1
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. The translational potential of this article Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Inhibition of Histone Deacetylase 6 by Tubastatin A Attenuates the Progress of Osteoarthritis via Improving Mitochondrial Function. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2376-2386. [DOI: 10.1016/j.ajpath.2020.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
|
3
|
Geminiani M, Gambassi S, Millucci L, Lupetti P, Collodel G, Mazzi L, Frediani B, Braconi D, Marzocchi B, Laschi M, Bernardini G, Santucci A. Cytoskeleton Aberrations in Alkaptonuric Chondrocytes. J Cell Physiol 2017; 232:1728-1738. [DOI: 10.1002/jcp.25500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/22/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Michela Geminiani
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Silvia Gambassi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Lia Millucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Pietro Lupetti
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena Italy
| | - Giulia Collodel
- Dipartimento di Medicina Molecolare e dello Sviluppo; Università degli Studi di Siena; Siena Italy
| | - Lucia Mazzi
- Dipartimento di Medicina Molecolare e dello Sviluppo; Università degli Studi di Siena; Siena Italy
| | - Bruno Frediani
- Dipartimento di Scienze Mediche; Chirurgiche e Neuroscienze; Università degli Studi di Siena; Siena Italy
| | - Daniela Braconi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Barbara Marzocchi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Marcella Laschi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| |
Collapse
|
4
|
Abstract
The term "chondropenia" indicates the early stage of degenerative cartilage disease, and it has been identified by carefully monitoring early-stage osteoarthritis (OA). Not only is it the loss of articular cartilage volume, but it is also a rearrangement of biomechanical, ultrastructural, biochemical and molecular properties typical of healthy cartilage tissue. Diagnosing OA at an early stage or an advanced stage is valuable in terms of clinical and therapeutic outcome. In fact degenerative phenomena are supported by a complex biochemical cascade which unbalances the extracellular matrix homeostasis, closely regulated by chondrocytes. In the first stage an intense inflammatory reaction is triggered: pro-catabolic cytokines such as IL-1β and TNF-α triggering matrix metalloproteases and aggrecanase (ADAMT-4 and 5), responsible for the early loss of ultrastructural components, such as type II collagen and aggrecan. In addition nitric oxide and reactive oxygen species modulate the physiopathology of the condral matrix inducing apoptosis of chondrocytes through a mitochondria-dependent pathway. In addition, "Lonely Death": chondrocytes, are confined within a dense, avascular extracellular matrix capsule, and can trigger a genetically induced apoptosis and necrosis. The degenerative process starts from a central point and then spreads in a centrifugal manner in depth and in adjacent areas, eventually covering the whole joint; chondropenia represents a journey from the first clinically detectable time-point until it can be characterized as frank osteoarthritis. Currently, there are no instruments sensitive enough which allow a timely diagnosis of chondropenia. Innovative magnetic resonance imaging techniques, such as T2 mapping, can be effective and a sensitive diagnostic instrument for quantifying cartilage volume and proteoglycan content. However, avant-garde biophysical techniques, such as mechanical indenters, ultrasound and biochemical markers (uCTX-II), are rational and scientific tools applicable to the clinical and therapeutic management of early degenerative cartilage disease. The objective of this review on chondropenia is to present a state of the art and innovative concepts.
Collapse
|
5
|
Li S, Blain EJ, Cao J, Caterson B, Duance VC. Effects of the mycotoxin nivalenol on bovine articular chondrocyte metabolism in vitro. PLoS One 2014; 9:e109536. [PMID: 25329658 PMCID: PMC4198117 DOI: 10.1371/journal.pone.0109536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022] Open
Abstract
Objective Kashin-Beck Disease (KBD) is an endemic, age-related degenerative osteoarthropathy and its cause is hypothesised to involve Fusarium mycotoxins. This study investigated the Fusarium mycotoxin Nivalenol (NIV) on the metabolism of bovine articular chondrocytes in vitro. Design The effect 0.0–0.5 µg/ml NIV on transcript levels of types I and II collagen, aggrecan, matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) and the tissue inhibitors of MMPs (TIMPs) was investigated using quantitative PCR. Amounts of sulphated glycosaminoglycans, MMPs and TIMPs were assessed using the Dimethylmethylene Blue assay, gelatin zymography and reverse gelatin zymography respectively. Cytoskeletal organisation was analysed using confocal microscopy and cytoskeletal gene and protein levels were measured by quantitative PCR and Western blot analysis, respectively. Results NIV caused a dose-dependent increase in aggrecan transcription with a concomitant retention of sGAG in the cell lysate. Furthermore, NIV significantly increased MMPs-2, -3 & -9, ADAMTS-4 and -5, and TIMP-2 and -3 transcript levels but inhibited type I collagen, MMP 1 and TIMP 1 mRNA levels. NIV promoted extensive cytoskeletal network remodelling, particularly with vimentin where a dose-dependent peri-nuclear aggregation occurred. Conclusion NIV exposure to chondrocytes decreased matrix deposition, whilst enhancing selective catabolic enzyme production, suggesting its potential for induction of cellular catabolism. This NIV-induced extracellular matrix remodelling may be due to extensive remodelling/disassembly of the cytoskeletal elements. Collectively, these findings support the hypothesis that trichothecene mycotoxins, and in particular NIV, have the potential to induce matrix catabolism and propagate the pathogenesis of KBD.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Emma J. Blain
- Arthritis Research UK Biomechanics and Bioengineering Centre, Cardiff University, Cardiff, United Kingdom
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Junling Cao
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Bruce Caterson
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Victor C. Duance
- Arthritis Research UK Biomechanics and Bioengineering Centre, Cardiff University, Cardiff, United Kingdom
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Blain EJ. Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. Int J Exp Pathol 2009; 90:1-15. [PMID: 19200246 DOI: 10.1111/j.1365-2613.2008.00625.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cytoskeleton of all cells is a three-dimensional network comprising actin microfilaments, tubulin microtubules and intermediate filaments. Studies in many cell types have indicated roles for these cytoskeletal proteins in many diverse cellular processes including alteration of cell shape, movement of organelles, migration, endocytosis, secretion, cell division and extracellular matrix assembly. The cytoskeletal networks are highly organized in structure enabling them to fulfil their biological functions. This review will primarily focus on the organization and function of the three major cytoskeletal networks in articular cartilage chondrocytes. Articular cartilage is a major load-bearing tissue of the synovial joint; it is well known that the cytoskeleton acts as a physical interface between the chondrocytes and the extracellular matrix in 'sensing' mechanical stimuli. The effect of mechanical load on cytoskeletal element expression and organization will also be reviewed. Abnormal mechanical load is widely believed to be a risk factor for the development of osteoarthritis. Several studies have intimated that the major cytoskeletal networks are disorganized or often absent in osteoarthritic cartilage chondrocytes. The implications and possible reasoning for this are more widely discussed and placed into context with their potential relevance to disease and therapeutic strategies.
Collapse
Affiliation(s)
- Emma J Blain
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
7
|
Blain EJ, Gilbert SJ, Hayes AJ, Duance VC. Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis. Matrix Biol 2006; 25:398-408. [PMID: 16876394 DOI: 10.1016/j.matbio.2006.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 05/18/2006] [Accepted: 06/07/2006] [Indexed: 11/25/2022]
Abstract
Articular cartilage functions in dissipating forces applied across joints. It comprises an extracellular matrix containing primarily collagens, proteoglycans and water to maintain its functional properties, and is interspersed with chondrocytes. The chondrocyte cytoskeleton comprises actin microfilaments, tubulin microtubules and vimentin intermediate filaments. Previous studies have determined the contribution of actin and tubulin in regulating the synthesis of the extracellular matrix components aggrecan and type II collagen. The contribution of vimentin to extracellular matrix biosynthesis in any cell type has not previously been addressed. Therefore the aim of this study was to assess the role of vimentin in cartilage chondrocyte metabolism. Vimentin intermediate filaments were disrupted in high-density monolayer articular chondrocyte cultures using acrylamide for 7 days. De novo protein and collagen synthesis were measured by adding [3H]-proline, and sulphated glycosaminoglycan (sGAG) synthesis measured by adding [35S]-sulphate to cultures. Vimentin disruption resulted in decreased collagen synthesis, whilst sGAG synthesis was unaffected. In addition, there was a significant reduction in type II collagen and aggrecan gene transcription suggesting that the effects observed occur at both the transcriptional and translational levels. A 3-day cold chase demonstrated a significant inhibition of collagen and sGAG degradation; the reduction in collagen degradation was corroborated by the observed reduction in both pro-MMP 2 expression and activation. We have demonstrated that an intact vimentin intermediate filament network contributes to the maintenance of the chondrocyte phenotype and thus an imbalance favouring filament disassembly can disturb the integrity of the articular cartilage, and may ultimately lead to the development of pathologies such as osteoarthritis.
Collapse
Affiliation(s)
- Emma J Blain
- Connective Tissue Biology Laboratories, Biomedical Sciences Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, Wales, UK.
| | | | | | | |
Collapse
|
8
|
Jortikka MO, Parkkinen JJ, Inkinen RI, Kärner J, Järveläinen HT, Nelimarkka LO, Tammi MI, Lammi MJ. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys 2000; 374:172-80. [PMID: 10666295 DOI: 10.1006/abbi.1999.1543] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondrocytes of the articular cartilage sense mechanical factors associated with joint loading, such as hydrostatic pressure, and maintain the homeostasis of the extracellular matrix by regulating the metabolism of proteoglycans (PGs) and collagens. Intermittent hydrostatic pressure stimulates, while continuous high hydrostatic pressure inhibits, the biosynthesis of PGs. High continuous hydrostatic pressure also changes the structure of cytoskeleton and Golgi complex in cultured chondrocytes. Using microtubule (MT)-affecting drugs nocodazole and taxol as tools we examined whether MTs are involved in the regulation of PG synthesis in pressurized primary chondrocyte monolayer cultures. Disruption of the microtubular array by nocodazole inhibited [(35)S]sulfate incorporation by 39-48%, while MT stabilization by taxol caused maximally a 17% inhibition. Continuous hydrostatic pressure further decreased the synthesis by 34-42% in nocodazole-treated cultures. This suggests that high pressure exerts its inhibitory effect through mechanisms independent of MTs. On the other hand, nocodazole and taxol both prevented the stimulation of PG synthesis by cyclic 0. 5 Hz, 5 MPa hydrostatic pressure. The drugs did not affect the structural and functional properties of the PGs, and none of the treatments significantly affected cell viability, as indicated by the high level of PG synthesis 24-48 h after the release of drugs and/or high hydrostatic pressure. Our data on two-dimensional chondrocyte cultures indicate that inhibition of PG synthesis by continuous high hydrostatic pressure does not interfere with the MT-dependent vesicle traffic, while the stimulation of synthesis by cyclic pressure does not occur if the dynamic nature of MTs is disturbed by nocodazole. Similar phenomena may operate in cartilage matrix embedded chondrocytes.
Collapse
Affiliation(s)
- M O Jortikka
- Department of Anatomy, University of Kuopio, Kuopio, 70211, Finland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Farquharson C, Lester D, Seawright E, Jefferies D, Houston B. Microtubules are potential regulators of growth-plate chondrocyte differentiation and hypertrophy. Bone 1999; 25:405-12. [PMID: 10511106 DOI: 10.1016/s8756-3282(99)00187-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terminal differentiation of growth-plate chondrocytes is accompanied by the acquisition of a spherical morphology and a large increase in cell volume. These changes are likely to be associated with rearrangement of the cytoskeleton, but little information on this aspect of chondrocyte hypertrophy is available. We report a role for microtubules in the control of chondrocyte maturation and hypertrophy. Chick growth-plate chondrocytes were fractionated into five maturationally distinct populations by Percoll density gradient centrifugation, and agarose gel differential display analysis was performed. We identified a 1200 bp cDNA fragment derived from a transcript that was most highly expressed in the hypertrophic chondrocytes. After cloning and sequencing, FASTA and BLAST analysis revealed 100% identity to chick beta7-tubulin. Differential expression was confirmed in a reverse transcription-polymerase chain reaction (RT-PCR) assay using specific primers for a 343 bp fragment from the 3' untranslated region of beta7-tubulin. Beta7-tubulin was upregulated three-fold in fully hypertrophic chondrocytes compared with the other four fractions, which all had similar levels of expression. Immunocytochemical localization of beta-tubulin in chick growth-plate sections demonstrated little staining in the chondrocytes of the proliferating zone, but intense cytoplasmic staining was present in the large hypertrophic chondrocytes. In cell culture studies, the addition of colchicine (10(-6) mol/L) resulted in a higher rate of [3H]-thymidine uptake (36.0%; p < 0.001), but lower amounts of alkaline phosphatase activity (69.1%; p < 0.001), collagen (49.1%; p < 0.01), and glycosaminoglycan (43.3%; p < 0.01) accumulation within the cell-matrix layer. Further evidence for the involvement of microtubules in chondrocyte differentiation and hypertrophy was obtained by morphological assessment of colchicine-treated growth-plate explant cultures. A partial failure of chondrocyte hypertrophy was observed, although collagen type X immunoreactivity was noted within the interstitial matrix. Further studies are required to identify the exact role of microtubules in chondrocyte hypertrophy, but the results presented here suggest that upregulation of beta-tubulin may be required for increased microtubule synthesis during changes in cell size during the hypertrophic process. In addition, as cell-matrix interactions are required for chondrocyte maturation, microtubules may promote the differentiated phenotype as a result of their role in Golgi-mediated secretion of matrix proteins.
Collapse
Affiliation(s)
- C Farquharson
- Bone Biology Group, Roslin Institute, Midlothian, Scotland, UK.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The cytoskeleton of chondrocytes consists of microfilaments made of actin, microtubules made of tubulin, and intermediate filaments made of a variety of subunits. Actin filaments are not prominent in vivo but may form in vitro. In culture, changes in filament polymerisation are important in determining cell shape, initiating chondrogenesis, and maintaining the chondrogenic phenotype. Microtubules, besides their role in cell division, organise the distribution of organelles and are involved in secretory transport mechanisms in collagen and proteoglycan synthesis. A variety of intermediate filaments may be present, frequently forming large whorled aggregates. The filaments include vimentin, cytokeratins, and glial fibrillary acidic protein. These may occur at different depths in articular cartilage. Vimentin accumulates during development of some fibrocartilages with increased mechanical loading. Together with other elements of the cytoskeleton, intermediate filaments could form part of a mechanotransduction system by which cells respond to external forces and sense changes in their external environment.
Collapse
Affiliation(s)
- M Benjamin
- Department of Anatomy, University of Wales College of Cardiff, United Kingdom
| | | | | |
Collapse
|
11
|
Thomas CV, Sackrison JL, Ryan US, Luikart SD. Effects of colchicine on sulfated glycosaminoglycan production and cell detachment in pre-capillary pulmonary endothelial cells. Tissue Cell 1987; 19:617-24. [PMID: 3424336 DOI: 10.1016/0040-8166(87)90069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of colchicine on the morphology, substrate adhesiveness, and production of glycosaminoglycan (GAG) macromolecules by cultured pre-capillary pulmonary endothelial cell were studied. Colchicine-treated cells demonstrated altered morphology and decreased substrate adhesiveness compared to untreated cells. In addition, [35S]sulfate incorporation into glycosaminoglycans was decreased 33% after treatment with colchicine. Spectrophotometric measurement of total cellular GAG revealed a similar GAG reduction in colchicine-treated cells. The composition of [35S]sulfate radiolabelled GAG was similar in cultures with and without colchicine, consisting of approximately 56% chondroitin sulfate and the remainder heparin/heparan sulfate. The results indicate that colchicine influences the biological behavior of pre-capillary endothelial cells, in part by altering the amount of glycosaminoglycan molecules produced.
Collapse
Affiliation(s)
- C V Thomas
- Department of Medicine, University of Minnesota Medical School, Minneapolis 55455
| | | | | | | |
Collapse
|
12
|
Chaldakov GN, Vankov VN. Morphological aspects of secretion in the arterial smooth muscle cell, with special reference to the Golgi complex and microtubular cytoskeleton. Atherosclerosis 1986; 61:175-92. [PMID: 3533092 DOI: 10.1016/0021-9150(86)90137-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Abstract
Electron microscopic and cytochemical studies indicate that microtubules play an important role in the organization of the Golgi complex in mammalian cells. During interphase microtubules form a radiating pattern in the cytoplasm, originating from the pericentriolar region (microtubule-organizing centre). The stacks of Golgi cisternae and the associated secretory vesicles and lysosomes are arranged in a circumscribed juxtanuclear area, usually centered around the centrioles, and show a defined orientation in relation to the rough endoplasmic reticulum. Exposure of cells to drugs such as colchicine, vinblastine and nocodazole leads to disassembly of microtubules and disorganization of the Golgi complex, most typically a dispersion of its stacks of cisternae throughout the cytoplasm. These alterations are accompanied by disturbances in the intracellular transport, processing and release of secretory products as well as inhibition of endocytosis. The observations suggest that microtubules are partly responsible for the maintenance and functioning of the Golgi complex, possibly by arranging its stacks of cisternae three-dimensionally within the cell and in relation to other organelles and ensuring a normal flow of material into and away from them. During mitosis, microtubules disassemble (prophase) and a mitotic spindle is built up (metaphase) to take care of the subsequent separation of the chromosomes (anaphase). The breaking up of the microtubular cytoskeleton is followed by vesiculation of the rough endoplasmic reticulum and partial atrophy, as well as dispersion of the stacks of Golgi cisternae. After completion of the nuclear division (telophase), the radiating microtubule pattern is re-established and the rough endoplasmic reticulum and the Golgi complex resume their normal interphase structure. This sequence of events is believed to fulfil the double function to provide tubulin units and space for construction of the mitotic spindle and to guarantee an approximately equal distribution of the rough endoplasmic reticulum and the Golgi complex on the two daughter cells.
Collapse
|
14
|
Takigawa M, Takano T, Shirai E, Suzuki F. Cytoskeleton and differentiation: effects of cytochalasin B and colchicine on expression of the differentiated phenotype of rabbit costal chondrocytes in culture. CELL DIFFERENTIATION 1984; 14:197-204. [PMID: 6488324 DOI: 10.1016/0045-6039(84)90046-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cytochalasin B changed the shape of cultured rabbit costal chondrocytes from polygonal to nearly spherical and stimulated glycosaminoglycan synthesis, which is a differentiated phenotype of chondrocytes, whereas colchicine changed them from polygonal to flattened and inhibited glycosaminoglycan synthesis. These morphological changes occurred parallel with the changes in glycosaminoglycan synthesis. Induction of ornithine decarboxylase by parathyroid hormone, which is a good marker of differentiated chondrocytes, was markedly potentiated in the spherical cells which had been pretreated with cytochalasin B, whereas pretreatment with colchicine inhibited the induction of the enzyme. Both cytochalasin B and colchicine inhibited DNA synthesis. The inhibitions were observed after the appearance of changes in the morphology of the cells and glycosaminoglycan synthesis. These findings suggest that intactness of microtubules and disruption of microfilaments are involved in regulating the expression of the differentiated phenotype of chondrocytes in culture.
Collapse
|
15
|
Madsen K, Holmström S, Ostrowski K. Synthesis and secretion of proteoglycans by cultured chondrocytes. Effects of monensin, colchicine and beta-D-xyloside. Exp Cell Res 1983; 148:493-501. [PMID: 6628566 DOI: 10.1016/0014-4827(83)90170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chondrocytes, isolated from elastic ear cartilage of young rabbits, were grown in monolayer cultures in Ham's F-12 medium. Synthesis and secretion of macromolecules were monitored by labelling with radioactive precursors and the effect of monensin and other experimental agents was investigated. Monensin caused an inhibition of the incorporation of precursors into macromolecular material and a moderate intracellular accumulation when used in higher concentrations. The effect was more pronounced for 35SO4 than for 3H-labelled glucose or proline. p-Nitrophenyl-beta-D-xyloside alleviated this inhibition to some extent, but there was a concomitant increase in the amount of intracellular labelled material. Colchicine and monensin together caused a severe inhibition of the incorporation of 35SO4 and a marked shift of the label to the intracellular compartment. Colchicine also increased the sensitivity of the cells to monensin, lowering the minimal effective concentration about one order of magnitude. The latter results are consistent with the idea that cytoplasmic microtubules have a stabilizing function on the secretory pathways and, that their removal by colchicine, causing a 'randomizing' of the Golgi complex, makes these pathways more vulnerable to monensin.
Collapse
|
16
|
Kleesiek K, Greiling H. Effect of anti-inflammatory agents on the glycosaminoglycan metabolism in cultured human synovial cells. Rheumatol Int 1982; 2:167-74. [PMID: 6820567 DOI: 10.1007/bf00286139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Bernfield M, Banerjee SD. The turnover of basal lamina glycosaminoglycan correlates with epithelial morphogenesis. Dev Biol 1982; 90:291-305. [PMID: 7075863 DOI: 10.1016/0012-1606(82)90378-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Madsen K. Glycosaminoglycan secretion from perifused monolayer cultures of rabbit ear chondrocytes: modification of xyloside effect by colchicine and cytochalasin B. Arch Biochem Biophys 1981; 211:368-74. [PMID: 7305375 DOI: 10.1016/0003-9861(81)90466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Kleine TO. Biosynthesis of proteoglycans: an approach to locate it in different membrane systems. INTERNATIONAL REVIEW OF CONNECTIVE TISSUE RESEARCH 1981; 9:27-98. [PMID: 7040277 DOI: 10.1016/b978-0-12-363709-3.50008-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Deudon E, Breton M, Berrou E, Picard J. Metabolism of glycosaminoglycans in cultured smooth muscle cells from pig aorta. Biochimie 1980; 62:811-21. [PMID: 7470512 DOI: 10.1016/s0300-9084(80)80137-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Kent L, Malemud CJ, Moskowitz RW. Differential response of articular chondrocyte populations to thromboxane B2 and analogs of prostaglandin cyclic endoperoxides. PROSTAGLANDINS 1980; 19:391-406. [PMID: 7384546 DOI: 10.1016/0090-6980(80)90073-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of two unsaturated fatty acids, protaglandin E2, thromboxane B2 (TxB2) and 2 analogs of PG endoperoxide on monolayer cultures of rabbit articular chondrocytes have been studied. Arachidonic and linoleic acids had no effect on either DNA or sulfated-glycosaminoglycan biosynthesis, while 13,14 dihydro-PGE2 and PGE2 markedly inhibited the former. Two epoxymethano analogs of endoperoxide PGH2 (Em-;pgh2) at concentrations of 2.5 and 24 microgram/ml stimulated cell proliferation while reducing 35SO4 incorporation. By contrast, Em-PGH2 at lower concentrations (0.25 - 250 ng/ml) inhibited DNA synthesis in a dose-dependent manner. TxB2 at 2.5 microgram/ml did not alter cellular proliferation. At lower concentrations, 2.5 and 25 ng/ml, TxB2 significantly stimulated sulfated-glycosaminoglycan biosynthesis in at least one of the chondrocyte populations tested. The results also demonstrated marked differences in the effects of TxB2 and the Em-PGH2 analogs on the partitioning of newly synthesized sulfated-proteoglycan between the cells and medium of these cell cultures.
Collapse
|
22
|
Kim J, Conrad H. Secretion of chondroitin SO4 by monolayer cultures of chick embryo chondrocytes. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)86073-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Severson AR. Colchicine stimulation of hyaluronate synthesis and secretion in bone organ culture. J Cell Physiol 1979; 101:341-8. [PMID: 511956 DOI: 10.1002/jcp.1041010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Lohmander S, Madsen K, Hinek A. Secretion of proteoglycans by chondrocytes. Influence of colchicine, cytochalasin B, and beta-D-xyloside. Arch Biochem Biophys 1979; 192:148-57. [PMID: 434815 DOI: 10.1016/0003-9861(79)90080-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
von Figura K, Kresse H, Meinhard U, Holtfrerich D. Studies on secretion and endocytosis of macromolecules by cultivated skin fibroblasts. Effects of anti-microtubular agents on secretion and endocytosis of lysosomal hydrolases and of sulphated glycosaminoglycans. Biochem J 1978; 170:313-20. [PMID: 637845 PMCID: PMC1183897 DOI: 10.1042/bj1700313] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fibroblasts were incubated in the presence of the anti-microtubular drugs colchicine, vinblastine and vincristine. In concentrations between 10nm and 1 mM these drugs stimulated the secretion of beta-N-acetylglucosaminidase, alpha-N-acetylglucosaminidase and beta-glucuronidase, but not of beta-galactosidase. The endocytosis of beta-N-acetylhexosaminidase and alpha-N-acetylglucosaminidase, but not of beta-glucuronidase, was inhibited at drug concentrations higher than 0.1 micrometer. Formation, secretion and association with the cell membrane of sulphated proteoglycans were not affected by anti-microtubular drugs. Endocytosis of sulphated proteoglycans and their subsequent degradation was inhibited by drug concentrations above 0.1 micrometer. The inhibition of intracellular glycosaminoglycan degradation led to a moderate storage of these compounds. These results suggest that microtubules participate in the control of secretion and endocytosis of lysosomal enzymes, and in the endocytosis and degradation of lysosomal substrates such as sulphated proteoglycans.
Collapse
|
26
|
Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40970-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Froesch ER, Zapf J, Audhya TK, Ben-Porath E, Segen BJ, Gibson KD. Nonsuppressible insulin-like activity and thyroid hormones: major pituitary-dependent sulfation factors for chick embryo cartilage. Proc Natl Acad Sci U S A 1976; 73:2904-8. [PMID: 1066701 PMCID: PMC430797 DOI: 10.1073/pnas.73.8.2904] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Serum from hypothyroid hypophysectomized rats did not stimulate sulfation or incorporation of amino acids into chick embryo sterna. When such rats were treated for a short time with growth hormone (somatotropin), their serum stimulated incorporation both of sulfate and of amino acids. The different actions of the two types of sera were not due to changes in thyroid state. The results support the existence in serum of a sulfation factor for chick embryo cartilage that is dependent upon growth hormone. Highly purified preparations of nonsuppressible insulin-like activity from human serum stimulated incorporation of amino acids, and of uridine into RNA, in chick embryo sterna in vitro; chondrocytes prepared from this tissue had specific high-affinity binding sites for this insulin-like activity. However, sulfate incorporation was stimulated very little, unless serum from hypothyroid hypophysectomized rats was also present. When L-3,5,3'-triiodothyronine was added as well, the stimulation was enhanced further. From these and other experiments, we conclude that (i) nonsuppressible insulin-like activity or a closely related peptide is the growth-hormone-dependent growth and sulfation factor for chick embryo cartilage: (ii) a second, unidentified factor must be present for the insulin-like activity to stimulate sulfation; and (iii) stimulation of sulfation by thyroid hormones in vitro is additive to that of nonsuppressible insulin-like activity.
Collapse
|
28
|
Audhya TK, Gibson KD. Effects of medium composition and metabolic inhibitors on glycosaminoglycan synthesis in chick embryo cartilage and its stimulation by serum and triiodothyronine. Biochim Biophys Acta Gen Subj 1976; 437:364-76. [PMID: 133721 DOI: 10.1016/0304-4165(76)90006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of inorganic sulfate into glycosaminoglycans of chick embryo sternum is stimulated by serum and triiodothyronine. Variations in the amino acid content of the medium, and in particular in the concentration of glutamine, changed the incorportion in control and stimulated sterna to the same degree. Omission of Na+ from the medium greatly reduced incorporation in both control and stimulated sterna; incorporation, and its stimulation by triiodothyronine, was restored by raising the concentration of Na+. Ouabain and valinomycin inhibited incorporation more than 90%, and triiodothyronine did not stimulate under these conditions. Puromycin and cycloheximide also inhibited incorporation almost completely, and abolished the stimulation by triiodothyronine and serum. Addition of p-nitrophenyl-beta-xyloside, in the presence of of puromycin ir cycloheximide, restored sulfation to a level of 5-10% of the control value; however, this level of incorporation was not increased by addition of serum or triiodothyronine. Actinomycin D, colchicine and vinblastine inhibited incorporation by 40% or less at the highest concentrations tested; however, these three agents completely abolished the ability of triiodothyronine to stimulate incorporation. Lumicolchicine and cytochalasin B decreased incorporation in controls slightly but did not affect the stimulation by serum or triiodothyronine. The results indicate that thyroid hormones stimulate glycosaminoglycan synthesis only under conditions which support efficient synthesis in control incubations, and suggest that microtubule formation may be essential to the mode of action of thyroid hormones in this system.
Collapse
|
29
|
Lohmander S, Moskalewski S, Madsen K, Thyberg J, Friberg U. Influence of colchicine on the synthesis and secretion of proteoglycans and collagen by fetal guinea pig chondrocytes. Exp Cell Res 1976; 99:333-45. [PMID: 131691 DOI: 10.1016/0014-4827(76)90591-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Lebovitz HE, Eisenbarth GS. Hormonal regulation of cartilage growth and metabolism. VITAMINS AND HORMONES 1976; 33:575-648. [PMID: 180680 DOI: 10.1016/s0083-6729(08)60973-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Moskalewski S, Thyberg J, Lohmander S, Friberg U. Influence of colchicine and vinblastine on the golgi complex and matrix deposition in chondrocyte aggregates. An ultrastructural study. Exp Cell Res 1975; 95:440-54. [PMID: 1193161 DOI: 10.1016/0014-4827(75)90569-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|