception SCS.
Collapse
Affiliation(s)
| | | | - Jose F Paz-Solis
- Department of Neurosurgery , University Hospital La Paz, Madrid, Spain
| | | | - Simon J Thomson
- Pain Management and Neuromodulation (Basildon and Thurrock University Hospitals), NHS, Basildon, UK
| | - Yu Pei
- Division of Neuromodulation, Boston Scientific, Valencia, CA, USA
| | - Roshini Jain
- Division of Neuromodulation, Boston Scientific, Valencia, CA, USA
| | - Michael Moffitt
- Division of Neuromodulation, Boston Scientific, Valencia, CA, USA
| | - Luca Annecchino
- Division of Neuromodulation, Boston Scientific, Valencia, CA, USA
| | - Que Doan
- Division of Neuromodulation, Boston Scientific, Valencia, CA, USA
| |
Collapse
|
41
|
Provenzano DA, Heller JA, Hanes MC. Current Perspectives on Neurostimulation for the Management of Chronic Low Back Pain: A Narrative Review. J Pain Res 2021; 14:463-479. [PMID: 33628045 PMCID: PMC7899039 DOI: 10.2147/jpr.s249580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Neurostimulation techniques for the treatment of chronic low back pain (LBP) have been rapidly evolving; however, questions remain as to which modalities provide the most efficacious and durable treatment for intractable axial symptoms. Modalities of spinal cord stimulation, such as traditional low-frequency paresthesia based, high-density or high dose (HD), burst, 10-kHz high-frequency therapy, closed-loop, and differential target multiplexed, have been limitedly studied to determine their efficacy for the treatment of axial LBP. In addition, stimulation methods that target regions other than the spinal cord, such as medial branch nerve stimulation of the multifidus muscles and the dorsal root ganglion may also be viable treatment options. Here, current scientific evidence behind neurostimulation techniques have been reviewed with a focus on the management of chronic axial LBP.
Collapse
Affiliation(s)
- David A Provenzano
- Pain Diagnostics and Interventional Care, Sewickley, PA, USA.,Western PA Surgery Center, Wexford, PA, USA
| | | | | |
Collapse
|
42
|
A Retrospective Review of Lead Migration Rate in Patients Permanently Implanted with Percutaneous Leads and a 10 kHz SCS Device. Pain Res Manag 2021; 2021:6639801. [PMID: 33613793 PMCID: PMC7878096 DOI: 10.1155/2021/6639801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Background Spinal cord stimulation (SCS) has been used over decades for pain management, but migration of percutaneous leads has been the most common complication. Better surgical techniques and newer SCS technologies likely reduced the incidence of lead migration requiring surgical revision, although data are sparse. This study aimed to retrospectively evaluate the incidence of clinically significant percutaneous lead migration in patients permanently implanted with a 10 kHz SCS system. Methods Consecutive patients with chronic trunk and/or limb pain, permanently implanted between January 2016 and June 2019, were included in the analysis. Data were collected from the hospital's electronic medical records and the manufacturer's database. Clinically significant lead migration, defined as diminished pain relief followed by surgery to correct lead location, was assessed at the 6-month follow-up. Results At the 6-month follow-up, there were no cases of clinically significant lead migration, average pain relief was 65.2%, 82% of patients had response (≥50% pain relief), improvement of function was noted in 72% of patients, and decrease of medication was observed in 42% of patients. Therapy efficacy was sustained in patients with >12 months follow-up; the average pain relief was 58.5%, and the response rate was 82%. Conclusions The surgical techniques in use today are designed to minimise the risk of percutaneous lead migration and may have reduced its incidence. In addition, new SCS systems may give greater opportunity to mitigate cases of minor lead movement using alternative stimulation programs.
Collapse
|
43
|
Chin ML, George Washington University Medical Center, Washington, District of Columbia, USA. Regional Techniques and Interventions for Intractable Neuropathic Pain. Neurology 2021. [DOI: 10.17925/usn.2021.17.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Quantification of clinically applicable stimulation parameters for precision near-organ neuromodulation of human splenic nerves. Commun Biol 2020; 3:577. [PMID: 33067560 PMCID: PMC7568572 DOI: 10.1038/s42003-020-01299-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Neuromodulation is a new therapeutic pathway to treat inflammatory conditions by modulating the electrical signalling pattern of the autonomic connections to the spleen. However, targeting this sub-division of the nervous system presents specific challenges in translating nerve stimulation parameters. Firstly, autonomic nerves are typically embedded non-uniformly among visceral and connective tissues with complex interfacing requirements. Secondly, these nerves contain axons with populations of varying phenotypes leading to complexities for axon engagement and activation. Thirdly, clinical translational of methodologies attained using preclinical animal models are limited due to heterogeneity of the intra- and inter-species comparative anatomy and physiology. Here we demonstrate how this can be accomplished by the use of in silico modelling of target anatomy, and validation of these estimations through ex vivo human tissue electrophysiology studies. Neuroelectrical models are developed to address the challenges in translation of parameters, which provides strong input criteria for device design and dose selection prior to a first-in-human trial. Due to the difference between rodent, porcine and human nerve morphology, Gupta et al. propose an integrative approach of computational modelling and ex vivo electrophysiology studies to identify clinically relevant optimal parameters for human peripheral nerve stimulation as a therapeutic tool. The agreement between results validate the use of computer simulations as a first step toward determining stimulation parameters to provide input criteria for device design and dose selection prior to first-in-human trials.
Collapse
|
45
|
Vallejo R, Gupta A, Cedeno DL, Vallejo A, Smith WJ, Thomas SM, Benyamin R, Kaye AD, Manchikanti L. Clinical Effectiveness and Mechanism of Action of Spinal Cord Stimulation for Treating Chronic Low Back and Lower Extremity Pain: a Systematic Review. Curr Pain Headache Rep 2020; 24:70. [PMID: 32997170 DOI: 10.1007/s11916-020-00907-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW The purpose of the present systematic review is to provide a current understanding of the mechanism of action and the evidence available to support clinical decision-making. The focus is to summarize randomized controlled trials (RCTs) and nonrandomized or observational studies of spinal cord stimulation in chronic pain to understand clinical effectiveness and the mechanism of action. RECENT FINDINGS Several recent studies have demonstrated the benefit of spinal cord stimulation in managing chronic pain. Until recently, the mechanism of action was founded on a central paradigm derived from gate control theory, which is the need to stimulate the dorsal column of the spinal cord to generate paresthesia. The recent development of new therapies that do not rely on paresthesia has left the field without a clear mechanism of action that could serve as a strong foundation to further improve clinical outcomes. Consequently, multiple theories have emerged to explain how electrical pulse applied to the spinal cord could alleviate pain, including activation of specific supraspinal pathways, and segmental modulation of the neurological interaction. Recent systematic reviews also have shown the clinical effectiveness of spinal cord stimulation in managing chronic spinal pain, phantom limb pain, complex regional pain syndrome, and other chronic painful conditions. Spinal cord stimulation for the treatment of chronic pain is rapidly evolving with technology at its forefront. This comprehensive focused review evaluated 11 RCTs and 7 nonrandomized/observational studies which provided levels of evidence ranging from I to II.
Collapse
Affiliation(s)
- Ricardo Vallejo
- Millennium Pain Center - National Spine and Pain Centers, 2406 E Empire, Bloomington, IL, 61704, USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
- SGX Medical LLC, Bloomington, IL, USA
| | - Ashim Gupta
- South Texas Orthopaedic Research Institute, Laredo, TX, USA
- BioIntegrate, 2505 Newpoint Pkwy Suite 100-A, Lawrenceville, GA, USA
- Future Biologics, Lawrenceville, GA, USA
| | - David L Cedeno
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.
- SGX Medical LLC, Bloomington, IL, USA.
- Lumbrera LLC, 2406 E Empire, Bloomington, IL, 61704, USA.
| | - Alejandro Vallejo
- Lumbrera LLC, 2406 E Empire, Bloomington, IL, 61704, USA
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - William J Smith
- Lumbrera LLC, 2406 E Empire, Bloomington, IL, 61704, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Samuel M Thomas
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, USA
| | - Ramsin Benyamin
- Millennium Pain Center - National Spine and Pain Centers, 2406 E Empire, Bloomington, IL, 61704, USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
- College of Medicine, University of Illinois, Urbana-Champaign, IL, USA
| | - Alan D Kaye
- Department of Anesthesiology, LSU Health Science Center, 1542 Tulane Ave Room 659, New Orleans, LA, 70112, USA
- Department of Pharmacology, LSU Health Science Center, 1542 Tulane Ave Room 659, New Orleans, LA, 70112, USA
| | - Laxmaiah Manchikanti
- Pain Management Centers of America, Management Center of Paducah, 67 Lakeview Dr., Paducah, KY, 42001, USA
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA
- Department of Anesthesiology, School of Medicine, LSU Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
46
|
Luecke T, Edgar D, Huse D. 10 kHz spinal cord stimulation for the treatment of chronic back and/or leg pain: Summary of clinical studies. SAGE Open Med 2020; 8:2050312120951369. [PMID: 32913650 PMCID: PMC7444111 DOI: 10.1177/2050312120951369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pain has a major impact on sufferers and their families. The associated health care costs are substantial. In the context of increasing prevalence, effective treatment options are ever more important. 10 kHz spinal cord stimulation has been shown to effectively provide pain relief, aid in opioid reduction, and improve quality of life in patients with chronic intractable pain. The present review aims to summarize the clinical evidence related to the use of 10 kHz SCS in chronic back and/or leg pain. We searched the PubMed database between 2009 and 2 June 2020 for articles reporting clinical studies that included at least 10 human subjects permanently treated with a 10 kHz SCS system (Senza® system) for chronic back and/or leg pain for a minimum of 3 months. A randomized controlled trial (SENZA-RCT), as well as several prospective and retrospective studies, reported clinical outcomes in subjects with chronic back and leg pain treated with 10 kHz SCS. A high proportion of subjects (60%–80%) reported long-term response to therapy. Pain relief was provided without paresthesia. Other studies showed promising pain relief outcomes in subjects with back pain ineligible for spinal surgery, neuropathic limb pain, and in those with previously failed traditional low-frequency SCS. Most studies reported improved quality of life metrics and/or reduced opioid intake. Level 1 evidence has already been established for the use of 10 kHz SCS in treating chronic back and leg pain, corroborated by real-world, clinical experience. Exploratory studies also show the potential of the therapy in other refractory pain syndromes, although larger studies are desired to validate their findings. Overall, the literature suggests that 10 kHz SCS provides long-term pain relief in a high proportion of patients, along with improved quality of life and reduced opioid consumption.
Collapse
Affiliation(s)
- Thorsten Luecke
- Department of Anesthesiology and Surgery, Franziskus Krankenhaus Linz, Linz am Rhein, Germany
| | | | - Daniel Huse
- Department of Anesthesiology and Surgery, Franziskus Krankenhaus Linz, Linz am Rhein, Germany
| |
Collapse
|
47
|
Abbass M, Santyr BG, Parrent AG, MacDougall KW, Staudt MD. Paresthesia-Free Spinal Nerve Root Stimulation for the Treatment of Chronic Neuropathic Pain. Neuromodulation 2020; 23:831-837. [PMID: 32725757 DOI: 10.1111/ner.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Stimulation of the dorsal spinal roots, or spinal nerve root stimulation (SNRS), is a neuromodulation modality that can target pain within specific dermatomal distributions. The use of paresthesia-free stimulation has been described with conventional dorsal column spinal cord stimulation, although has yet to be described for SNRS. This objective of this study was to investigate the efficacy of paresthesia-free high-frequency (1000-1200 Hz) SNRS in the treatment of intractable, dermatomal neuropathic pain. MATERIALS AND METHODS A retrospective chart review was performed on 14 patients implanted with SNRS in varying distributions: Ten patients initially received tonic stimulation and crossed over to a paresthesia-free paradigm and four patients received only paresthesia-free stimulation. The primary outcome was reduction in pain severity (visual analog scale [VAS]), measured at baseline and follow-up to 24 months with paresthesia-free stimulation. RESULTS All 14 patients who received paresthesia-free stimulation had significant improvement in pain severity at a mean follow-up of 1.39 ± 0.15 years (VAS 7.46 at baseline vs. 3.25 at most recent follow-up, p < 0.001). Ten patients were initially treated with tonic stimulation and crossed over to paresthesia-free stimulation after a mean of 61.7 months. Baseline pain in these crossover patients was significantly improved at last follow-up with tonic stimulation (VAS 7.65 at baseline vs. 2.83 at 48 months, p < 0.001), although all patients developed uncomfortable paresthesias. There was no significant difference in pain severity between patients receiving tonic and paresthesia-free stimulation. CONCLUSIONS We present real-world outcomes of patients with intractable dermatomal neuropathic pain treated with paresthesia-free, high-frequency SNRS. We demonstrate its effectiveness in providing pain reduction at a level comparable to tonic SNRS up to 24 months follow-up, without producing uncomfortable paresthesias.
Collapse
Affiliation(s)
- Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Brendan G Santyr
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Michael D Staudt
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| |
Collapse
|
48
|
Zander HJ, Graham RD, Anaya CJ, Lempka SF. Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation. J Neural Eng 2020; 17:036019. [PMID: 32365340 PMCID: PMC8351789 DOI: 10.1088/1741-2552/ab8fc4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is a common neurostimulation therapy to treat chronic pain. Computational models represent a valuable tool to study the potential mechanisms of action of SCS and to optimize the design and implementation of SCS technologies. However, it is imperative that these computational models include the appropriate level of detail to accurately predict the neural response to SCS and to correlate model predictions with clinical outcomes. Therefore, the goal of this study was to investigate several anatomic and technical factors that may affect model-based predictions of neural activation during thoracic SCS. APPROACH We developed computational models that consisted of detailed finite element models of the lower thoracic spinal cord, surrounding tissues, and implanted SCS electrode arrays. We positioned multicompartment models of sensory axons within the spinal cord to calculate the activation threshold for each sensory axon. We then investigated how activation thresholds changed as a function of several anatomical variables (e.g. spine geometry, dorsal rootlet anatomy), stimulation type (i.e. voltage-controlled vs. current-controlled), electrode impedance, lead position, lead type, and electrical properties of surrounding tissues (e.g. dura conductivity, frequency-dependent conductivity). MAIN RESULTS Several anatomic and modeling factors produced significant percent differences or errors in activation thresholds. Rostrocaudal positioning of the cathode with respect to the vertebrae had a large effect (up to 32%) on activation thresholds. Variability in electrode impedance produced significant changes in activation thresholds for voltage-controlled stimulation (38% to 51%), but had little effect on activation thresholds for current-controlled stimulation (less than 13%). Changing the dura conductivity also produced significant differences in activation thresholds. SIGNIFICANCE This study demonstrates several anatomic and technical factors that can affect the neural response to SCS. These factors should be considered in clinical implementation and in future computational modeling studies of thoracic SCS.
Collapse
Affiliation(s)
- Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America. Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | |
Collapse
|
49
|
Corallo F, De Salvo S, Cannistraci C, Lo Buono V, Di Cara M, Floridia D, Cerra F, Romeo L, Pria D, Bramanti P, Marino S, Bonanno L. Chronic pain and spinal cord stimulation. Medicine (Baltimore) 2020; 99:e20490. [PMID: 32481461 DOI: 10.1097/md.0000000000020490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chronic pain can have a devastating impact and lead to patient isolation. Many people with chronic pain are predisposed to anxiety-depressant symptoms, due to a lower quality life. The aim of the study is to demonstrate how neuromodulation methods, can encourage the reduction of chronic pain and an improvement in the quality of life, therefore advancing the restoration of psychological well-being.We involved 50 patients with a diagnosis of pain that not respond to traditional pharmacological therapies. Interventions: All subject had depression and anxiety symptoms and a low-quality life. We used the spinal cord stimulation treatment and a psychological evaluation for assessment of depression-anxiety symptomatology and the level of quality life.We observed a significant difference in physical functioning, role limitations due to physical health, general health perceptions, vitality, social functioning, role limitations due to emotional problems and mental health.Our study affirms that the perception of chronic pain has a great impact on the perception of psychological well-being, quality of life, and the performance of normal daily social and professional activities.
Collapse
Affiliation(s)
- Francesco Corallo
- IRCCS Centro Neurolesi "Bonino Pulejo," S.S. 113 C.da Casazza, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Spinal cord stimulation programming: a crash course. Neurosurg Rev 2020; 44:709-720. [PMID: 32291559 DOI: 10.1007/s10143-020-01299-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
The aim of this comprehensive review is to provide an instructional guide for providers regarding the parameters and programming of spinal cord stimulation (SCS) devices. Knowing these fundamentals will aid in providing superior pain relief to patients. SCS has four programmable parameters: contact (electrode) selection, amplitude, pulse width, and frequency. Each parameter needs to be accounted for when assessing which program works for which patient. Traditional open-loop systems allow for different "programs," or combinations of these four parameters, to be pre-set by the provider and medical device representative. These allow for flexibility in the type of stimulation delivered to the patient depending on activity. Patients are also given control over programs and changing the amplitudes of these programs. However, some open-loop systems place the burden of toggling between programs to manage pain control on patients, though this tends to be less in subparesthesia programs. Newer closed-loop systems make it possible for stimulation settings to automatically adjust in response to accelerometry and evoked compound action potential feedback, and therefore have the potential to streamline the patient experience. This article provides practitioners with the basic knowledge of SCS parameters and programming systems. Understanding their use is essential to providing optimal pain relief to patients.
Collapse
|