1
|
Dickerson JL, McCubbin PTN, Brooks‐Bartlett JC, Garman EF. Doses for X-ray and electron diffraction: New features in RADDOSE-3D including intensity decay models. Protein Sci 2024; 33:e5005. [PMID: 38923423 PMCID: PMC11196903 DOI: 10.1002/pro.5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
New features in the dose estimation program RADDOSE-3D are summarised. They include the facility to enter a diffraction intensity decay model which modifies the "Diffraction Weighted Dose" output from a "Fluence Weighted Dose" to a "Diffraction-Decay Weighted Dose", a description of RADDOSE-ED for use in electron diffraction experiments, where dose is historically quoted in electrons/Å2 rather than in gray (Gy), and finally the development of a RADDOSE-3D GUI, enabling easy access to all the options available in the program.
Collapse
Affiliation(s)
- Joshua L. Dickerson
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Patrick T. N. McCubbin
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- Division of Structural Biology, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Elspeth F. Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Yang X, Wang L, Smaluk V, Shaftan T. Optimize Electron Beam Energy toward In Situ Imaging of Thick Frozen Bio-Samples with Nanometer Resolution Using MeV-STEM. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:803. [PMID: 38727397 PMCID: PMC11085184 DOI: 10.3390/nano14090803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
To optimize electron energy for in situ imaging of large biological samples up to 10 μm in thickness with nanoscale resolutions, we implemented an analytical model based on elastic and inelastic characteristic angles. This model has been benchmarked by Monte Carlo simulations and can be used to predict the transverse beam size broadening as a function of electron energy while the probe beam traverses through the sample. As a result, the optimal choice of the electron beam energy can be realized. In addition, the impact of the dose-limited resolution was analysed. While the sample thickness is less than 10 μm, there exists an optimal electron beam energy below 10 MeV regarding a specific sample thickness. However, for samples thicker than 10 μm, the optimal beam energy is 10 MeV or higher depending on the sample thickness, and the ultimate resolution could become worse with the increase in the sample thickness. Moreover, a MeV-STEM column based on a two-stage lens system can be applied to reduce the beam size from one micron at aperture to one nanometre at the sample with the energy tuning range from 3 to 10 MeV. In conjunction with the state-of-the-art ultralow emittance electron source that we recently implemented, the maximum size of an electron beam when it traverses through an up to 10 μm thick bio-sample can be kept less than 10 nm. This is a critical step toward the in situ imaging of large, thick biological samples with nanometer resolution.
Collapse
Affiliation(s)
- Xi Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (V.S.); (T.S.)
| | - Liguo Wang
- Laboratory for BioMolecular Structure, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Victor Smaluk
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (V.S.); (T.S.)
| | - Timur Shaftan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (V.S.); (T.S.)
| |
Collapse
|
3
|
Parkhurst JM, Cavalleri A, Dumoux M, Basham M, Clare D, Siebert CA, Evans G, Naismith JH, Kirkland A, Essex JW. Computational models of amorphous ice for accurate simulation of cryo-EM images of biological samples. Ultramicroscopy 2024; 256:113882. [PMID: 37979542 PMCID: PMC10730944 DOI: 10.1016/j.ultramic.2023.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Simulations of cryo-electron microscopy (cryo-EM) images of biological samples can be used to produce test datasets to support the development of instrumentation, methods, and software, as well as to assess data acquisition and analysis strategies. To be useful, these simulations need to be based on physically realistic models which include large volumes of amorphous ice. The gold standard model for EM image simulation is a physical atom-based ice model produced using molecular dynamics simulations. Although practical for small sample volumes; for simulation of cryo-EM data from large sample volumes, this can be too computationally expensive. We have evaluated a Gaussian Random Field (GRF) ice model which is shown to be more computationally efficient for large sample volumes. The simulated EM images are compared with the gold standard atom-based ice model approach and shown to be directly comparable. Comparison with experimentally acquired data shows the Gaussian random field ice model produces realistic simulations. The software required has been implemented in the Parakeet software package and the underlying atomic models are available online for use by the wider community.
Collapse
Affiliation(s)
- James M Parkhurst
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom.
| | - Anna Cavalleri
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Maud Dumoux
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom
| | - Mark Basham
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Daniel Clare
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - C Alistair Siebert
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Gwyndaf Evans
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - James H Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom; Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Angus Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom; Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Egerton R, Hayashida M, Malac M. Transmission electron microscopy of thick polymer and biological specimens. Micron 2023; 169:103449. [PMID: 37001476 DOI: 10.1016/j.micron.2023.103449] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
We explore the properties of elastic and inelastic scattering in a thick organic specimen, together with the mechanisms that provide contrast in a transmission electron microscope (TEM) and scanning-transmission electron microscope (STEM). Experimental data recorded from amorphous carbon are used to predict the bright-field image intensity, mass-thickness contrast and dose-limited resolution as a function of thickness, objective-aperture size, and primary-electron energy E0. Combining this information with estimates of chromatic aberration, objective-aperture diffraction and beam broadening in the specimen, we calculate the achievable TEM and STEM resolution to be around 4 nm at E0 = 300 keV (or below 3 nm at MeV energies) for a 10 µm-diameter objective aperture and 1 - 2 µm thickness of hydrated biological tissue. The 3 MeV resolution for a 10-μm tissue sample is probably closer to 10 nm. We also comment on the error involved in quadrature addition of resolution factors, when one or more of the point-spread functions are non-Gaussian.
Collapse
|
5
|
Harrison PJ, Vecerkova T, Clare DK, Quigley A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J Struct Biol 2023; 215:107959. [PMID: 37004781 DOI: 10.1016/j.jsb.2023.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Membrane proteins (MPs) are essential components of all biological membranes, contributing to key cellular functions that include signalling, molecular transport and energy metabolism. Consequently, MPs are important biomedical targets for therapeutics discovery. Despite hardware and software developments in cryo-electron microscopy, as well as MP sample preparation, MPs smaller than 100 kDa remain difficult to study structurally. Significant investment is required to overcome low levels of naturally abundant protein, MP hydrophobicity as well as conformational and compositional instability. Here we have reviewed the sample preparation approaches that have been taken to successfully express, purify and prepare small MPs for analysis by cryo-EM (those with a total solved molecular weight of under 100 kDa), as well as examining the differing approaches towards data processing and ultimately obtaining a structural solution. We highlight common challenges at each stage in the process as well as strategies that have been developed to overcome these issues. Finally, we discuss future directions and opportunities for the study of sub-100 kDa membrane proteins by cryo-EM.
Collapse
|
6
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
7
|
Brown HG, Hanssen E. MeasureIce: accessible on-the-fly measurement of ice thickness in cryo-electron microscopy. Commun Biol 2022; 5:817. [PMID: 35965271 PMCID: PMC9376182 DOI: 10.1038/s42003-022-03698-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
Ice thickness is arguably one of the most important factors limiting the resolution of protein structures determined by cryo-electron microscopy (cryo-EM). The amorphous atomic structure of the ice that stabilizes and protects biological samples in cryo-EM grids also imprints some additional noise in cryo-EM images. Ice that is too thick jeopardizes the success of particle picking and reconstruction of the biomolecule in the worst case and, at best, deteriorates eventual map resolution. Minimizing the thickness of the ice layer and thus the magnitude of its noise contribution is thus imperative in cryo-EM grid preparation. In this paper we introduce MeasureIce, a simple, easy to use ice thickness measurement tool for screening and selecting acquisition areas of cryo-EM grids. We show that it is possible to simulate thickness-image intensity look-up tables, also usable in SerialEM and Leginon, using elementary scattering physics and thereby adapt the tool to any microscope without time consuming experimental calibration. We benchmark our approach using two alternative techniques: the "ice channel" technique and tilt-series tomography. We also demonstrate the utility of ice thickness measurement for selecting holes in gold grids containing an Equine apoferritin sample, achieving a 1.88 Ångstrom resolution in subsequent refinement of the atomic map.
Collapse
Affiliation(s)
- Hamish G Brown
- Ian Holmes Imaging Center, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Eric Hanssen
- Ian Holmes Imaging Center, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology and ARC Industrial Transformation Training Center for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
An electron counting algorithm improves imaging of proteins with low-acceleration-voltage cryo-electron microscope. Commun Biol 2022; 5:321. [PMID: 35388174 PMCID: PMC8987035 DOI: 10.1038/s42003-022-03284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Relative to the 300-kV accelerating field, electrons accelerated under lower voltages are potentially scattered more strongly. Lowering the accelerate voltage has been suggested to enhance the signal-to-noise ratio (SNR) of cryo-electron microscopy (cryo-EM) images of small-molecular-weight proteins (<100 kD). However, the detection efficient of current Direct Detection Devices (DDDs) and temporal coherence of cryo-EM decrease at lower voltage, leading to loss of SNR. Here, we present an electron counting algorithm to improve the detection of low-energy electrons. The counting algorithm increased the SNR of 120-kV and 200-kV cryo-EM image from a Falcon III camera by 8%, 20% at half the Nyquist frequency and 21%, 80% at Nyquist frequency, respectively, resulting in a considerable improvement in resolution of 3D reconstructions. Our results indicate that with further improved temporal coherence and a dedicated designed camera, a 120-kV cryo-electron microscope has potential to match the 300-kV microscope at imaging small proteins.
Collapse
|
9
|
Parkhurst JM, Dumoux M, Basham M, Clare D, Siebert CA, Varslot T, Kirkland A, Naismith JH, Evans G. Parakeet: a digital twin software pipeline to assess the impact of experimental parameters on tomographic reconstructions for cryo-electron tomography. Open Biol 2021; 11:210160. [PMID: 34699732 PMCID: PMC8548082 DOI: 10.1098/rsob.210160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In cryo-electron tomography (cryo-ET) of biological samples, the quality of tomographic reconstructions can vary depending on the transmission electron microscope (TEM) instrument and data acquisition parameters. In this paper, we present Parakeet, a 'digital twin' software pipeline for the assessment of the impact of various TEM experiment parameters on the quality of three-dimensional tomographic reconstructions. The Parakeet digital twin is a digital model that can be used to optimize the performance and utilization of a physical instrument to enable in silico optimization of sample geometries, data acquisition schemes and instrument parameters. The digital twin performs virtual sample generation, TEM image simulation, and tilt series reconstruction and analysis within a convenient software framework. As well as being able to produce physically realistic simulated cryo-ET datasets to aid the development of tomographic reconstruction and subtomogram averaging programs, Parakeet aims to enable convenient assessment of the effects of different microscope parameters and data acquisition parameters on reconstruction quality. To illustrate the use of the software, we present the example of a quantitative analysis of missing wedge artefacts on simulated planar and cylindrical biological samples and discuss how data collection parameters can be modified for cylindrical samples where a full 180° tilt range might be measured.
Collapse
Affiliation(s)
- James M. Parkhurst
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Maud Dumoux
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Mark Basham
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Daniel Clare
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - C. Alistair Siebert
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Trond Varslot
- Thermo Fisher Scientific, Vlastimila Pecha, Brno, Czech Republic
| | - Angus Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK,Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| | - James H. Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Gwyndaf Evans
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
10
|
Bäuerlein FJB, Baumeister W. Towards Visual Proteomics at High Resolution. J Mol Biol 2021; 433:167187. [PMID: 34384780 DOI: 10.1016/j.jmb.2021.167187] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Traditionally, structural biologists approach the complexity of cellular proteomes in a reductionist manner. Proteomes are fractionated, their molecular components purified and studied one-by-one using the experimental methods for structure determination at their disposal. Visual proteomics aims at obtaining a holistic picture of cellular proteomes by studying them in situ, ideally in unperturbed cellular environments. The method that enables doing this at highest resolution is cryo-electron tomography. It allows to visualize cellular landscapes with molecular resolution generating maps or atlases revealing the interaction networks which underlie cellular functions in health and in disease states. Current implementations of cryo ET do not yet realize the full potential of the method in terms of resolution and interpretability. To this end, further improvements in technology and methodology are needed. This review describes the state of the art as well as measures which we expect will help overcoming current limitations.
Collapse
Affiliation(s)
- Felix J B Bäuerlein
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany; Georg-August-University, Institute for Neuropathology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Wolfgang Baumeister
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|
11
|
Wu H, Su H, Joosten RRM, Keizer ADA, van Hazendonk LS, Wirix MJM, Patterson JP, Laven J, de With G, Friedrich H. Mapping and Controlling Liquid Layer Thickness in Liquid-Phase (Scanning) Transmission Electron Microscopy. SMALL METHODS 2021; 5:e2001287. [PMID: 34927906 DOI: 10.1002/smtd.202001287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/18/2021] [Indexed: 06/14/2023]
Abstract
Liquid-Phase (Scanning) Transmission Electron Microscopy (LP-(S)TEM) has become an essential technique to monitor nanoscale materials processes in liquids in real-time. Due to the pressure difference between the liquid and the microscope vacuum, bending of the silicon nitride (SiNx ) membrane windows generally occurs. This causes a spatially varying liquid layer thickness that makes interpretation of LP-(S)TEM results difficult due to a locally varying achievable resolution and diffusion limitations. To mediate these difficulties, it is shown: 1) how to quantitatively map liquid layer thickness for any liquid at less than 0.01 e- Å-2 total dose; 2) how to dynamically modulate the liquid thickness by tuning the internal pressure in the liquid cell, co-determined by the Laplace pressure and the external pressure. It is demonstrated that reproducible inward bulging of the window membranes can be realized, leading to an ultra-thin liquid layer in the central window area for high-resolution imaging. Furthermore, it is shown that the liquid thickness can be dynamically altered in a programmed way, thereby potentially overcoming the diffusion limitations towards achieving bulk solution conditions. The presented approaches provide essential ways to measure and dynamically adjust liquid thickness in LP-(S)TEM experiments, enabling new experiment designs and better control of solution chemistry.
Collapse
Affiliation(s)
- Hanglong Wu
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Hao Su
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Arthur D A Keizer
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Laura S van Hazendonk
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Maarten J M Wirix
- Materials & Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, Eindhoven, 5651 GG, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Jozua Laven
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
12
|
Du M, Di Z(W, Gürsoy D, Xian RP, Kozorovitskiy Y, Jacobsen C. Upscaling X-ray nanoimaging to macroscopic specimens. J Appl Crystallogr 2021; 54:386-401. [PMID: 33953650 PMCID: PMC8056767 DOI: 10.1107/s1600576721000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Upscaling X-ray nanoimaging to macroscopic specimens has the potential for providing insights across multiple length scales, but its feasibility has long been an open question. By combining the imaging requirements and existing proof-of-principle examples in large-specimen preparation, data acquisition and reconstruction algorithms, the authors provide imaging time estimates for howX-ray nanoimaging can be scaled to macroscopic specimens. To arrive at this estimate, a phase contrast imaging model that includes plural scattering effects is used to calculate the required exposure and corresponding radiation dose. The coherent X-ray flux anticipated from upcoming diffraction-limited light sources is then considered. This imaging time estimation is in particular applied to the case of the connectomes of whole mouse brains. To image the connectome of the whole mouse brain, electron microscopy connectomics might require years, whereas optimized X-ray microscopy connectomics could reduce this to one week. Furthermore, this analysis points to challenges that need to be overcome (such as increased X-ray detector frame rate) and opportunities that advances in artificial-intelligence-based 'smart' scanning might provide. While the technical advances required are daunting, it is shown that X-ray microscopy is indeed potentially applicable to nanoimaging of millimetre- or even centimetre-size specimens.
Collapse
Affiliation(s)
- Ming Du
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zichao (Wendy) Di
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Doǧa Gürsoy
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
| | - R. Patrick Xian
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Maki-Yonekura S, Hamaguchi T, Naitow H, Takaba K, Yonekura K. Advances in cryo-EM and ED with a cold-field emission beam and energy filtration -Refinements of the CRYO ARM 300 system in RIKEN SPring-8 center. Microscopy (Oxf) 2021; 70:232-240. [PMID: 33245780 DOI: 10.1093/jmicro/dfaa052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
We have designed and evaluated a cryo-electron microscopy (cryo-EM) system for higher-resolution single particle analysis and high-precision electron 3D crystallography. The system comprises a JEOL CRYO ARM 300 electron microscope-the first machine of this model-and a direct detection device camera, a scintillator-coupled camera, GPU clusters connected with a camera control computer and software for automated-data collection and efficient and accurate operation. The microscope provides parallel illumination of a highly coherent 300-kV electron beam to a sample from a cold-field emission gun and filters out energy-loss electrons through the sample with an in-column energy filter. The gun and filter are highly effective in improving imaging and diffraction, respectively, and have provided high quality data since July 2018. We here report on the characteristics of the cryo-EM system, updates, our progress and future plan for running such cryo-EM machines in RIKEN SPring-8 Center.
Collapse
Affiliation(s)
- Saori Maki-Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Hisashi Naitow
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Kiyofumi Takaba
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| |
Collapse
|
14
|
Takaba K, Maki-Yonekura S, Inoue S, Hasegawa T, Yonekura K. Protein and Organic-Molecular Crystallography With 300kV Electrons on a Direct Electron Detector. Front Mol Biosci 2021; 7:612226. [PMID: 33469549 PMCID: PMC7814344 DOI: 10.3389/fmolb.2020.612226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Electron 3D crystallography can reveal the atomic structure from undersized crystals of various samples owing to the strong scattering power of electrons. Here, a direct electron detector DE64 was tested for small and thin crystals of protein and an organic molecule using a JEOL CRYO ARM 300 electron microscope. The microscope is equipped with a cold-field emission gun operated at an accelerating voltage of 300 kV, quad condenser lenses for parallel illumination, an in-column energy filter, and a stable rotational goniometer stage. Rotational diffraction data were collected in an unsupervised manner from crystals of a heme-binding enzyme catalase and a representative organic semiconductor material Ph-BTBT-C10. The structures were determined by molecular replacement for catalase and by the direct method for Ph-BTBT-C10. The analyses demonstrate that the system works well for electron 3D crystallography of these molecules with less damaging, a smaller point spread, and less noise than using the conventional scintillator-coupled camera.
Collapse
Affiliation(s)
- Kiyofumi Takaba
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | | | - Satoru Inoue
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Hasegawa
- Department of Applied Physics, The University of Tokyo, Tokyo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan.,Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, Sayo, Japan.,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Abstract
Microcrystal electron diffraction (MicroED) is a technique for structure determination that relies on the strong interaction of electrons with a minuscule, crystalline sample. While some of the electrons used to probe the crystal interact without altering the crystal, others deposit energy which changes the sample through a series of damage events. It follows that the sample cannot be observed without damaging it, and the frames obtained at the beginning of data collection reflect a crystal that differs from the one that yields the last frames of the dataset. Data acquisition at cryogenic temperatures has been found to reduce the rate of damage progression and is routinely used to increase the dose tolerance of the crystal, allowing more useful data to be obtained before the sample is destroyed. Low-dose data collection can further prolong the lifetime of the crystal, such that less damage is inflicted over the course of data acquisition. Ideally, lower doses increase the measurable volume of a single-crystal lattice by reducing the damage caused by probing electrons. However, the information that can be recovered from a diffraction image is directly related to the number of electrons used to probe the sample. The signal from a weakly exposed crystal runs the risk of being lost in the noise contributed by solvent, crystal disorder, and the electron detection process. This work focuses on obtaining the best possible data from a MicroED measurement, which requires considering several aspects such as sample, dose, and camera type.
Collapse
|
16
|
Abstract
Cryo-electron tomography (cryo-ET) is an extremely powerful tool which is used to image cellular features in their close-to-native environment at a resolution where both protein structure and membrane morphology can be revealed. Compared to conventional electron microscopy methods for biology, cryo-ET does not include the use of potentially artifact generating agents for sample fixation or visualization. Despite its obvious advantages, cryo-ET has not been widely adopted by cell biologists. This might originate from the overwhelming and constantly growing number of complex ways to record and process data as well as the numerous methods available for sample preparation. In this chapter, we will take one step back and guide the reader through the essential steps of sample preparation using mammalian cells, as well as the basic steps involved in data recording and processing. The described protocol will allow the reader to obtain data that can be used for morphological analysis and precise measurements of biological structures in their cellular environment. Furthermore, this data can be used for more elaborate structural analysis by applying further image processing steps like subtomogram averaging, which is required to determine the structure of proteins.
Collapse
|
17
|
Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PMGE, Grigoras IT, Malinauskaite L, Malinauskas T, Miehling J, Uchański T, Yu L, Karia D, Pechnikova EV, de Jong E, Keizer J, Bischoff M, McCormack J, Tiemeijer P, Hardwick SW, Chirgadze DY, Murshudov G, Aricescu AR, Scheres SHW. Single-particle cryo-EM at atomic resolution. Nature 2020; 587:152-156. [PMID: 33087931 PMCID: PMC7611073 DOI: 10.1038/s41586-020-2829-0] [Citation(s) in RCA: 496] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the β3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.
Collapse
Affiliation(s)
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | - Ioana T Grigoras
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Physics, Imperial College London, London, UK
| | | | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Lingbo Yu
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Dimple Karia
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Evgeniya V Pechnikova
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Erwin de Jong
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Jeroen Keizer
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Maarten Bischoff
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Jamie McCormack
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Peter Tiemeijer
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Nagashima S, Ikai T, Sasaki Y, Kawasaki T, Hatanaka T, Kato H, Kishita K. Atomic-Level Observation of Electrochemical Platinum Dissolution and Redeposition. NANO LETTERS 2019; 19:7000-7005. [PMID: 31524402 DOI: 10.1021/acs.nanolett.9b02382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An understanding of electrochemical dynamics at solid-liquid interfaces is essential to develop advanced batteries and fuel cells and so on. For example, an atomic-level understanding of electrochemical Pt dissolution and redeposition behavior is crucial for optimizing the material design and operating conditions of polymer electrolyte fuel cells (PEFCs). This understanding enables the prevention of the degradation of Pt nanoparticles used as electrocatalysts. However, the mechanisms of Pt dissolution and redeposition are still not fully understood due to the lack of spatial resolution available with current observation techniques. Here, we have revealed for the first time atomic-level electrochemical Pt dissolution and redeposition behavior using in-house-developed observation techniques. We achieved atomic-level observations of closed-cell type liquid electrochemical transmission electron microscopy (TEM) by combining in-house-developed microelectromechanical system (MEMS) chips as an electrochemical cell, an aberration-corrected TEM apparatus, and an energy filter. Furthermore, accurate and stable potential control was achieved using an in-house-developed reversible hydrogen electrode (RHE) with a liquid junction connected to the outside of a TEM specimen holder. Our observation results confirmed that Pt dissolves from surface step edges layer-by-layer, as previously predicted by the density functional theory (DFT). The observation techniques developed are also applicable to other research fields concerning electrochemistry.
Collapse
Affiliation(s)
- Shinya Nagashima
- Material Creation & Analysis Department , Toyota Motor Corporation , Toyota 471-8572 , Japan
- Advanced Technology , Toyota Motor Europe , Zaventem 1930 , Belgium
| | - Toshihiro Ikai
- Catalyst Design Department , Toyota Motor Corporation , Toyota 471-8572 , Japan
| | - Yuki Sasaki
- Nanostructures Research Laboratory , Japan Fine Ceramics Center , Nagoya 456-8587 , Japan
| | - Tadahiro Kawasaki
- Nanostructures Research Laboratory , Japan Fine Ceramics Center , Nagoya 456-8587 , Japan
| | - Tatsuya Hatanaka
- Sustainable Energy & Environment Department , Toyota Central R&D Laboratories, Inc. , Nagakute 480-1192 , Japan
| | - Hisao Kato
- Advanced Material Engineering Division , Toyota Motor Corporation , Susono 410-1193 , Japan
| | - Keisuke Kishita
- Material Creation & Analysis Department , Toyota Motor Corporation , Toyota 471-8572 , Japan
- Advanced Technology , Toyota Motor Europe , Zaventem 1930 , Belgium
| |
Collapse
|
19
|
Peet MJ, Henderson R, Russo CJ. The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules. Ultramicroscopy 2019; 203:125-131. [PMID: 30773415 PMCID: PMC6495108 DOI: 10.1016/j.ultramic.2019.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 11/19/2022]
Abstract
Carbon elastic and inelastic electron scattering cross sections are measured vs. energy. Elastic scattering is compared to energy deposition and radiation damage. An optimal energy for cryoEM of a given biological specimen thickness is determined.
We have measured the dependence on electron energy of elastic and inelastic scattering cross-sections from carbon, over the energy range that includes 100 keV to 300 keV. We also compared quantitatively the radiation damage to bacteriorhodopsin and paraffin (C44H90) at 100 keV and 300 keV by observing the fading of the diffraction spots from two-dimensional crystals as a function of electron fluence. The elastic cross-section is 2.01 - fold greater at 100 keV than at 300 keV, whereas the radiation damage increased by only 1.57. This implies that the amount of useful information from diffraction patterns or images of most biological structures should be 25% greater using 100 keV rather than 300 keV electrons. Using these measurements, we calculate the energy dependence of the available information per unit damage for a specimen of a particular thickness, which we call the “information coefficient.” This allows us to determine the optimal energy for imaging a biological specimen of a given thickness. We find that for most single particle cryoEM specimens, 100 keV provides not only the highest potential for information per unit damage, but would also simplify the instrument while retaining the potential to reach high resolution with a minimum of data. These measurements will help guide the development and use of electron cryomicroscopes for biology.
Collapse
Affiliation(s)
- Mathew J Peet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
20
|
Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:406-419. [PMID: 30175702 PMCID: PMC6265046 DOI: 10.1017/s1431927618012382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful tool for macromolecular to near-atomic resolution structure determination in the biological sciences. The specimen is maintained in a near-native environment within a thin film of vitreous ice and imaged in a transmission electron microscope. The images can then be processed by a number of computational methods to produce three-dimensional information. Recent advances in sample preparation, imaging, and data processing have led to tremendous growth in the field of cryo-EM by providing higher resolution structures and the ability to investigate macromolecules within the context of the cell. Here, we review developments in sample preparation methods and substrates, detectors, phase plates, and cryo-correlative light and electron microscopy that have contributed to this expansion. We also have included specific biological applications.
Collapse
Affiliation(s)
- Rebecca S Dillard
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Cheri M Hampton
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Joshua D Strauss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Zunlong Ke
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Deanna Altomara
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Ricardo C Guerrero-Ferreira
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Gabriella Kiss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Elizabeth R Wright
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| |
Collapse
|
21
|
|
22
|
Ewald sphere correction using a single side-band image processing algorithm. Ultramicroscopy 2018; 187:26-33. [PMID: 29413409 PMCID: PMC5862657 DOI: 10.1016/j.ultramic.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022]
Abstract
Curvature of the Ewald sphere limits the resolution at which Fourier components in an image can be approximated as corresponding to a projection of the object. Since the radius of the Ewald sphere is inversely proportional to the wavelength of the imaging electrons, this normally imposes a limit on the thickness of specimen for which images can be easily interpreted to a particular resolution. Here we present a computational method for precisely correcting for the curvature of the Ewald sphere using defocused images that delocalise the high-resolution Fourier components from the primary image. By correcting for each approximately Friedel-symmetry-related sideband separately using two distinct complex transforms that effectively move the displaced Fourier components back to where they belong in the structure, we can determine the amplitude and phase of each of the Fourier components separately. This precisely accounts for the effect of Ewald sphere curvature over a bandwidth defined by the defocus and the size of the particle being imaged. We demonstrate this processing algorithm using: 1. simulated images of a particle with only a single, high-resolution Fourier component, and 2. experimental images of gold nanoparticles embedded in ice. Processing micrographs with this algorithm will allow higher resolution imaging of thicker specimens at lower energies without any image degradation or blurring due to errors made by the assumption of a flat Ewald sphere. Although the procedure will work best on images recorded with higher defocus settings than used normally, it should still improve 3D single-particle structure determination using images recorded at any defocus and any electron energy. Finally, since the Ewald sphere curvature is in a known direction in the third dimension which is parallel to the direction of view, this algorithm automatically determines the absolute hand of the specimen without the need for pairs of images with a known tilt angle difference.
Collapse
|
23
|
Du M, Jacobsen C. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials. Ultramicroscopy 2018; 184:293-309. [PMID: 29073575 PMCID: PMC5696083 DOI: 10.1016/j.ultramic.2017.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 12/01/2022]
Abstract
Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.
Collapse
Affiliation(s)
- Ming Du
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439, USA; Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston IL 60208, USA.
| |
Collapse
|
24
|
Dwyer JR, Harb M. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. APPLIED SPECTROSCOPY 2017; 71:2051-2075. [PMID: 28714316 DOI: 10.1177/0003702817715496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.
Collapse
Affiliation(s)
- Jason R Dwyer
- 1 Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Maher Harb
- 2 Department of Physics and Materials, Science & Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Sorzano C, Vargas J, Otón J, Abrishami V, de la Rosa-Trevín J, Gómez-Blanco J, Vilas J, Marabini R, Carazo J. A review of resolution measures and related aspects in 3D Electron Microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 124:1-30. [DOI: 10.1016/j.pbiomolbio.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/22/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022]
|
26
|
Mishyna M, Volokh O, Danilova Y, Gerasimova N, Pechnikova E, Sokolova OS. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Micron 2017; 96:57-64. [PMID: 28262565 DOI: 10.1016/j.micron.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/18/2017] [Accepted: 02/18/2017] [Indexed: 11/26/2022]
Abstract
Nucleic acids are responsible for the storage, transfer and realization of genetic information in the cell, which provides correct development and functioning of organisms. DNA interaction with ligands ensures the safety of this information. Over the past 10 years, advances in electron microscopy and image processing allowed to obtain the structures of key DNA-protein complexes with resolution below 4Å. However, radiation damage is a limiting factor to the potentially attainable resolution in cryo-EM. The prospect and limitations of studying protein-DNA complex interactions using cryo-electron microscopy are discussed here. We reviewed the ways to minimize radiation damage in biological specimens and the possibilities of using radiation damage (so-called 'bubblegrams') to obtain additional structural information.
Collapse
Affiliation(s)
- M Mishyna
- Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - O Volokh
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Ya Danilova
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - N Gerasimova
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - E Pechnikova
- Thermo Fisher Scientific, Materials & Structural Analysis, 5651 GG Eindhoven, Netherlands
| | - O S Sokolova
- Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
27
|
Majorovits E, Angert I, Kaiser U, Schröder RR. Benefits and Limitations of Low-kV Macromolecular Imaging of Frozen-Hydrated Biological Samples. Biophys J 2016; 110:776-84. [PMID: 26910420 DOI: 10.1016/j.bpj.2016.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Object contrast is one of the most important parameters of macromolecular imaging. Low-voltage transmission electron microscopy has shown an increased atom contrast for carbon materials, indicating that amplitude contrast contributions increase at a higher rate than phase contrast and inelastic scattering. Here, we studied image contrast using ice-embedded tobacco mosaic virus particles as test samples at 20-80 keV electron energy. The particles showed the expected increase in contrast for lower energies, but at the same time the 2.3-nm-resolution measure decayed more rapidly. We found a pronounced signal loss below 60 keV, and therefore we conclude that increased inelastic scattering counteracts increased amplitude contrast. This model also implies that as long as the amplitude contrast does not increase with resolution, beam damage and multiple scattering will always win over increased contrast at the lowest energies. Therefore, we cannot expect that low-energy imaging of conventionally prepared samples would provide better data than state-of-the-art 200-300 keV imaging.
Collapse
Affiliation(s)
| | | | | | - Rasmus R Schröder
- Centre for Advanced Materials, Universität Heidelberg, Heidelberg, Germany; Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg, Germany.
| |
Collapse
|
28
|
Russo CJ, Passmore LA. Progress towards an optimal specimen support for electron cryomicroscopy. Curr Opin Struct Biol 2016; 37:81-9. [PMID: 26774849 PMCID: PMC4863039 DOI: 10.1016/j.sbi.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023]
Abstract
Physical principles of electron scattering govern the design of specimen supports. Radiation-induced motion causes loss of resolution in electron micrographs. Specimen supports can now be designed to reduce specimen motion. Tailored surfaces in the support allow control of particle distribution and orientation. Future developments in support technology will further improve image quality.
The physical principles of electron–specimen interaction govern the design of specimen supports for electron cryomicroscopy (cryo-EM). Supports are constructed to suspend biological samples within the vacuum of the electron microscope in a way that maximises image contrast. Although the problem of specimen motion during imaging has been known since cryo-EM was first developed, the role of the support in this movement has only been recently identified. Here we review the key technological advances in specimen supports for cryo-EM. This includes the use of graphene as a surface for the adsorption of proteins and the design of an ultrastable, all-gold substrate that reduces the motion of molecules during electron irradiation. We discuss the implications of these and other recent improvements in specimen supports on resolution, and place them in the context of important developments in structure determination by cryo-EM.
Collapse
Affiliation(s)
- Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
29
|
Yan R, Edwards TJ, Pankratz LM, Kuhn RJ, Lanman JK, Liu J, Jiang W. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law. J Struct Biol 2015; 192:287-96. [PMID: 26433027 DOI: 10.1016/j.jsb.2015.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/26/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples.
Collapse
Affiliation(s)
- Rui Yan
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas J Edwards
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Logan M Pankratz
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jason K Lanman
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
Visualization and quality assessment of the contrast transfer function estimation. J Struct Biol 2015; 192:222-34. [PMID: 26080023 DOI: 10.1016/j.jsb.2015.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/20/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022]
Abstract
The contrast transfer function (CTF) describes an undesirable distortion of image data from a transmission electron microscope. Many users of full-featured processing packages are often new to electron microscopy and are unfamiliar with the CTF concept. Here we present a common graphical output to clearly demonstrate the CTF fit quality independent of estimation software. Separately, many software programs exist to estimate the four CTF parameters, but their results are difficult to compare across multiple runs and it is all but impossible to select the best parameters to use for further processing. A new measurement is presented based on the correlation falloff of the calculated CTF oscillations against the normalized oscillating signal of the data, called the CTF resolution. It was devised to provide a robust numerical quality metric of every CTF estimation for high-throughput screening of micrographs and to select the best parameters for each micrograph. These new CTF visualizations and quantitative measures will help users better assess the quality of their CTF parameters and provide a mechanism to choose the best CTF tool for their data.
Collapse
|
31
|
Schröder RR. Advances in electron microscopy: A qualitative view of instrumentation development for macromolecular imaging and tomography. Arch Biochem Biophys 2015; 581:25-38. [PMID: 26032338 DOI: 10.1016/j.abb.2015.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 02/03/2023]
Abstract
Macromolecular imaging and tomography of ice embedded samples has developed into a mature imaging technology, in structural biology today widely referred to simply as cryo electron microscopy.(1) While the pioneers of the technique struggled with ill-suited instruments, state-of-the-art cryo microscopes are now readily available and an increasing number of groups are producing excellent high-resolution structural data of macromolecular complexes, of cellular organelles, or the morphology of whole cells. Instrumentation developers, however, are offering yet more novel electron optical devices, such as energy filters and monochromators, aberration correctors or physical phase plates. Here we discuss how current instrumentation has already changed cryo EM, and how newly available instrumentation - often developed in other fields of electron microscopy - may further develop the use and applicability of cryo EM to the imaging of single isolated macromolecules of smaller size or molecules embedded in a crowded cellular environment.
Collapse
Affiliation(s)
- Rasmus R Schröder
- Cryo Electron Microscopy, CellNetwork, BioQuant, Universitätsklinikum Heidelberg, Universität Heidelberg, Germany.
| |
Collapse
|
32
|
van de Put MWP, Patterson JP, Bomans PHH, Wilson NR, Friedrich H, van Benthem RATM, de With G, O'Reilly RK, Sommerdijk NAJM. Graphene oxide single sheets as substrates for high resolution cryoTEM. SOFT MATTER 2015; 11:1265-70. [PMID: 25516333 DOI: 10.1039/c4sm02587c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CryoTEM is an important tool in the analysis of soft matter, where generally defocus conditions are used to enhance the contrast in the images, but this is at the expense of the maximum resolution that can be obtained. Here, we demonstrate the use of graphene oxide single sheets as support for the formation of 10 nm thin films for high resolution cryoTEM imaging, using DNA as an example. With this procedure, the overlap of objects in the vitrified film is avoided. Moreover, in these thin films less background scattering occurs and as a direct result, an increased contrast can be observed in the images. Hence, imaging closer to focus as compared with conventional cryoTEM procedures is achieved, without losing contrast. In addition, we demonstrate an ~1.8 fold increase in resolution, which is crucial for accurate size analysis of nanostructures.
Collapse
Affiliation(s)
- Marcel W P van de Put
- Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Timmermans FJ, Otto C. Contributed review: Review of integrated correlative light and electron microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:011501. [PMID: 25638065 DOI: 10.1063/1.4905434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.
Collapse
Affiliation(s)
- F J Timmermans
- Medical Cell Biophysics Group, MIRA Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - C Otto
- Medical Cell Biophysics Group, MIRA Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
34
|
Rochat RH, Hecksel CW, Chiu W. Cryo-EM techniques to resolve the structure of HSV-1 capsid-associated components. Methods Mol Biol 2014; 1144:265-81. [PMID: 24671690 DOI: 10.1007/978-1-4939-0428-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electron cryo-microscopy has become a routine technique to determine the structure of biochemically purified herpes simplex virus capsid particles. This chapter describes the procedures of specimen preparation by cryopreservation; low dose and low temperature imaging in an electron cryo-microscope; and data processing for reconstruction. This methodology has yielded subnanometer resolution structures of the icosahedral capsid shell where α-helices and β-sheets of individual subunits can be recognized. A relaxation of the symmetry in the reconstruction steps allows us to resolve the DNA packaging protein located at one of the 12 vertices in the capsid.
Collapse
Affiliation(s)
- Ryan H Rochat
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | |
Collapse
|
35
|
Rochette CN, Crassous JJ, Drechsler M, Gaboriaud F, Eloy M, de Gaudemaris B, Duval JFL. Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14655-14665. [PMID: 24152085 DOI: 10.1021/la4036858] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interfacial structure of natural rubber (NR) colloids is investigated by means of cryogenic transmission electron microscopy (cryo-TEM) and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). The asymptotic plateau value reached by NR electrophoretic mobility (μ) in the thin double layer limit supports the presence of a soft (ion- and water-permeable) polyelectrolytic type of layer located at the periphery of the NR particles. This property is confirmed by the analysis of the electron density profile obtained from cryo-TEM that evidences a ∼2-4 nm thick corona surrounding the NR polyisoprene core. The dependence of μ on pH and salt concentration is further marked by a dramatic decrease of the point of zero electrophoretic mobility (PZM) from 3.6 to 0.8 with increasing electrolyte concentration in the range 4-300 mM. Using a recent theory for electrohydrodynamics of soft multilayered particles, this "anomalous" dependence of the PZM on electrolyte concentration is shown to be consistent with a radial organization of anionic and cationic groups across the peripheral NR structure. The NR electrokinetic response in the pH range 1-8 is indeed found to be equivalent to that of particles surrounded by a positively charged ∼3.5 nm thick layer (mean dissociation pK ∼ 4.2) supporting a thin and negatively charged outermost layer (0.6 nm in thickness, pK ∼ 0.7). Altogether, the strong dependence of the PZM on electrolyte concentration suggests that the electrostatic properties of the outer peripheral region of the NR shell are mediated by lipidic residues protruding from a shell containing a significant amount of protein-like charges. This proposed NR shell interfacial structure questions previously reported NR representations according to which the shell consists of either a fully mixed lipid-protein layer, or a layer of phospholipids residing exclusively beneath an outer proteic film.
Collapse
Affiliation(s)
- Christophe N Rochette
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine , UMR 7360, 15 avenue du Charmois, Vandœuvre-lès-Nancy, F-54501, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Georges AD, Hashem Y, Buss SN, Jossinet F, Zhang Q, Liao HY, Fu J, Jobe A, Grassucci RA, Langlois R, Bajaj C, Westhof E, Madison-Antenucci S, Frank J. High-resolution Cryo-EM Structure of the Trypanosoma brucei Ribosome: A Case Study. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-9521-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
37
|
Patterson JP, Kelley EG, Murphy RP, Moughton AO, Robin M, Lu A, Colombani O, Chassenieux C, Cheung D, Sullivan MO, Epps TH, O’Reilly RK. Structural characterization of amphiphilic homopolymer micelles using light scattering, SANS, and cryo-TEM. Macromolecules 2013; 46:6319-6325. [PMID: 24058209 PMCID: PMC3777398 DOI: 10.1021/ma4007544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the aqueous solution self-assembly of a series of poly(N-isopropylacrylamide) (PNIPAM) polymers end-functionalized with a hydrophobic sulfur-carbon-sulfur (SCS) pincer ligand. Although the hydrophobic ligand accounted for <5 wt% of the overall homopolymer mass, the polymers self-assembled into well-defined spherical micelles in aqueous solution, and these micelles are potential precursors to solution-assembled nanoreactors for small molecule catalysis applications. The micelle structural details were investigated using light scattering, cryogenic transmission electron microscopy (cryo-TEM), and small angle neutron scattering (SANS). Radial density profiles extracted from the cryo-TEM micrographs suggested that the PNIPAM chains formed a diffuse corona with a radially decreasing corona density profile and provided valuable a priori information about the micelle structure for SANS data modeling. SANS analysis indicated a similar profile in which the corona surrounded a small hydrophobic core containing the pincer ligand. The similarity between the SANS and cryo-TEM results demonstrated that detailed information about the micelle density profile can be obtained directly from cryo-TEM and highlighted the complementary use of scattering and cryo-TEM in the structural characterization of solution-assemblies, such as the SCS pincer-functionalized homopolymers described here.
Collapse
Affiliation(s)
- Joseph P. Patterson
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Elizabeth G. Kelley
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Ryan P. Murphy
- University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, DE 19716, United States
| | - Adam O. Moughton
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Mathew Robin
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Annhelen Lu
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Olivier Colombani
- LUNAM Université, Université du Maine, IMMM UMR CNRS 6283, Département PCI, Avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France
| | - Christophe Chassenieux
- LUNAM Université, Université du Maine, IMMM UMR CNRS 6283, Département PCI, Avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France
| | - David Cheung
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Millicent O. Sullivan
- University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, DE 19716, United States
| | - Thomas H. Epps
- University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, DE 19716, United States
| | - Rachel K. O’Reilly
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
38
|
Vulović M, Ravelli RBG, van Vliet LJ, Koster AJ, Lazić I, Lücken U, Rullgård H, Öktem O, Rieger B. Image formation modeling in cryo-electron microscopy. J Struct Biol 2013; 183:19-32. [PMID: 23711417 DOI: 10.1016/j.jsb.2013.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 11/16/2022]
Abstract
Accurate modeling of image formation in cryo-electron microscopy is an important requirement for quantitative image interpretation and optimization of the data acquisition strategy. Here we present a forward model that accounts for the specimen's scattering properties, microscope optics, and detector response. The specimen interaction potential is calculated with the isolated atom superposition approximation (IASA) and extended with the influences of solvent's dielectric and ionic properties as well as the molecular electrostatic distribution. We account for an effective charge redistribution via the Poisson-Boltzmann approach and find that the IASA-based potential forms the dominant part of the interaction potential, as the contribution of the redistribution is less than 10%. The electron wave is propagated through the specimen by a multislice approach and the influence of the optics is included via the contrast transfer function. We incorporate the detective quantum efficiency of the camera due to the difference between signal and noise transfer characteristics, instead of using only the modulation transfer function. The full model was validated against experimental images of 20S proteasome, hemoglobin, and GroEL. The simulations adequately predict the effects of phase contrast, changes due to the integrated electron flux, thickness, inelastic scattering, detective quantum efficiency and acceleration voltage. We suggest that beam-induced specimen movements are relevant in the experiments whereas the influence of the solvent amorphousness can be neglected. All simulation parameters are based on physical principles and, when necessary, experimentally determined.
Collapse
Affiliation(s)
- Miloš Vulović
- Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Moriya T, Mio K, Sato C. Novel convergence-oriented approach for evaluation and optimization of workflow in single-particle two-dimensional averaging of electron microscope images. Microscopy (Oxf) 2013; 62:491-513. [PMID: 23625506 DOI: 10.1093/jmicro/dft026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional (3D) protein structures facilitate the understanding of their biological functions and provide valuable information for developing medicines. Single-particle analysis (SPA) from electron microscopy (EM) is a structure determination method suitable for macromolecules. To achieve a high resolution using combinations of several SPA software packages, 'workflow' optimization and comparative evaluation by scoring results are essential. Two-dimensional (2D) averaging is a key step for 3D reconstruction. The integrated convergence-evaluation oriented system (IC-EOS) proposed here provides an effective tool for customizing 2D averaging. This assesses the behavior and characteristics of workflows and evaluates the convergence of iteration steps without human intervention. We chose five base measurements for quantifying convergence: resolution, variance, similarity, shift-distance and rotation-angle. Curve fitting to history graphs scored their stability. We call this score 'fluctuation'. The number of particle images discarded from the library and the number of classification groups were examined to see their effects on optimization levels and fluctuation of measurements, allowing the IC-EOS to select the most appropriate workflow for the target. A case study using a bacterial sodium channel and a simulation study using GroEL showed that resolution of 2D averaging improved with relatively stricter particle selection. With fewer groups, resolutions of class averages improved, but similarities between class-averages and their constituent particle images degraded. Fluctuation was useful for selecting adequate conditions, even when achieved values alone were not conclusive. The vote method, using fluctuation, was robust against noise and enabled a decision without exhaustive search trials. Thus, the IC-EOS is a step toward full automation of SPA.
Collapse
Affiliation(s)
- Toshio Moriya
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | |
Collapse
|
40
|
Abstract
Single particle electron microscopy is a versatile technique for the structural analysis of protein complexes in near-native conditions. While tremendous progress has been made during the past few decades in techniques for specimen preparation, imaging, and image analysis, the field is still in development. In the context of this volume on electron crystallography, the following chapter gives practical guidelines on how to begin single particle EM studies, including preparing specimens, selecting imaging conditions, and choosing which of the many approaches to image analysis are appropriate for a specific sample.
Collapse
Affiliation(s)
- Wilson C Y Lau
- Molecular Structure and Function Program, Departments of Biochemistry and Medical Biophysics, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
41
|
Abstract
Imaging samples in liquids with electron microscopy can provide unique insights into biological systems, such as cells containing labelled proteins, and into processes of importance in materials science, such as nanoparticle synthesis and electrochemical deposition. Here we review recent progress in the use of electron microscopy in liquids and its applications. We examine the experimental challenges involved and the resolution that can be achieved with different forms of the technique. We conclude by assessing the potential role that electron microscopy of liquid samples can play in areas such as energy storage and bioimaging.
Collapse
Affiliation(s)
- Niels de Jonge
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
42
|
Karuppasamy M, Karimi Nejadasl F, Vulovic M, Koster AJ, Ravelli RBG. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:398-412. [PMID: 21525648 PMCID: PMC3083915 DOI: 10.1107/s090904951100820x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 03/03/2011] [Indexed: 05/02/2023]
Abstract
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.
Collapse
Affiliation(s)
- Manikandan Karuppasamy
- Department of Molecular Cell Biology, Electron Microscopy Section, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy (EM), we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural EM, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or "sharpening") of the EM map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparative interpretation. Finally, we present a semiheuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas, Houston Medical School, Houston, Texas, USA
| |
Collapse
|
45
|
Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Ballauff M, Drechsler M. Quantitative analysis of polymer colloids by cryo-transmission electron microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7862-7871. [PMID: 19317419 DOI: 10.1021/la900442x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The structure of colloidal latex particles in dilute suspension at room temperature is investigated by cryogenic transmission electron microscopy (cryo-TEM). Two types of particles are analyzed: (i) core particles made of polystyrene with a thin layer of poly(N-isopropylacrylamide) (PNIPAM) and (ii) core-shell particles consisting of core particles onto which a network of cross-linked PNIPAM is affixed. Both systems are also studied by small-angle X-ray scattering (SAXS). The radial density profile of both types of particles have been derived from the cryo-TEM micrographs by image processing and compared to the results obtained by SAXS. Full agreement is found for the core particles. There is a discrepancy between the two methods in case of the core-shell particles. The discrepancy is due to the buckling of the network affixed to the surface. The buckling is clearly visible in the cryo-TEM pictures. The overall dimensions derived from cryo-TEM agree well with the hydrodynamic radius of the particles. The comparison of these data with the analysis by SAXS shows that SAXS is only sensitive to the average radial structure as expected. All data show that cryo-TEM micrographs can be evaluated to yield quantitative information about the structure of colloidal particles.
Collapse
Affiliation(s)
- J J Crassous
- Physikalische Chemie I, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Danev R, Glaeser RM, Nagayama K. Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 2009; 109:312-25. [PMID: 19157711 PMCID: PMC3223123 DOI: 10.1016/j.ultramic.2008.12.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/15/2008] [Accepted: 12/02/2008] [Indexed: 11/26/2022]
Abstract
A number of practical issues must be addressed when using thin carbon films as quarter-wave plates for Zernike phase-contrast electron microscopy. We describe, for example, how we meet the more stringent requirements that must be satisfied for beam alignment in this imaging mode. In addition we address the concern that one might have regarding the loss of some of the scattered electrons as they pass through such a phase plate. We show that two easily measured parameters, (1) the low-resolution image contrast produced in cryo-EM images of tobacco mosaic virus particles and (2) the fall-off of the envelope function at high resolution, can be used to quantitatively compare the data quality for Zernike phase-contrast images and for defocused bright-field images. We describe how we prepare carbon-film phase plates that are initially free of charging or other effects that degrade image quality. We emphasize, however, that even though the buildup of hydrocarbon contamination can be avoided by heating the phase plates during use, their performance nevertheless deteriorates over the time scale of days to weeks, thus requiring their frequent replacement in order to maintain optimal performance.
Collapse
Affiliation(s)
- Radostin Danev
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Miyodaiji-cho, Okazaki, Aichi 444-8787, Japan.
| | | | | |
Collapse
|
47
|
Grimm, Typke, Baumeister. Improving image quality by zero‐loss energy filtering: quantitative assessment by means of image cross‐correlation. J Microsc 2008. [DOI: 10.1046/j.1365-2818.1998.00322.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Grimm
- Max‐Planck‐Institut für Biochemie, Abteilung Molekulare Strukturbiologie, 82152 Martinsried, Germany
| | - Typke
- Max‐Planck‐Institut für Biochemie, Abteilung Molekulare Strukturbiologie, 82152 Martinsried, Germany
| | - Baumeister
- Max‐Planck‐Institut für Biochemie, Abteilung Molekulare Strukturbiologie, 82152 Martinsried, Germany
| |
Collapse
|
48
|
Maki-Yonekura S, Yonekura K. Electron digital imaging toward high-resolution structure analysis of biological macromolecules. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:362-369. [PMID: 18598572 DOI: 10.1017/s1431927608080665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Digital imaging has been applied to structure analysis of biological macromolecules in combination with electron energy filtering. Energy filtering can improve the image contrast of frozen-hydrated specimens, but needs a high-sensitivity imaging device instead of photographic film, because of a decrease in electrons after filtration. Here, a lens-coupled slow-scan charge-coupled device (SSCCD) camera with a post-column-type energy filter were examined to image bacterial flagellar filaments embedded in ice. We first measured the modulation transfer function of this camera and showed the remarkable improvement, compared to other fiber-coupled SSCCD cameras. The 3D structure calculated at approximately 7-angstroms resolution clearly resolves alpha-helices. Furthermore, filtered datasets recorded on the SSCCD camera with liquid-nitrogen and liquid-helium cooling were compared with the previous unfiltered one on film with liquid-helium cooling. This report describes the suitability of digital imaging with energy filtering for higher-resolution structure studies from its practical application.
Collapse
Affiliation(s)
- Saori Maki-Yonekura
- The W. M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158-2532, USA
| | | |
Collapse
|
49
|
Yonekura K, Braunfeld MB, Maki-Yonekura S, Agard DA. Electron energy filtering significantly improves amplitude contrast of frozen-hydrated protein at 300kV. J Struct Biol 2006; 156:524-36. [PMID: 16987672 DOI: 10.1016/j.jsb.2006.07.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 07/12/2006] [Accepted: 07/18/2006] [Indexed: 11/24/2022]
Abstract
The amplitude contrast of frozen-hydrated biological samples was measured using the bacterial flagellar filament embedded in vitreous ice at an accelerating voltage of 300kV. From the mean radial amplitude spectra of overfocused images, amplitude contrast was estimated to be 6.9+/-1.9% and 2.7+/-1.0% of the whole contrast at the low spatial frequency range with and without energy filtering, respectively, and that of the carbon film to be 9.5+/-2.0% and 5.8+/-1.8%. Energy filtering effectively doubled the signal-to-noise ratio in the images of frozen-hydrated filaments, and substantially improved intensity data statistics of layer lines up to at least approximately 25A resolution in their Fourier transforms. It also markedly improved inter-particle fitting phase residuals of averaged data at resolutions up to approximately 15A. Using the energy filtered data recorded on a new high-performance, lens-coupled CCD camera the three-dimensional map of the flagellar filament was calculated at 8A by applying the amplitude contrast of 6.9%. The map and its mean radial density distribution validated the obtained value of the amplitude contrast.
Collapse
Affiliation(s)
- Koji Yonekura
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 1700, 4th Street, San Francisco, CA 94158-2532, USA.
| | | | | | | |
Collapse
|
50
|
Penczek PA, Yang C, Frank J, Spahn CMT. Estimation of variance in single-particle reconstruction using the bootstrap technique. J Struct Biol 2006; 154:168-83. [PMID: 16510296 DOI: 10.1016/j.jsb.2006.01.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/24/2022]
Abstract
Density maps of a molecule obtained by single-particle reconstruction from thousands of molecule projections exhibit strong changes in local definition and reproducibility, as a consequence of conformational variability of the molecule and non-stoichiometry of ligand binding. These changes complicate the interpretation of density maps in terms of molecular structure. A three-dimensional (3-D) variance map provides an effective tool to assess the structural definition in each volume element. In this work, the different contributions to the 3-D variance in a single-particle reconstruction are discussed, and an effective method for the estimation of the 3-D variance map is proposed, using a bootstrap technique of sampling. Computations with test data confirm the viability, computational efficiency, and accuracy of the method under conditions encountered in practical circumstances.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| | | | | | | |
Collapse
|