1
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
2
|
Senthilvelan A, Shanmugasundaram M, Kore AR. An efficient synthesis of 3'-O-triazole modified guanosine-5'-O-monophosphate using click chemistry. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:418-427. [PMID: 30938235 DOI: 10.1080/15257770.2018.1554223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
First chemical synthesis of 3'-O-1,2,3-triazolyl-guanosine-5'-O-monophosphate by copper catalyzed click chemistry is described. The present cycloaddition reaction involves, in situ generation of azide from the corresponding bromide followed by copper catalyst cycloaddition with 3'-O-propargyl guanosine monophosphate in water, in the presence of catalytic amount of β-cyclodextrin. The CuAAC reaction is highly regioselective forming 1,4-cycloadduct with good yield and high purity. The final compound, 3'-O -triazole substituted guanosine monophosphate has the potential to use in various biomolecules such as labeled nucleic acids, mRNA dinucleotide cap analogs for molecular biology and their applications in the therapeutic field.
Collapse
Affiliation(s)
| | | | - Anilkumar R Kore
- a Life Sciences Solutions Group, Thermo Fisher Scientific , Austin , TX , USA
| |
Collapse
|
3
|
Sunamura EI, Kamei T, Konno H, Tamaoki N, Hisabori T. Reversible control of F(1)-ATPase rotational motion using a photochromic ATP analog at the single molecule level. Biochem Biophys Res Commun 2014; 446:358-63. [PMID: 24607907 DOI: 10.1016/j.bbrc.2014.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/25/2014] [Indexed: 11/16/2022]
Abstract
Motor enzymes such as F1-ATPase and kinesin utilize energy from ATP for their motion. Molecular motions of these enzymes are critical to their catalytic mechanisms and were analyzed thoroughly using a single molecule observation technique. As a tool to analyze and control the ATP-driven motor enzyme motion, we recently synthesized a photoresponsive ATP analog with a p-tert-butylazobenzene tethered to the 2' position of the ribose ring. Using cis/trans isomerization of the azobenzene moiety, we achieved a successful reversible photochromic control over a kinesin-microtubule system in an in vitro motility assay. Here we succeeded to control the hydrolytic activity and rotation of the rotary motor enzyme, F1-ATPase, using this photosensitive ATP analog. Subsequent single molecule observations indicated a unique pause occurring at the ATP binding angle position in the presence of cis form of the analog.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-Ku Tokyo 102-0076, Japan; Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Takashi Kamei
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan
| | - Hiroki Konno
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan.
| | - Toru Hisabori
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-Ku Tokyo 102-0076, Japan; Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan.
| |
Collapse
|
4
|
Sinnett SE, Sexton JZ, Brenman JE. A High Throughput Assay for Discovery of Small Molecules that Bind AMP-activated Protein Kinase (AMPK). CURRENT CHEMICAL GENOMICS 2013; 7:30-8. [PMID: 24396733 PMCID: PMC3854666 DOI: 10.2174/2213988501307010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 11/22/2022]
Abstract
AMPK is a conserved heterotrimeric serine-threonine kinase that regulates anabolic and catabolic pathways in eukaryotes. Its central role in cellular and whole body metabolism makes AMPK a commonly proposed therapeutic target for illnesses characterized by abnormal energy regulation, including cancer and diabetes. Many AMPK modulators, however, produce AMPK-independent effects. To identify drugs that modulate AMPK activity independent of the canonical ATP-binding pocket found throughout the kinome, we designed a robust fluorescence-based high throughput screening assay biased toward the identification of molecules that bind the regulatory region of AMPK through displacement of MANT-ADP, a fluorescent ADP analog. Automated pin tools were used to rapidly transfer small molecules to a low volume assay mixture on 384-well plates. Prior to assay validation, we completed a full assay optimization to maximize the signal-to-background and reduce variability for robust detection of small molecules displacing MANT-ADP. After validation, we screened 13,120 molecules and identified 3 positive hits that dose-dependently inhibited the protein-bound signal of MANT-ADP in the presence of both full-length AMPK and the truncated “regulatory fragment” of AMPK, which is missing the kinase active site. The average Z’-factor for the screen was 0.55 and the compound confirmation rate was 60%. Thus, this fluorescence-based assay may be paired with in vitro kinase assays and cell-based assays to help identify molecules that selectively regulate AMPK with fewer off-target effects on other kinases.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Neurobiology Curriculum, University of North Carolina Chapel Hill (UNC)
| | - Jonathan Z Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University
| | - Jay E Brenman
- UNC Neuroscience Center; ; Department of Cell Biology and Physiology, UNC
| |
Collapse
|
5
|
Interactions between the nucleosome histone core and Arp8 in the INO80 chromatin remodeling complex. Proc Natl Acad Sci U S A 2012; 109:20883-8. [PMID: 23213201 DOI: 10.1073/pnas.1214735109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Actin-related protein Arp8 is a component of the INO80 chromatin remodeling complex. Yeast Arp8 (yArp8) comprises two domains: a 25-KDa N-terminal domain, found only in yeast, and a 75-KDa C-terminal domain (yArp8CTD) that contains the actin fold and is conserved across other species. The crystal structure shows that yArp8CTD contains three insertions within the actin core. Using a combination of biochemistry and EM, we show that Arp8 forms a complex with nucleosomes, and that the principal interactions are via the H3 and H4 histones, mediated through one of the yArp8 insertions. We show that recombinant yArp8 exists in monomeric and dimeric states, but the dimer is the biologically relevant form required for stable interactions with histones that exploits the twofold symmetry of the nucleosome core. Taken together, these data provide unique insight into the stoichiometry, architecture, and molecular interactions between components of the INO80 remodeling complex and nucleosomes, providing a first step toward building up the structure of the complex.
Collapse
|
6
|
Ripoll-Rozada J, Peña A, Rivas S, Moro F, de la Cruz F, Cabezón E, Arechaga I. Regulation of the type IV secretion ATPase TrwD by magnesium: implications for catalytic mechanism of the secretion ATPase superfamily. J Biol Chem 2012; 287:17408-17414. [PMID: 22467878 DOI: 10.1074/jbc.m112.357905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrwD, the VirB11 homologue in conjugative plasmid R388, is a member of the large secretion ATPase superfamily, which includes ATPases from bacterial type II and type IV secretion systems, type IV pilus, and archaeal flagellae assembly. Based on structural studies of the VirB11 homologues in Helicobacter pylori and Brucella suis and the archaeal type II secretion ATPase GspE, a unified mechanism for the secretion ATPase superfamily has been proposed. Here, we have found that the ATP turnover of TrwD is down-regulated by physiological concentrations of magnesium. This regulation is exerted by increasing the affinity for ADP, hence delaying product release. Circular dichroism and limited proteolysis analysis indicate that magnesium induces conformational changes in the protein that promote a more rigid, but less active, form of the enzyme. The results shown here provide new insights into the catalytic mechanism of the secretion ATPase superfamily.
Collapse
Affiliation(s)
- Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander
| | - Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander
| | - Susana Rivas
- Unidad de Biofísica (CSIC-UPV/EH) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | - Fernando Moro
- Unidad de Biofísica (CSIC-UPV/EH) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander
| | - Elena Cabezón
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander.
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander.
| |
Collapse
|
7
|
Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+. Proc Natl Acad Sci U S A 2011; 108:1833-8. [PMID: 21239683 DOI: 10.1073/pnas.1017659108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trinitrophenyl derivatives of adenine nucleotides are widely used for probing ATP-binding sites. Here we describe crystal structures of Ca(2+)-ATPase, a representative P-type ATPase, in the absence of Ca(2+) with bound ATP, trinitrophenyl-ATP, -ADP, and -AMP at better than 2.4-Å resolution, stabilized with thapsigargin, a potent inhibitor. These crystal structures show that the binding mode of the trinitrophenyl derivatives is distinctly different from the parent adenine nucleotides. The adenine binding pocket in the nucleotide binding domain of Ca(2+)-ATPase is now occupied by the trinitrophenyl group, and the side chains of two arginines sandwich the adenine ring, accounting for the much higher affinities of the trinitrophenyl derivatives. Trinitrophenyl nucleotides exhibit a pronounced fluorescence in the E2P ground state but not in the other E2 states. Crystal structures of the E2P and E2 ∼ P analogues of Ca(2+)-ATPase with bound trinitrophenyl-AMP show that different arrangements of the three cytoplasmic domains alter the orientation and water accessibility of the trinitrophenyl group, explaining the origin of "superfluorescence." Thus, the crystal structures demonstrate that ATP and its derivatives are highly adaptable to a wide range of site topologies stabilized by a variety of interactions.
Collapse
|
8
|
Olejnik A, Gdaniec Z, Kierzek E, Kierzek R. The spontaneous rearrangement of 2,4-dinitrophenyl substituent in ribonucleosides under neutral conditions. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:684-97. [PMID: 20706959 DOI: 10.1080/15257770.2010.507233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the cytidine and adenosine derivatives an isomerization of a 2,4-dinitrophenyl group between the 2'- and 3'-positions of the ribose was observed under neutral conditions. Moreover, it was shown that isomerization of the 2,4-dinitrophenyl group in conditions required to synthesize phosphoramidites and lability in aqueous ammonia make chemical synthesis of 2'-O-(2,4-dinitrophenyl) oligonucleotides impossible.
Collapse
Affiliation(s)
- Anna Olejnik
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | |
Collapse
|
9
|
Eaton AK, Stewart RC. Kinetics of ATP and TNP-ATP binding to the active site of CheA from Thermotoga maritima. Biochemistry 2010; 49:5799-809. [PMID: 20565117 DOI: 10.1021/bi100721b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of nucleotide binding to the active site of Thermotoga maritima CheA was investigated using stopped-flow fluorescence experiments that monitored binding of ATP and TNP-ATP to the catalytic domain (P4) of CheA that had been engineered to include a tryptophan residue as a fluorescent reporter group at the active site (P4(F487W)). Rapid decreases in protein intrinsic fluorescence and increases in TNP-ATP fluorescence were observed during binding reactions, and time courses were analyzed to define the kinetic mechanisms for ATP and TNP-ATP binding. This analysis indicated that binding of ATP(Mg(2+)) to P4(F487W) involves a single reversible step with a k(on) of 0.92 +/- 0.09 microM(-1) s(-1), a k(off) of 1.9 +/- 0.4 s(-1), and a K(d) of 1.5-2.1 microM (all values determined at 4 degrees C). Binding of TNP-ATP(Mg(2+)) to P4(F487W) involves a more complicated mechanism, requiring at least three sequential steps. Computer simulations and nonlinear regression analysis were used to estimate the rate constants of the forward and reverse reactions for each of the three steps in the reaction scheme [Formula: see text] Similar analysis indicated that an alternative reaction scheme, involving a rate-limiting conformational change in P4 prior to TNP-ATP binding, did an equally good job of accounting for all of the kinetics results:[Formula: see text] In both models, steps 2 and 3 have slow reversal rates that contribute to the high affinity of the active site for TNP-ATP (K(d) = 0.015 microM). These results highlight the dramatic effect of the TNP moieties on CheA-nucleotide interactions, and they provide the first detailed information about the kinetic mechanism underlying interaction of a protein histidine kinase with this tight-binding inhibitor.
Collapse
Affiliation(s)
- Anna K Eaton
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
10
|
Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2160-9. [PMID: 20647001 DOI: 10.1016/j.bbamem.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
Abstract
Bacterial conjugative systems code for an essential membrane protein that couples the relaxosome to the DNA transport apparatus, called type IV coupling protein (T4CP). TrwB is the T4CP of the conjugative plasmid R388. In earlier work we found that this protein, purified in the presence of detergents, binds preferentially purine nucleotides trisphosphate. In contrast a soluble truncated mutant TrwBΔN70 binds uniformly all nucleotides tested. In this work, TrwB has been successfully reconstituted into liposomes. The non-membranous portion of the protein is almost exclusively oriented towards the outside of the vesicles. Functional analysis of TrwB proteoliposomes demonstrates that when the protein is inserted into the lipid bilayer the affinity for adenine and guanine nucleotides is enhanced as compared to that of the protein purified in detergent or to the soluble deletion mutant, TrwBΔN70. The protein specificity for adenine nucleotides is also increased. No ATPase activity has been found in TrwB reconstituted in proteoliposomes. This result suggests that the N-terminal transmembrane segment of this T4CP interferes with its ATPase activity and can be taken to imply that the TrwB transmembrane domain plays a regulatory role in its biological activity.
Collapse
|
11
|
Gunther S, Urbanke C, Kindler B, Huchzermeyer B. Nucleotide binding to chloroplast F1-ATPase (CF1) cannot be explained by a two-site model. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Preabrazhenskaya YV, Kim IY, Stadtman TC. Binding of ATP and its derivatives to selenophosphate synthetase from Escherichia coli. BIOCHEMISTRY (MOSCOW) 2009; 74:910-6. [PMID: 19817692 DOI: 10.1134/s0006297909080136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanistically similar selenophosphate synthetases (SPS) have been isolated from different organisms. SPS from Escherichia coli is an ATP-dependent enzyme with a C-terminal glycine-rich Walker sequence that has been assumed to take part in the first step of ATP binding. Three C-terminally truncated mutants of SPS, containing the N-terminal 238 (SPS(238)), 262 (SPS(262)), and 332 (SPS(332)) amino acids of the 348-amino-acid protein, have been extracted from cell pellets, and two of these (SPS(262) and SPS(332)) have been purified to homogeneity. SPS(238) has been obtained in a highly purified form. Binding of the fluorescent ATP-derivative TNP-ATP and Mn-ATP to the proteins was examined for all truncated mutants of SPS and a catalytically inactive C17S mutant. It has been shown that TNP-ATP can be used as a structural probe for ATP-binding sites of SPS. We observed two TNP-ATP binding sites per molecule of enzyme for wild-type SPS and SPS(332) mutant and one TNP-ATP binding site for SPS(238) mutant. The stoichiometry of Mn-ATP-binding was 2 mol of ATP per mol of protein determined with [(14)C]ATP by HPLC gel-filtration column chromatography under saturating conditions. The binding stoichiometries for SPS(332), SPS(262), and SPS(238) were 2, 1.6, and 1, respectively. The C17S mutant exhibits about one third of wild type SPS TNP-ATP-binding ability and converts 12% of ATP in the ATPase reaction to ADP in the absence of selenide. The C-terminus contributes two thirds to the TNP-ATP binding; SPS(238) likely has one ATP-binding site removed by truncation.
Collapse
Affiliation(s)
- Y V Preabrazhenskaya
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Eaton AK, Stewart RC. The two active sites of Thermotoga maritima CheA dimers bind ATP with dramatically different affinities. Biochemistry 2009; 48:6412-22. [PMID: 19505148 DOI: 10.1021/bi900474g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CheA is a central component of the chemotaxis signal transduction pathway that allows prokaryotic cells to control their movements in response to environmental cues. This dimeric protein histidine kinase autophosphorylates via an intersubunit phosphorylation reaction in which each protomer of the dimer binds ATP, at an active site located in its P4 domain and then catalyzes transfer of the gamma-phosphoryl group of ATP to the His(45) side chain within the P1 domain of the trans protomer. Here we utilize the fluorescent nucleotide analogue TNP-ATP [2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate] to investigate the two ATP-binding sites of the Thermotoga maritima CheA dimer (TmCheA) and the single site of the isolated TmP4 domain (a monomer). We define the affinity of CheA for TNP nucleotides and, by competition, for unmodified ATP. The two ATP-binding sites of the TmCheA dimer exhibit dramatically different affinities for TNP-ATP (K(d1)(TNP) approximately 0.0016 muM and K(d2)(TNP) approximately 22 muM at 4 degrees C in the presence of Mg(2+)) as well as for ATP (K(d1)(ATP) approximately 6 muM and K(d2)(ATP) approximately 5000 muM at 4 degrees C in the presence of Mg(2+)) and in their ability to influence the fluorescence of bound TNP-ATP. The ATP-binding site of the isolated TmP4 domain interacts with ATP and TNP-ATP in a manner similar to that of the high-affinity site of the TmCheA dimer. These results suggest that the two active sites of TmCheA homodimers exhibit large differences in their interactions with ATP. We consider possible implications of these differences for the CheA autophosphorylation mechanism and for CheA function in bacterial cells.
Collapse
Affiliation(s)
- Anna K Eaton
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
14
|
Pérez-Gordones MC, Lugo MR, Winkler M, Cervino V, Benaim G. Diacylglycerol regulates the plasma membrane calcium pump from human erythrocytes by direct interaction. Arch Biochem Biophys 2009; 489:55-61. [PMID: 19631607 DOI: 10.1016/j.abb.2009.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/14/2009] [Accepted: 07/17/2009] [Indexed: 11/25/2022]
Abstract
The plasma membrane Ca(2+)-ATPase (PMCA) plays a key role in the regulation of the intracellular Ca(2+) concentration. Ethanol stimulates this Ca(2+) pump in an isoform-specific manner. On search for a physiological molecule that could mimic the effect of ethanol, we have previously demonstrated that some sphingolipids containing free "hydroxyl" groups, like ceramide, are able to stimulate the PMCA. Since diacylglycerol (DAG) structurally shares some characteristics with ceramide, we evaluate its effect on the PMCA. We demonstrated that DAG is a potent stimulator of this enzyme. The activation induced is additive to that produced by calmodulin, protein-kinase C and ethanol, which implies that DAG interacts with the PMCA through a different mechanism. Additionally, by different fluorescent approaches, we demonstrated a direct binding between PMCA and DAG. The results obtained in this work strongly suggest that DAG is a novel effector of the PMCA, acting by a direct interaction.
Collapse
Affiliation(s)
- Maria C Pérez-Gordones
- Instituto de Biología Experimental (IBE), Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
15
|
Kricka LJ, Fortina P. Analytical ancestry: "firsts" in fluorescent labeling of nucleosides, nucleotides, and nucleic acids. Clin Chem 2009; 55:670-83. [PMID: 19233914 DOI: 10.1373/clinchem.2008.116152] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The inherent fluorescent properties of nucleosides, nucleotides, and nucleic acids are limited, and thus the need has arisen for fluorescent labeling of these molecules for a variety of analytical applications. CONTENT This review traces the analytical ancestry of fluorescent labeling of nucleosides, nucleotides, and nucleic acids, with an emphasis on the first to publish or patent. The scope of labeling includes (a) direct labeling by covalent labeling of nucleic acids with a fluorescent label or noncovalent binding or intercalation of a fluorescent dye to nucleic acids and (b) indirect labeling via covalent attachment of a secondary label to a nucleic acid, and then binding this to a fluorescently labeled ligand binder. An alternative indirect strategy involves binding of a nucleic acid to a nucleic acid binder molecule (e.g., antibody, antibiotic, histone, antibody, nuclease) that is labeled with a fluorophore. Fluorescent labels for nucleic acids include organic fluorescent dyes, metal chelates, carbon nanotubes, quantum dots, gold particles, and fluorescent minerals. SUMMARY Fluorescently labeled nucleosides, nucleotides, and nucleic acids are important types of reagents for biological assay methods and underpin current methods of chromosome analysis, gel staining, DNA sequencing and quantitative PCR. Although these methods use predominantly organic fluorophores, new types of particulate fluorophores in the form of nanoparticles, nanorods, and nanotubes may provide the basis of a new generation of fluorescent labels and nucleic acid detection methods.
Collapse
Affiliation(s)
- Larry J Kricka
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
16
|
Voynova NE, Fu Z, Battaile KP, Herdendorf TJ, Kim JJP, Miziorko HM. Human mevalonate diphosphate decarboxylase: characterization, investigation of the mevalonate diphosphate binding site, and crystal structure. Arch Biochem Biophys 2008; 480:58-67. [PMID: 18823933 PMCID: PMC2709241 DOI: 10.1016/j.abb.2008.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
Abstract
Expression in Escherichia coli of his-tagged human mevalonate diphosphate decarboxylase (hMDD) has expedited enzyme isolation, characterization, functional investigation of the mevalonate diphosphate binding site, and crystal structure determination (2.4A resolution). hMDD exhibits V(max)=6.1+/-0.5 U/mg; K(m) for ATP is 0.69+/-0.07 mM and K(m) for (R,S) mevalonate diphosphate is 28.9+/-3.3 microM. Conserved polar residues predicted to be in the hMDD active site were mutated to test functional importance. R161Q exhibits a approximately 1000-fold diminution in specific activity, while binding the fluorescent substrate analog, TNP-ATP, comparably to wild-type enzyme. Diphosphoglycolyl proline (K(i)=2.3+/-0.3 uM) and 6-fluoromevalonate 5-diphosphate (K(i)=62+/-5 nM) are competitive inhibitors with respect to mevalonate diphosphate. N17A exhibits a V(max)=0.25+/-0.0 2U/mg and a 15-fold inflation in K(m) for mevalonate diphosphate. N17A's K(i) values for diphosphoglycolyl proline and fluoromevalonate diphosphate are inflated (>70-fold and 40-fold, respectively) in comparison with wild-type enzyme. hMDD structure indicates the proximity (2.8A) between R161 and N17, which are located in an interior pocket of the active site cleft. The data suggest the functional importance of R161 and N17 in the binding and orientation of mevalonate diphosphate.
Collapse
Affiliation(s)
- Natalia E Voynova
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sachdeva P, Narayan A, Misra R, Brahmachari V, Singh Y. Loss of kinase activity in Mycobacterium tuberculosis multidomain protein Rv1364c. FEBS J 2008; 275:6295-308. [DOI: 10.1111/j.1742-4658.2008.06753.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Enterococcus faecalis PcfC, a spatially localized substrate receptor for type IV secretion of the pCF10 transfer intermediate. J Bacteriol 2008; 190:3632-45. [PMID: 18326569 DOI: 10.1128/jb.01999-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.
Collapse
|
19
|
Herdendorf TJ, Miziorko HM. Functional evaluation of conserved basic residues in human phosphomevalonate kinase. Biochemistry 2007; 46:11780-8. [PMID: 17902708 PMCID: PMC2530820 DOI: 10.1021/bi701408t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphomevalonate kinase (PMK) catalyzes the cation-dependent reaction of mevalonate 5-phosphate with ATP to form mevalonate 5-diphosphate and ADP, a key step in the mevalonate pathway for isoprenoid/sterol biosynthesis. Animal PMK proteins belong to the nucleoside monophosphate (NMP) kinase family. For many NMP kinases, multiple basic residues contribute to the neutralization of the negatively charged pentacoordinate phosphate reaction intermediate. Loss of basicity can result in catalytically impaired enzymes. On the basis of this precedent, conserved basic residues of human PMK have been mutated, and purified forms of the mutated proteins have been kinetically and biophysically characterized. K48M and R73M mutants exhibit diminished Vmax values in both reaction directions (>1000-fold) with only slight Km perturbations (<10-fold). In both forward and reverse reactions, R110M exhibits a large (>10,000-fold) specific activity diminution. R111M exhibits substantially inflated Km values for mevalonate 5-phosphate and mevalonate 5-diphosphate (60- and 30-fold, respectively) as well as decreases [50-fold (forward) and 85-fold (reverse)] in Vmax. R84M also exhibits inflated Km values (50- and 33-fold for mevalonate 5-phosphate and mevalonate 5-diphosphate, respectively). The Ki values for R111M and R84M product inhibition by mevalonate 5-diphosphate are inflated by 45- and 63-fold; effects are comparable to the 30- and 38-fold inflations in Km for mevalonate 5-diphosphate. R141M exhibits little perturbation in Vmax [14-fold (forward) and 10-fold (reverse)] but has inflated Km values for ATP and ADP (48- and 136-fold, respectively). The Kd of ATP for R141M, determined by changes in tryptophan fluorescence, is inflated 27-fold compared to wt PMK. These data suggest that R110 is important to PMK catalysis, which is also influenced by K48 and R73. R111 and R84 contribute to binding of mevalonate 5-phosphate and R141 to binding of ATP.
Collapse
Affiliation(s)
| | - Henry M. Miziorko
- *Address for correspondence: Henry Miziorko, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, , Phone: 816-235-2246, Fax: 816-235-5595
| |
Collapse
|
20
|
Grycova L, Lansky Z, Friedlova E, Vlachova V, Kubala M, Obsilova V, Obsil T, Teisinger J. ATP binding site on the C-terminus of the vanilloid receptor. Arch Biochem Biophys 2007; 465:389-98. [PMID: 17706589 DOI: 10.1016/j.abb.2007.06.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/29/2007] [Accepted: 06/30/2007] [Indexed: 10/23/2022]
Abstract
Transient receptor potential channel vanilloid receptor subunit 1 (TRPV1) is a thermosensitive cation channel activated by noxious heat as well as a wide range of chemical stimuli. Although ATP by itself does not directly activate TRPV1, it was shown that intracellular ATP increases its activity by directly interacting with the Walker A motif residing on the C-terminus of TRPV1. In order to identify the amino acid residues that are essential for the binding of ATP to the TRPV1 channel, we performed the following point mutations of the Walker A motif: P732A, D733A, G734A, K735A, D736A, and D737A. Employing bulk fluorescence measurements, namely a TNP-ATP competition assay and FITC labelling and quenching experiments, we identified the key role of the K735 residue in the binding of the nucleotide. Experimental data was interpreted according to our molecular modelling simulations.
Collapse
Affiliation(s)
- Lenka Grycova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Penefsky HS. Mitochondrial ATPase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 49:223-80. [PMID: 162556 DOI: 10.1002/9780470122945.ch6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considerable progress has been made in recent years in our understanding of the phosphorylating apparatus in mitochondria, chloroplasts, and bacteria. It has become clear that the structure and the function of the ATP synthesizing apparatus in these widely divergent organisms is similar if not virtually identical. The subunit composition of F1, its molecular architecture, the location and function of substrate binding sites, as well as putative control sites, understanding of the component parts of the oligomycin-sensitive ATPase complex, and the role of these components in the function of the complex all are under active investigation in many laboratories. The developing information and the new insights provided have begun to permit experimental approaches, at the molecular level, to the mode of action of the ATPase in electron-transport-coupled ATP synthesis.
Collapse
|
22
|
Hormaeche I, Segura RL, Vecino AJ, Goñi FM, de la Cruz F, Alkorta I. The transmembrane domain provides nucleotide binding specificity to the bacterial conjugation protein TrwB. FEBS Lett 2006; 580:3075-82. [PMID: 16678163 DOI: 10.1016/j.febslet.2006.04.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/06/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
In order to understand the functional significance of the transmembrane domain of TrwB, an integral membrane protein involved in bacterial conjugation, the protein was purified in the native, and also as a truncated soluble form (TrwBDeltaN70). The intact protein (TrwB) binds preferentially purine over pyrimidine nucleotides, NTPs over NDPs, and ribo- over deoxyribonucleotides. In contrast, TrwBDeltaN70 binds uniformly all tested nucleotides. The transmembrane domain has the general effect of making the nucleotide binding site(s) less accessible, but more selective. This is in contrast to other membrane proteins in which most of the protein mass, including the catalytic domain, is outside the membrane, but whose activity is not modified by the presence or absence of the transmembrane segment.
Collapse
Affiliation(s)
- Itsaso Hormaeche
- Unidad de Biofísica (CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Aptdo 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
23
|
González FA, Weisman GA, Erb L, Seye CI, Sun GY, Velázquez B, Hernández-Pérez M, Chorna NE. Mechanisms for inhibition of P2 receptors signaling in neural cells. Mol Neurobiol 2006; 31:65-79. [PMID: 15953812 DOI: 10.1385/mn:31:1-3:065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 12/24/2022]
Abstract
Trophic factors are required to ensure neuronal viability and regeneration after neural injury. Although abundant information is available on the factors that cause the activation of astrocytes, little is known about the molecular mechanisms underlying the regulation of this process. Nucleotides released into the extracellular space from injured or dying neural cells can activate astrocytes via P2 nucleotide receptors. After a brief historical review and update of novel P2 receptor antagonists, this article focuses on recent advancements toward understanding molecular mechanisms that regulate G protein-coupled P2Y receptor signaling. Among P2Y receptor subtypes, the heptahelical P2Y2 nucleotide receptor interacts with vitronectin receptors via an RGD sequence in the first extracellular loop, and this interaction is required for effective signal transduction to activate mitogen-activated protein kinases ERK1/2, to mobilize intracellular calcium stores via activation of phospholipase C, protein kinase C isoforms, and to activate focal adhesion kinase and other signaling events. Ligation of vitronectin receptors with specific antibodies caused an inhibition of P2Y2 receptor-induced ERK1/2 and p38 phosphorylation and P2Y2 receptor-induced cytoskeleton rearrangement and DNA synthesis. Structure-function studies have identified agonist-induced phosphorylation of the C-terminus of the P2Y2 receptor, an important mechanism for receptor desensitization. Understanding selective mechanisms for regulating P2Y2 receptor signaling could provide novel targets for therapeutic strategies in the management of brain injury, synaptogenesis, and neurological disorders.
Collapse
Affiliation(s)
- Fernando A González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Puerto Rico.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Litvak VV, Mainagashev IY, Bukhanets OG. Chemistry and dynamics of interaction of nucleosides with pentafluoropyridine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1373-85. [PMID: 16252673 DOI: 10.1080/15257770500230772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interaction of pentafluoropyridine with hydroxyl groups of thymidine, uridine, adenosine, and deoxyadenosine at room temperature leads to the formation of aryl ethers of nucleosides with a high yield. Under severe conditions, one more tetrafluoropyridine residue is attached to pyrimidine fragments of T and U, while purine heterocycle in A remains intact. Nucleoside derivatives are formed with a quantitative yield and can be used in situ as intermediates for, as an example, molecular design of arene analogs of nucleic acids. The reaction with thymidine is a successive-parallel process, the limited stage being arylation of the secondary hydroxyl group. The presence of the vicinal hydroxyl group in pentose results in the opposite rate ratio of the formation of primary and secondary tetrafluoropyridyl ethers of adenine and uridine.
Collapse
Affiliation(s)
- V V Litvak
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
25
|
Wright M, Miller AD. Novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies. Bioorg Med Chem Lett 2005; 16:943-8. [PMID: 16297624 DOI: 10.1016/j.bmcl.2005.10.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/26/2005] [Accepted: 10/28/2005] [Indexed: 11/17/2022]
Abstract
Tandem synthetic-biosynthetic procedures were used to prepare two novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies. These compounds (dial-mant-Ap4A and azido-mant-Ap4A) are shown to clearly distinguish known Ap4A-binding proteins from Escherichia coli (LysU and GroEL) and a variety of other control proteins. Successful labelling of chaperonin GroEL appears to be allosteric with respect to the well-characterized adenosine 5'-triphosphate (ATP)-binding site, suggesting that GroEL possesses a distinct Ap4A-binding site.
Collapse
Affiliation(s)
- Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
26
|
Wright M, Miller AD. Synthesis of novel fluorescent-labelled dinucleoside polyphosphates. Bioorg Med Chem Lett 2005; 14:2813-6. [PMID: 15125938 DOI: 10.1016/j.bmcl.2004.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/08/2004] [Accepted: 03/19/2004] [Indexed: 11/25/2022]
Abstract
A novel tandem synthetic-biosynthetic procedure is described for the synthesis of four new fluorescent dinucleoside polyphosphates: mant-Ap4A, mant-AppCH2ppA, TNP-Ap4A and TNP-AppCH2ppA. These compounds are expected to supplement the existing etheno (epsilon) and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) labelled derivatives, being the fluorescent probes of choice to investigate polyphosphate/enzyme binding behaviour.
Collapse
Affiliation(s)
- Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
27
|
Hiratsuka T. Fluorescent and colored trinitrophenylated analogs of ATP and GTP. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3479-85. [PMID: 12919312 DOI: 10.1046/j.1432-1033.2003.03748.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescent and colored trinitrophenylated (TNP) analogs of ATP and GTP can interact with nucleotide-requiring enzymes and proteins as a substitute for the parent nucleotide. These analogs have strong binding affinities for most nucleotide-requiring systems. Their bindings are easily detected by absorption and fluorescence changes in the visible region. Recent years have seen dramatic developments in the application of the TNP nucleotide analogs as spectroscopic probes for the study on the nucleotide-interacting properties of various enzymes and proteins including their mutants. This review is intended as a broad overview of currently extensively used applications of the nucleotide analogs in various biological systems.
Collapse
|
28
|
Kubala M, Plásek J, Amler E. Limitations in linearized analyses of binding equilibria: binding of TNP-ATP to the H4-H5 loop of Na/K-ATPase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:363-9. [PMID: 12851794 DOI: 10.1007/s00249-003-0278-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Revised: 11/28/2002] [Accepted: 12/05/2002] [Indexed: 11/26/2022]
Abstract
Binding of TNP-ATP [2',3'- O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate, a fluorescent analogue of ATP] to the K605 protein was studied. This is an isolated N-domain in the cytoplasmic loop of the Na/K-ATPase alpha-subunit, lying between membrane-spanning segments 4 and 5 (sequence L(354)-I(604)). A titration equation is derived that explicitly makes it possible to relate the fluorescence of TNP-ATP and K605 solutions to total probe concentration in the sample. Using this, it is possible to obtain the value of the dissociation constant from the titration experiment without resorting to the Scatchard plot, which is far from optimal from the statistical point of view. Using the new formula with non-linear regression analysis, a value of the dissociation constant K(D) for TNP-ATP binding to the K605 protein of 3.03 +/- 0.28 microM at 22 degrees C was obtained. A series of fits to simulated data with added noise demonstrated clearly the advantage of non-linear regression using the new formula over the commonly employed linear regression using the Scatchard plot. The procedure presented is generally applicable to binding assays using changes in the fluorescence of ligands on binding.
Collapse
Affiliation(s)
- M Kubala
- Institute of Physiology, Czech Academy of Science, Vídenská 1083, 142 00 Prague, Czech Republic
| | | | | |
Collapse
|
29
|
Hormaeche I, Alkorta I, Moro F, Valpuesta JM, Goni FM, De La Cruz F. Purification and properties of TrwB, a hexameric, ATP-binding integral membrane protein essential for R388 plasmid conjugation. J Biol Chem 2002; 277:46456-62. [PMID: 12244053 DOI: 10.1074/jbc.m207250200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrwB is an integral membrane protein linking the relaxosome to the DNA transport apparatus in plasmid R388 conjugation. Native TrwB has been purified in monomeric and hexameric forms, in the presence of dodecylmaltoside from overexpressing bacterial cells. A truncated protein (TrwBDeltaN70) that lacked the transmembrane domain could be purified only in the monomeric form. Electron microscopy images revealed the hexameric structure and were in fact superimposable to the previously published atomic structure for TrwBDeltaN70. In addition, the electron micrographs showed an appendix, approximately 25 A wide, corresponding to the transmembrane region of TrwB. TrwB was located in the bacterial inner membrane in agreement with its proposed coupling role. Purified TrwB hexamers and monomers bound tightly the fluorescent ATP analogue TNP-ATP. A mutant in the Walker A motif, TrwB-K136T, was equally purified and found to bind TNP-ATP with a similar affinity to that of the wild type. However, the TNP-ATP affinity of TrwBDeltaN70 was significantly reduced in comparison with the TrwB hexamers. Competition experiments in which ATP was used to displace TNP-ATP gave an estimate of ATP binding by TrwB (K(d)((ATP)) = 0.48 mm for hexamers). The transmembrane domain appears to be involved in TrwB protein hexamerization and also influences its nucleotide binding properties.
Collapse
Affiliation(s)
- Itsaso Hormaeche
- Unidad de Biofisica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco and Departamento de Bioquimica, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Apdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Vanoye CG, MacGregor GG, Dong K, Tang L, Buschmann AS, Hall AE, Lu M, Giebisch G, Hebert SC. The carboxyl termini of K(ATP) channels bind nucleotides. J Biol Chem 2002; 277:23260-70. [PMID: 11956191 DOI: 10.1074/jbc.m112004200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are expressed in many excitable, as well as epithelial, cells and couple metabolic changes to modulation of cell activity. ATP regulation of K(ATP) channel activity may involve direct binding of this nucleotide to the pore-forming inward rectifier (Kir) subunit despite the lack of known nucleotide-binding motifs. To examine this possibility, we assessed the binding of the fluorescent ATP analogue, 2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)adenosine 5'-triphosphate (TNP-ATP) to maltose-binding fusion proteins of the NH(2)- and COOH-terminal cytosolic regions of the three known K(ATP) channels (Kir1.1, Kir6.1, and Kir6.2) as well as to the COOH-terminal region of an ATP-insensitive inward rectifier K(+) channel (Kir2.1). We show direct binding of TNP-ATP to the COOH termini of all three known K(ATP) channels but not to the COOH terminus of the ATP-insensitive channel, Kir2.1. TNP-ATP binding was specific for the COOH termini of K(ATP) channels because this nucleotide did not bind to the NH(2) termini of Kir1.1 or Kir6.1. The affinities for TNP-ATP binding to K(ATP) COOH termini of Kir1.1, Kir6.1, and Kir6.2 were similar. Binding was abolished by denaturing with 4 m urea or SDS and enhanced by reduction in pH. TNP-ATP to protein stoichiometries were similar for all K(ATP) COOH-terminal proteins with 1 mol of TNP-ATP binding/mole of protein. Competition of TNP-ATP binding to the Kir1.1 COOH terminus by MgATP was complex with both Mg(2+) and MgATP effects. Glutaraldehyde cross-linking demonstrated the multimerization potential of these COOH termini, suggesting that these cytosolic segments may directly interact in intact tetrameric channels. Thus, the COOH termini of K(ATP) tetrameric channels contain the nucleotide-binding pockets of these metabolically regulated channels with four potential nucleotide-binding sites/channel tetramer.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232-6304, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sauna ZE, Smith MM, Muller M, Ambudkar SV. Functionally similar vanadate-induced 8-azidoadenosine 5'-[alpha-(32)P]Diphosphate-trapped transition state intermediates of human P-glycoprotin are generated in the absence and presence of ATP hydrolysis. J Biol Chem 2001; 276:21199-208. [PMID: 11287418 DOI: 10.1074/jbc.m100886200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump whose overexpression confers multidrug resistance to cancer cells. Pgp exhibits a robust drug substrate-stimulable ATPase activity, and vanadate (Vi) blocks this activity effectively by trapping Pgp nucleotide in a non-covalent stable transition state conformation. In this study we compare Vi-induced [alpha-(32)P]8-azido-ADP trapping into Pgp in the presence of [alpha-(32)P]8-azido-ATP (with ATP hydrolysis) or [alpha-(32)P]8-azido-ADP (without ATP hydrolysis). Vi mimics P(i) to trap the nucleotide tenaciously in the Pgp.[alpha-(32)P]8-azido-ADP.Vi conformation in either condition. Thus, by using [alpha-(32)P]8-azido-ADP we show that the Vi-induced transition state of Pgp can be generated even in the absence of ATP hydrolysis. Furthermore, half-maximal trapping of nucleotide into Pgp in the presence of Vi occurs at similar concentrations of [alpha-(32)P]8-azido-ATP or [alpha-(32)P]8-azido-ADP. The trapped [alpha-(32)P]8-azido-ADP is almost equally distributed between the N- and the C-terminal ATP sites of Pgp in both conditions. Additionally, point mutations in the Walker B domain of either the N- (D555N) or C (D1200N)-terminal ATP sites that arrest ATP hydrolysis and Vi-induced trapping also show abrogation of [alpha-(32)P]8-azido-ADP trapping into Pgp in the absence of hydrolysis. These data suggest that both ATP sites are dependent on each other for function and that each site exhibits similar affinity for 8-azido-ATP (ATP) or 8-azido-ADP (ADP). Similarly, Pgp in the transition state conformation generated with either ADP or ATP exhibits drastically reduced affinity for the binding of analogues of drug substrate ([(125)I]iodoarylazidoprazosin) as well as nucleotide (2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate). Analyses of Arrhenius plots show that trapping of Pgp with [alpha-(32)P]8-azido-ADP (in the absence of hydrolysis) displays an approximately 2.5-fold higher energy of activation (152 kJ/mol) compared with that observed when the transition state intermediate is generated through hydrolysis of [alpha-(32)P]8-azido-ATP (62 kJ/mol). In aggregate, these results demonstrate that the Pgp.[alpha-(32)P]8-azido-ADP (or ADP).Vi transition state complexes generated either in the absence of or accompanying [alpha-(32)P]8-azido-ATP hydrolysis are functionally indistinguishable.
Collapse
Affiliation(s)
- Z E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
32
|
Sauna ZE, Ambudkar SV. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein. The two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. J Biol Chem 2001; 276:11653-61. [PMID: 11154703 DOI: 10.1074/jbc.m011294200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is a plasma membrane protein whose overexpression confers multidrug resistance to tumor cells by extruding amphipathic natural product cytotoxic drugs using the energy of ATP. An elucidation of the catalytic cycle of Pgp would help design rational strategies to combat multidrug resistance and to further our understanding of the mechanism of ATP-binding cassette transporters. We have recently reported (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520) that there are two independent ATP hydrolysis events in a single catalytic cycle of Pgp. In this study we exploit the vanadate (Vi)-induced transition state conformation of Pgp (Pgp.ADP.Vi) to address the question of what are the effects of ATP hydrolysis on the nucleotide-binding site. We find that at the end of the first hydrolysis event there is a drastic decrease in the affinity of nucleotide for Pgp coincident with decreased substrate binding. Release of occluded dinucleotide is adequate for the next hydrolysis event to occur but is not sufficient for the recovery of substrate binding. Whereas the two hydrolysis events have different functional outcomes vis à vis the substrate, they show comparable t(12) for both incorporation and release of nucleotide, and the affinities for [alpha-(32)P]8-azido-ATP during Vi-induced trapping are identical. In addition, the incorporation of [alpha-(32)P]8-azido-ADP in two ATP sites during both hydrolysis events is also similar. These data demonstrate that during individual hydrolysis events, the ATP sites are recruited in a random manner, and only one site is utilized at any given time because of the conformational change in the catalytic site that drastically reduces the affinity of the second ATP site for nucleotide binding. In aggregate, these findings provide an explanation for the alternate catalysis of ATP hydrolysis and offer a mechanistic framework to elucidate events at both the substrate- and nucleotide-binding sites in the catalytic cycle of Pgp.
Collapse
Affiliation(s)
- Z E Sauna
- Laboratory of Cell Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
33
|
Burgard EC, Niforatos W, van Biesen T, Lynch KJ, Kage KL, Touma E, Kowaluk EA, Jarvis MF. Competitive antagonism of recombinant P2X(2/3) receptors by 2', 3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP). Mol Pharmacol 2000; 58:1502-10. [PMID: 11093790 DOI: 10.1124/mol.58.6.1502] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TNP-ATP has become widely recognized as a potent and selective P2X receptor antagonist, and is currently being used to discriminate between subtypes of P2X receptors in a variety of tissues. We have investigated the ability of TNP-ATP to inhibit alpha,beta-methylene ATP (alpha,beta-meATP)-evoked responses in 1321N1 human astrocytoma cells expressing recombinant rat or human P2X(2/3) receptors. Pharmacological responses were measured using electrophysiological and calcium imaging techniques. TNP-ATP was a potent inhibitor of P2X(2/3) receptors, blocking both rat and human receptors with IC(50) values of 3 to 6 nM. In competition studies, 10 to 1000 microM alpha,beta-meATP was able to overcome TNP-ATP inhibition. Schild analysis revealed that TNP-ATP was a competitive antagonist with pA(2) values of -8.7 and -8.2. Inhibition of P2X(2/3) receptors by TNP-ATP was rapid in onset, reversible, and did not display use dependence. Although the onset kinetics of inhibition were concentration-dependent, the TNP-ATP off-kinetics were concentration-independent and relatively slow. Full recovery from TNP-ATP inhibition did not occur until >/=5 s after removal of the antagonist. Because of the slow off-kinetics of TNP-ATP, full competition with alpha,beta-meATP for receptor occupancy could be seen only after both ligands had reached a steady-state condition. It is proposed that the slowly desensitizing P2X(2/3) receptor allowed this competitive interaction to be observed over time, whereas the rapid desensitization of other P2X receptors (P2X(3)) may mask the detection of competitive inhibition by TNP-ATP.
Collapse
Affiliation(s)
- E C Burgard
- Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064-3500, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kallis RP, Ewy RG, Portis AR. Alteration of the adenine nucleotide response and increased Rubisco activation activity of Arabidopsis rubisco activase by site-directed mutagenesis. PLANT PHYSIOLOGY 2000; 123:1077-86. [PMID: 10889257 PMCID: PMC59071 DOI: 10.1104/pp.123.3.1077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2000] [Accepted: 04/04/2000] [Indexed: 05/21/2023]
Abstract
Arabidopsis Rubisco was activated in vitro at rates 2- to 3-fold greater by recombinant Arabidopsis 43-kD Rubisco activase with the amino acid replacements Q111E and Q111D in a phosphate-binding loop, G-G-K-G-Q-G-K-S. However, these two mutant enzymes had only slightly greater rates of ATP hydrolysis. Activities of the Q111D enzyme were much less sensitive and those of Q111E were somewhat less sensitive to inhibition by ADP. Both mutant enzymes exhibited higher Rubisco activation activities over the physiological range of ADP to ATP ratios. Enzymes with non-polar, polar, and basic residues substituted at position Gln-111 exhibited rates of Rubisco activation less than the wild-type enzyme. Estimates of the relative affinity of the wild type and the Q111D, Q111E, and Q111S enzymes for adenosine nucleotides by a variety of methods revealed that the nucleotide affinities were the most diminished in the Q111D enzyme. The temperature stability of the Q111D and Q111E enzymes did not differ markedly from that of the 43-kD recombinant wild-type enzyme, which is somewhat thermolabile. The Q111D and Q111E enzymes, expressed in planta, may provide a means to better define the role of the ADP to ATP ratio in the regulation of Rubisco activation and photosynthesis rate.
Collapse
Affiliation(s)
- R P Kallis
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
35
|
Bald D, Noji H, Stumpp MT, Yoshida M, Hisabori T. ATPase activity of a highly stable alpha(3)beta(3)gamma subcomplex of thermophilic F(1) can be regulated by the introduced regulatory region of gamma subunit of chloroplast F(1). J Biol Chem 2000; 275:12757-62. [PMID: 10777572 DOI: 10.1074/jbc.275.17.12757] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutant F(1)-ATPase alpha(3)beta(3)gamma subcomplex from the thermophilic Bacillus PS3 was constructed, in which 111 amino acid residues (Val(92) to Phe(202)) from the central region of the gamma subunit were replaced by the 148 amino acid residues of the homologous region from spinach chloroplast F(1)-ATPase gamma subunit, including the regulatory stretch, and were designated as alpha(3)beta(3)gamma((TCT)) (Thermophilic-Chloroplast-Thermophilic). By the insertion of this regulatory region into the gamma subunit of thermophilic F(1), we could confer the thiol modulation property to the thermophilic alpha(3)beta(3)gamma subcomplex. The overexpressed alpha(3)beta(3)gamma((TCT)) was easily purified in large scale, and the ATP hydrolyzing activity of the obtained complex was shown to increase up to 3-fold upon treatment with chloroplast thioredoxin-f and dithiothreitol. No loss of thermostability compared with the wild type subcomplex was found, and activation by dithiothreitol was functional at temperatures up to 80 degrees C. alpha(3)beta(3)gamma((TCT)) was inhibited by the epsilon subunit from chloroplast F(1)-ATPase but not by the one from the thermophilic F(1)-ATPase, indicating that the introduced amino acid residues from chloroplast F(1)-gamma subunit are important for functional interaction with the epsilon subunit.
Collapse
Affiliation(s)
- D Bald
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
36
|
Günther S, Huchzermeyer B. Nucleotide binding of an ADP analog to cooperating sites of chloroplast F1-ATPase (CF1). EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:541-8. [PMID: 10632724 DOI: 10.1046/j.1432-1327.2000.01029.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pre-steady state nucleotide binding to the chloroplast F1-ATPase (CF1) was measured in a stopped-flow apparatus by monitoring the change of fluorescence intensity of TNP-ADP upon binding. The analysis of the time courses led to the proposal of a mechanism of nucleotide binding with the following characteristics. (a) It involves three sites binding nucleotides in a concerted manner. (b) Each binding site is able to undergo a conformational change from a loose binding state into a state refraining from any direct release of the bound nucleotide into the medium. Only the reverse reaction via the loose binding state enables release out of the tight binding state. (c) Due to very strong negative cooperativity, a maximum of two of the three sites can be found in the state of tight binding. (d) Cooperativity between the three sites leads to a slower nucleotide binding of the second nucleotide compared to the first nucleotide. Furthermore, the conformational change from the loose binding state to the tight binding state is slowed down if one of the other sites already is in the tight binding state. Three-sites mechanisms in which rotation leads to an exchange of the properties of the binding sites failed to simulate the observed time courses of nucleotide binding. However, as the experimental set up was designed to prevent catalysis taking place, our results entirely agree with the current finding that rotation requires catalytic turnover of the enzyme.
Collapse
Affiliation(s)
- S Günther
- ITZ School of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
37
|
Moncalián G, Cabezón E, Alkorta I, Valle M, Moro F, Valpuesta JM, Goñi FM, de La Cruz F. Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem 1999; 274:36117-24. [PMID: 10593894 DOI: 10.1074/jbc.274.51.36117] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrwB is the conjugative coupling protein of plasmid R388. TrwBDeltaN70 contains the soluble domain of TrwB. It was constructed by deletion of trwB sequences containing TrwB N-proximal transmembrane segments. Purified TrwBDeltaN70 protein bound tightly the fluorescent ATP analogue TNP-ATP (K(s) = 8.7 microM) but did not show measurable ATPase or GTPase activity. A single ATP binding site was found per TrwB monomer. An intact ATP-binding site was essential for R388 conjugation, since a TrwB mutant with a single amino acid alteration in the ATP-binding signature (K136T) was transfer-deficient. TrwBDeltaN70 also bound DNA nonspecifically. DNA binding enhanced TrwC nic cleavage, providing the first evidence that directly links TrwB with conjugative DNA processing. Since DNA bound by TrwBDeltaN70 also showed increased negative superhelicity (as shown by increased sensitivity to topoisomerase I), nic cleavage enhancement was assumed to be a consequence of the increased single-stranded nature of DNA around nic. The mutant protein TrwB(K136T)DeltaN70 was indistinguishable from TrwBDeltaN70 with respect to the above properties, indicating that TrwB ATP binding activity is not required for them. The reported properties of TrwB suggest potential functions for conjugative coupling proteins, both as triggers of conjugative DNA processing and as motors in the transport process.
Collapse
Affiliation(s)
- G Moncalián
- Departamento de Biología Molecular (Unidad Asociada al Centro de Investigaciones Biológicas), Universidad de Cantabria, C/Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lerner-Marmarosh N, Gimi K, Urbatsch IL, Gros P, Senior AE. Large scale purification of detergent-soluble P-glycoprotein from Pichia pastoris cells and characterization of nucleotide binding properties of wild-type, Walker A, and Walker B mutant proteins. J Biol Chem 1999; 274:34711-8. [PMID: 10574938 DOI: 10.1074/jbc.274.49.34711] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp; mouse MDR3) was expressed in Pichia pastoris, grown in fermentor culture, and purified. The final pure product is of high specific ATPase activity and is soluble at low detergent concentration. 120 g of cells yielded 6 mg of pure Pgp; >4 kg of cells were obtained from a single fermentor run. Properties of the pure protein were similar to those of previous preparations, except there was significant ATPase activity in absence of added lipid. Mutant mouse MDR3 P-glycoproteins were purified by the same procedure after growth of cells in flask culture, with similar yields and purity. This procedure should open up new avenues of structural, biophysical, and biochemical studies of Pgp. Equilibrium nucleotide-binding parameters of wild-type mouse MDR3 Pgp were studied using 2'-(3')-O-(2,4,6-trinitrophenyl)adenosine tri- and diphosphate. Both analogs were found to bind with K(d) in the low micromolar range, to a single class of site, with no evidence of cooperativity. ATP displacement of the analogs was seen. Similar binding was seen with K429R/K1072R and D551N/D1196N mutant mouse MDR3 Pgp, showing that these Walker A and B mutations had no significant effect on affinity or stoichiometry of nucleotide binding. These residues, known to be critical for catalysis, are concluded to be involved primarily in stabilization of the catalytic transition state in Pgp.
Collapse
Affiliation(s)
- N Lerner-Marmarosh
- Department of Biochemistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
The synthesis, purification, and chemical analysis of two covalent conjugates between ATP and undecagold are described, one in which gold is attached to the ribose moiety of ATP and the other in which it is attached to the N-6 position of the adenine base. The former probe was then used to bind to two ATP binding proteins, the helicase DnaB and the chaperone DnaK. After purification from unbound gold by column chromatography, binding was measured by UV-Vis spectroscopy, then the protein and gold were visualized by scanning transmission electron microscopy. Binding was observed with the conjugates, and virtually no binding occurred in the control of undecagold without the ATP attached. This new probe may be useful for studying nucleotide binding sites on proteins or for labeling nucleic acids or oligonucleotides directly.
Collapse
Affiliation(s)
- J F Hainfeld
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | |
Collapse
|
40
|
Mitterauer T, Nanoff C, Ahorn H, Freissmuth M, Hohenegger M. Metal-dependent nucleotide binding to the Escherichia coli rotamase SlyD. Biochem J 1999; 342 ( Pt 1):33-9. [PMID: 10432297 PMCID: PMC1220433 DOI: 10.1042/0264-6021:3420033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Upon expression and purification of the first catalytic domain of mammalian adenylate cyclase type 1 (IC1), a 27 kDa contaminant was observed, which was labelled by three radioactive ATP analogues (8-azido-ATP, 3'-O-(4-benzoyl)benzoyl-ATP and 2',3'-dialdehyde-ATP); the protein was purified separately and identified as Escherichia coli SlyD by N-terminal amino acid sequence determination. SlyD is the host protein required for lysis of E. coli upon infection with bacteriophage PhiX174 and has recently been shown to display rotamase (peptidylproline cis-trans-isomerase) activity. The covalent incorporation of ATP analogues into SlyD was promoted by bivalent transition metal ions (Zn(2+)>/=Ni(2+)>Co(2+)>Cu(2+)) but not by Mg(2+) or Ca(2+); this is consistent with the known metal ion specificity of SlyD. ATP, ADP, GTP and UTP suppressed labelling of SlyD with comparable potencies. Similarly, SlyD bound 2',3'-O-(-2,4, 6-trinitrophenyl)-ATP with an affinity in the range of 10 microM, as determined by fluorescence enhancement. This interaction was further augmented in the presence of Zn(2+) (K(d)= approximately 2 microM at saturating Zn(2+)) but not of Mg(2+). Irrespective of the assay conditions, hydrolysis of nucleotides by SlyD was not detected. Upon gel filtration on a Superose HR12 column, SlyD (predicted molecular mass=21 kDa) migrated with an apparent molecular mass of 44 kDa, indicating that the protein was a dimer. However, the migration of SlyD was not affected by the presence of Zn(2+) or of Zn(2+) and ATP. Thus we concluded that SlyD binds nucleotides in the presence of metal ions. These findings suggest that SlyD serves a physiological role that goes beyond that accounted for by its intrinsic rotamase activity, which is observed in the absence of metal ions.
Collapse
Affiliation(s)
- T Mitterauer
- Institute of Pharmacology, University of Vienna, Währinger Str. 13a, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
41
|
Furch M, Fujita-Becker S, Geeves MA, Holmes KC, Manstein DJ. Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin. J Mol Biol 1999; 290:797-809. [PMID: 10395830 DOI: 10.1006/jmbi.1999.2921] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motifs N2 and N3, also referred to as switch-1 and switch-2, form part of the active site of molecular motors such as myosins and kinesins. In the case of myosin, N3 is thought to act as a gamma-phosphate sensor and moves almost 6 A relative to N2 during the catalysed turnover of ATP, opening and closing the active site surrounding the gamma-phosphate. The closed form seems to be necessary for hydrolysis and is stabilised by the formation of a salt-bridge between an arginine residue in N2 and a glutamate residue in N3. We examined the role of this salt-bridge in Dictyostelium discoideum myosin. Myosin motor domains with mutations E459R or R238E, that block salt-bridge formation, show defects in nucleotide-binding, reduced rates of ATP hydrolysis and a tenfold reduction in actin affinity. Inversion of the salt-bridge in double-mutant M765-IS eliminates most of the defects observed for the single mutants. With the exception of a 2,500-fold higher KMvalue for ATP, the double-mutant displayed enzymatic and functional properties very similar to those of the wild-type protein. Our results reveal that, independent of its orientation, the salt-bridge is required to support efficient ATP hydrolysis, normal communication between different functional regions of the myosin head, and motor function.
Collapse
Affiliation(s)
- M Furch
- Max-Planck-Institut für Medizinische Forschung, Jahnstr. 29, Heidelberg, D-69120, Germany
| | | | | | | | | |
Collapse
|
42
|
Ye JY, Yamauchi M, Yogi O, Ishikawa M. Spectroscopic Properties of 2‘-(or-3‘)-O-(2,4,6-Trinitrophenyl) Adenosine 5‘-Triphosphate Revealed by Time-Resolved Fluorescence Spectroscopy. J Phys Chem B 1999. [DOI: 10.1021/jp984232k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Yong Ye
- Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), National Institute for Advanced Interdisciplinary Research, 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
| | - Masayo Yamauchi
- Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), National Institute for Advanced Interdisciplinary Research, 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
| | - Osamu Yogi
- Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), National Institute for Advanced Interdisciplinary Research, 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
| | - Mitsuru Ishikawa
- Joint Research Center for Atom Technology (JRCAT), Angstrom Technology Partnership (ATP), National Institute for Advanced Interdisciplinary Research, 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
| |
Collapse
|
43
|
Fujita S, Nawata T, Yamada K. Fluorescence changes of a label attached near the myosin active site on nucleotide binding in rat skeletal muscle fibres. J Physiol 1999; 515 ( Pt 3):869-80. [PMID: 10066911 PMCID: PMC2269193 DOI: 10.1111/j.1469-7793.1999.869ab.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Trinitrophenyl AMP (TNP-AMP) in the concentration range 10-300 microM induced an increase in fluorescence intensity at around 530 nm in skinned skeletal muscle fibres freshly obtained from rat psoas muscle. 2. The fluorescence intensity of the fibres depended on TNP-AMP concentration up to approximately 200 microM. The Kd of TNP-AMP binding to the muscle fibres was 38.0 +/- 8.4 microM (mean +/- s.d., n = 4 measurements) in three fibres. TNP-AMP fluorescence was readily washed out. 3. Various nucleotides affected the fluorescence of the fibres incubated in 20 microM TNP-AMP. MgATP (1 mM) and caged ATP (5 mM) reduced the fluorescence in 20 microM TNP-AMP by more than 40 % of the value measured in the absence of nucleotide. 4. When the fibres were stretched to almost no filament overlap, the extent of the quenching of the TNP-AMP (20 microM) fluorescence due to ATP binding was reduced by 14 %. This might be explained by assuming that the association of the thin filament affected the TNP-AMP fluorescence in muscle fibres. 5. The distance between the active site and the specific site for TNP was measured by the fluorescence resonance energy transfer between N-methylanthraniloyl-ATP (Mant-ATP) bound to the active site and the TNP-AMP bound to the TNP-specific site in muscle fibres. The results showed that the distance between the two may be less than 2 nm. 6. It may be concluded that the fluorescence intensity at 530 nm in skinned muscle fibres in low concentrations of TNP-AMP changes directly reflecting the conformational state of the nucleotide-binding region that is determined by the binding of nucleotides.
Collapse
Affiliation(s)
- S Fujita
- Department of Physiology, Oita Medical University, Oita 879-5593, Japan
| | | | | |
Collapse
|
44
|
Thoenges D, Amler E, Eckert T, Schoner W. Tight binding of bulky fluorescent derivatives of adenosine to the low affinity E2ATP site leads to inhibition of Na+/K+-ATPase. Analysis of structural requirements of fluorescent ATP derivatives with a Koshland-Némethy-Filmer model of two interacting ATP sites. J Biol Chem 1999; 274:1971-8. [PMID: 9890953 DOI: 10.1074/jbc.274.4.1971] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Koshland-Némethy-Filmer model of two cooperating ATP sites has previously been shown to explain the kinetics of inhibition of Na+/K+-ATPase (EC 3.6.1.37) by dansylated ATP (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321). The present work demonstrates that this model adequately describes all types of interactions and kinetics of a number of ATP analogs that differ in their cooperativity of the high and low affinity ATP binding sites of the enzyme. 2',3'-O(2,4,6-trinitrophenyl)ATP binds in a negative cooperative way to the E1ATP site (Kd = 0.7 microM) and to the E2ATP site (Kd = 210 microM), but 3'(2')-O-methylanthraniloyl-ATP in a positive cooperative way with a lower affinity to the E1ATP binding site (Kd = 200 microM) than to the E2ATP binding site (Kd = 80 microM). 3'(2')-O(5-Fluor-2,4-dinitrophenyl)-ATP, however, binds in a noncooperative way, with equal affinities to both ATP binding sites (Kd = 10 microM). In a research for the structural parameters determining ATP site specificity and cooperativity, we became aware that structural flexibility of ribose is necessary for catalysis. Moreover, puckering of the ring atoms in the ribose is essential for the interaction between ATP sites in Na+/K+-ATPase. A number of derivatives of 2'(3')-O-adenosine with bulky fluorescent substitutes bind with high affinity to the E2ATP site and inhibit Na+/K+-ATPase activity. Evidently, an increased number of interactions of such a bulky adenosine with the enzyme protein tightens binding to the E2ATP site.
Collapse
Affiliation(s)
- D Thoenges
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
45
|
Yamada K, Fujita S. Communications between the nucleotide- and actin-binding site of the myosin head in muscle fibers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 453:419-23. [PMID: 9889853 DOI: 10.1007/978-1-4684-6039-1_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
2'(or 3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP), a fluorescent analog of ATP, and the derivatives were used to fluorescently label the myosin head in skinned skeletal muscle fibers. It has been known that a secondary site for TNP-ADP other than the active site exists in myosin S1. We found by fluorescence resonance energy transfer between mant ATP and TNP-AMP that the secondary site for TNP-nucleotides is located within 2 nm of the active site in skeletal muscle fibers. The changes in fluorescence intensity of muscle fibers in 20 microM TNP-AMP when nucleotides are bound may reflect changes of the structure of the active site of myosin heads. It was also shown that actin affected the extent of the fluorescence changes induced by ATP binding to the active site. Both ATP and caged ATP affected the fluorescence intensity, thus caged ATP interacts with the active site. When ATP was released from caged ATP by pulse photolysis in muscle fibers in TNP-AMP showed a transient increase in fluorescence intensity, and still greater fluorescence signal can be detected when the fiber actively contracted when Ca2+ was present.
Collapse
Affiliation(s)
- K Yamada
- Department of Physiology, Oita Medical University, Japan.
| | | |
Collapse
|
46
|
Stitt BL, Xu Y. Sequential hydrolysis of ATP molecules bound in interacting catalytic sites of Escherichia coli transcription termination protein Rho. J Biol Chem 1998; 273:26477-86. [PMID: 9756883 DOI: 10.1074/jbc.273.41.26477] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli transcription termination protein Rho, an RNA-dependent ATPase, disrupts transcription complexes, releasing RNA and allowing RNA polymerase to recycle. Homohexameric Rho binds three molecules of MgATP in a single class of catalytically competent sites. In rapid mix chemical quench experiments, when Rho saturated with ATP was mixed with RNA and the reaction was quenched after various times, hydrolysis of the three bound ATP molecules was not simultaneous. A hydrolysis burst of one molecule of ATP per hexamer occurred at >300 s-1, followed by steady-state hydrolysis at 30 s-1 per hexamer. The burst also shows that a step following ATP hydrolysis is rate-limiting for overall catalysis and requires communication among the three catalytic sites during net ATP hydrolysis. The rate of hydrolysis of radiolabeled ATP when one labeled and two unlabeled ATP molecules are bound indicates a sequential pattern of hydrolysis. Positive cooperativity of catalysis occurs among the catalytic sites of Rho; when only one ATP molecule is bound per hexamer, ATP hydrolysis upon addition of RNA is 30-fold slower than when ATP is saturating. These behaviors are comparable to those of F1-type ATPases, with which Rho shares a number of structural features.
Collapse
Affiliation(s)
- B L Stitt
- Department of Biochemistry and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
47
|
Ko YH, Pedersen PL. Overexpression, purification, and function of first nucleotide-binding fold of cystic fibrosis transmembrane conductance regulator. Methods Enzymol 1998; 292:675-86. [PMID: 9711591 DOI: 10.1016/s0076-6879(98)92052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
48
|
Juuti JT, Bamford DH, Tuma R, Thomas GJ. Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage phi 6. J Mol Biol 1998; 279:347-59. [PMID: 9642042 DOI: 10.1006/jmbi.1998.1772] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA polymerase complex of bacteriophage phi 6 comprises four proteins, P1, P2, P4 and P7, and forms the core of the virion. Protein P4 is a non-specific NTPase that provides the energy required for RNA translocation (packaging). Characterization of purified recombinant P4 shows that the protein assembles into stable hexamers in the presence of ADP and divalent cations. Image averaging of electron micrographs reveals this hexamer as a slightly skewed ring with outer and inner diameters of 12 and 2 nm, respectively. NTPase activity of P4 is associated only with the hexameric form. Ca2+ and Zn2+ and non-specific single-stranded RNA stimulate the NTPase activity, while Mg2+ acts as a non-competitive inhibitor, presumably via a separate Mg2+ binding site. Binding affinities of different nucleotide mono-, di- and triphosphates and non-hydrolyzable analogs indicate that the beta-phosphate moiety is required for substrate binding. A slight preference for binding of purine nucleotides is also observed. Analysis of P4 by CD and Raman spectroscopy indicates an alpha/beta subunit fold that is altered only slightly by hexamer assembly. Raman markers of P4 secondary and tertiary structures are also largely invariant to nucleotide exchange and hydrolysis, suggesting that the mechanisms of RNA translocation involves movement of subunits relative to one another rather than large scale changes in the alpha/beta subunit fold. The stoichiometry of P4 in the mature phi 6 virion is estimated as 120 copies. Because the recombinant P4 hexamers exhibit hydrodynamic and enzymatic properties that are identical to those of P4 oligomers released from native phi 6, we propose that P4 occurs as hexamers in the native viral core particle.
Collapse
Affiliation(s)
- J T Juuti
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
49
|
Chapal J, Hillaire-Buys D, Bertrand G, Pujalte D, Petit P, Loubatières-Mariani MM. Comparative effects of adenosine-5'-triphosphate and related analogues on insulin secretion from the rat pancreas. Fundam Clin Pharmacol 1998; 11:537-45. [PMID: 9444521 DOI: 10.1111/j.1472-8206.1997.tb00858.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine tri- and diphosphate (ATP and ADP) and their structural analogues stimulate insulin secretion from the isolated perfused rat pancreas, an effect mediated by P2Y-purinoceptor activation. Concerning the base moiety of the nucleotide, it was previously shown that purine but not pyrimidine nucleoside triphosphates were active and that substitution on purine C2 with the 2-methylthio group greatly enhanced the potency. In this study, we further analyze the consequences of ribose and polyphosphate chain modifications. Modifications in 2' and 3' position on the ribose led to a decrease in insulin response when bulky substitutions were made: indeed, 2'-deoxy ATP was similar in activity to ATP, whereas arylazido-aminopropionyl ATP (ANAPP3) was weakly effective and trinitrophenyl ATP (TNP-ATP) was inactive. Substitution on the gamma phosphorus of the triphosphate chain led to a decrease (gamma-anilide ATP) or no change (gamma-azido ATP) in potency; the replacement of the bridging oxygen between beta and gamma phosphorus by a peroxide group did not significantly change the activity, whereas substitution by a methylene group completely abolished stimulation of insulin secretion. As for the phosphorothioate analogues, adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) induced an insulin response similar to that produced by ATP, whereas adenosine-5'-O-(2-thiodiphosphate) (ADP beta S) was about 100-fold more potent than ATP, as previously shown. In conclusion, two structural features seem to have a strategic importance for increasing the insulin secretory activity of ATP analogues: substitution at the C2 position on the adenine ring of ATP and modifications of the polyphosphate chain at the level of the beta phosphorus.
Collapse
Affiliation(s)
- J Chapal
- Laboratoire de Pharmacologie, UPRES EA 1677, Faculté de Médecine, Institut de Biologie, Montpellier, France
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- D Thoenges
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Germany
| | | | | |
Collapse
|