1
|
Liang RS, Su JQ, Wu XQ, Wang Q, Cai YM, Su HY, Tang JX, Yao CW. Identification of therapeutic targets for chronic kidney disease through Mendelian randomization analysis of druggable genes. Sci Rep 2025; 15:10779. [PMID: 40155631 PMCID: PMC11953390 DOI: 10.1038/s41598-025-94761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Chronic Kidney Disease (CKD) is a multifaceted and gradually advancing condition characterized by a complex pathogenesis. The current therapeutic options for CKD remain limited in efficacy. Consequently, the identification and exploration of novel drug targets for CKD are of paramount importance. We identified cis-expression quantitative trait loci (cis-eQTLs) with potential as drug targets from the eQTLGen Consortium database to serve as the exposure. For the outcome, we utilized a genome-wide association study (GWAS) of chronic kidney disease (CKD) from the FinnGen database, which comprised a case group of 11,265 individuals and a control group of 436,208 individuals. MR analysis was employed to investigate druggable genes closely associated with CKD. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to elucidate the functional roles of these significant genes. Finally, a colocalization analysis was conducted to determine the likelihood that a cis-eQTL for a druggable gene and CKD share a causal variant. The expression of 12 genes was found to be significantly associated with CKD risk, with a false discovery rate (FDR) of less than 0.05. GO and KEGG enrichment analyses indicated that these genes are primarily involved in the regulation of MAP kinase activity, regulation of protein serine/threonine kinase activity, Gap junction, Platelet activation and Oxytocin signaling pathway. The colocalization analysis results suggested that CKD and the TUBB gene may share a causal variant, with a posterior probability (PP.H4) exceeding 80% (TUBB: 97.27%). Compelling statistical evidence indicates that TUBB represents the most promising pharmacological target for the treatment of CKD. This study not only identifies potential therapeutic targets but also offers valuable insights for future drug development in the context of CKD.
Collapse
Affiliation(s)
- Run-Sen Liang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin-Qi Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiang-Qi Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yong-Mei Cai
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hong-Yong Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
2
|
Podolak M, Holota S, Deyak Y, Dziduch K, Dudchak R, Wujec M, Bielawski K, Lesyk R, Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg Chem 2024; 143:107076. [PMID: 38163424 DOI: 10.1016/j.bioorg.2023.107076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.
Collapse
Affiliation(s)
- Magdalena Podolak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Yaroslava Deyak
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; Department of Pharmaceutical Disciplines, Uzhhorod National University, Narodna Square 3, 88000 Uzhhorod, Ukraine
| | - Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Rostyslav Dudchak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
3
|
Bhargava S, Kulkarni R, Dewangan B, Kulkarni N, Jiaswar C, Kumar K, Kumar A, Bodhe PR, Kumar H, Sahu B. Microtubule stabilising peptides: new paradigm towards management of neuronal disorders. RSC Med Chem 2023; 14:2192-2205. [PMID: 37974959 PMCID: PMC10650357 DOI: 10.1039/d3md00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuronal cells made of soma, axon, and dendrites are highly compartmentalized and possess a specialized transport system that can convey long-distance electrical signals for the cross-talk. The transport system is made up of microtubule (MT) polymers and MT-binding proteins. MTs play vital and diverse roles in various cellular processes. Therefore, defects and dysregulation of MTs and their binding proteins lead to many neurological disorders as exemplified by Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and many others. MT-stabilising agents (MSAs) altering the MT-associated protein connections have shown great potential for several neurodegenerative disorders. Peptides are an important class of molecules with high specificity, biocompatibility and are devoid of side effects. In the past, peptides have been explored in various neuronal disorders as therapeutics. Davunetide, a MT-stabilising octapeptide, has entered into phase II clinical trials for schizophrenia. Numerous examples of peptides emerging as MSAs reflect the emergence of a new paradigm for peptides which can be explored further as drug candidates for neuronal disorders. Although small molecule-based MSAs have been reviewed in the past, there is no systematic review in recent years focusing on peptides as MSAs apart from davunetide in 2013. Therefore, a systematic updated review on MT stabilising peptides may shed light on many hidden aspects and enable researchers to develop new therapies for diseases related to the CNS. In this review we have summarised the recent examples of peptides as MSAs.
Collapse
Affiliation(s)
- Shubhangi Bhargava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Riya Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bhaskar Dewangan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Chirag Jiaswar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Kunal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Amit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Praveen Reddy Bodhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|
4
|
Zafar S, Armaghan M, Khan K, Hassan N, Sharifi-Rad J, Habtemariam S, Kieliszek M, Butnariu M, Bagiu IC, Bagiu RV, Cho WC. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother 2023; 165:115039. [PMID: 37364476 DOI: 10.1016/j.biopha.2023.115039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan.
| | - Nazia Hassan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania.
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Preventive Medicine Study Center, Timisoara, Romania
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Abstract
The fungus Rhizopus microsporus harbors a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the antimitotic toxin rhizoxin. Although rhizoxin is the causative agent of rice seedling blight, the toxinogenic bacterial-fungal alliance is, not restricted to the plant disease. It has been detected in numerous environmental isolates from geographically distinct sites covering all five continents, thus raising questions regarding the ecological role of rhizoxin beyond rice seedling blight. Here, we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and coculture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the dominant bacterial rhizoxin congener rhizoxin S2, which is also lethal toward the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analysis, and quantification of nematode movement, we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, whereas worms coincubated with symbiotic R. microsporus are significantly less lively. This study uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function as an evolutionary driving force to maintain toxin-producing endosymbionts in nonpathogenic fungi.
Collapse
|
6
|
Niehs SP, Scherlach K, Dose B, Uzum Z, Stinear TP, Pidot SJ, Hertweck C. A highly conserved gene locus in endofungal bacteria codes for the biosynthesis of symbiosis-specific cyclopeptides. PNAS NEXUS 2022; 1:pgac152. [PMID: 36714835 PMCID: PMC9802438 DOI: 10.1093/pnasnexus/pgac152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
The tight association of the pathogenic fungus Rhizopus microsporus and its toxin-producing, bacterial endosymbionts (Mycetohabitans spp.) is distributed worldwide and has significance for agriculture, food production, and human health. Intriguingly, the endofungal bacteria are essential for the propagation of the fungal host. Yet, little is known about chemical mediators fostering the symbiosis, and universal metabolites that support the mutualistic relationship have remained elusive. Here, we describe the discovery of a complex of specialized metabolites produced by endofungal bacteria under symbiotic conditions. Through full genome sequencing and comparative genomics of eight endofungal symbiont strains from geographically distant regions, we discovered a conserved gene locus (hab) for a nonribosomal peptide synthetase as a unifying trait. Bioinformatics analyses, targeted gene deletions, and chemical profiling uncovered unprecedented depsipeptides (habitasporins) whose structures were fully elucidated. Computational network analysis and labeling experiments granted insight into the biosynthesis of their nonproteinogenic building blocks (pipecolic acid and β-phenylalanine). Deletion of the hab gene locus was shown to impair the ability of the bacteria to enter their fungal host. Our study unveils a common principle of the endosymbiotic lifestyle of Mycetohabitans species and expands the repertoire of characterized chemical mediators of a globally occurring mutualistic association.
Collapse
Affiliation(s)
| | | | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, 3000, Australia
| | | |
Collapse
|
7
|
Alpízar-Pedraza D, Veulens ADLN, Araujo EC, Piloto-Ferrer J, Sánchez-Lamar Á. Microtubules destabilizing agents binding sites in tubulin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur-Al-Hossain ASM, Fukase K. A Review on Mechanistic Insight of Plant Derived Anticancer Bioactive Phytocompounds and Their Structure Activity Relationship. Molecules 2022; 27:3036. [PMID: 35566385 PMCID: PMC9102595 DOI: 10.3390/molecules27093036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Priyanka Roy
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Md. Emran Hossain
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - A. S. M. Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh;
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Itabangi H, Sephton-Clark PCS, Tamayo DP, Zhou X, Starling GP, Mahamoud Z, Insua I, Probert M, Correia J, Moynihan PJ, Gebremariam T, Gu Y, Ibrahim AS, Brown GD, King JS, Ballou ER, Voelz K. A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Curr Biol 2022; 32:1115-1130.e6. [PMID: 35134329 PMCID: PMC8926845 DOI: 10.1016/j.cub.2022.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/04/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Opportunistic infections by environmental fungi are a growing clinical problem, driven by an increasing population of people with immunocompromising conditions. Spores of the Mucorales order are ubiquitous in the environment but can also cause acute invasive infections in humans through germination and evasion of the mammalian host immune system. How they achieve this and the evolutionary drivers underlying the acquisition of virulence mechanisms are poorly understood. Here, we show that a clinical isolate of Rhizopus microsporus contains a Ralstonia pickettii bacterial endosymbiont required for virulence in both zebrafish and mice and that this endosymbiosis enables the secretion of factors that potently suppress growth of the soil amoeba Dictyostelium discoideum, as well as their ability to engulf and kill other microbes. As amoebas are natural environmental predators of both bacteria and fungi, we propose that this tri-kingdom interaction contributes to establishing endosymbiosis and the acquisition of anti-phagocyte activity. Importantly, we show that this activity also protects fungal spores from phagocytosis and clearance by human macrophages, and endosymbiont removal renders the fungal spores avirulent in vivo. Together, these findings describe a new role for a bacterial endosymbiont in Rhizopus microsporus pathogenesis in animals and suggest a mechanism of virulence acquisition through environmental interactions with amoebas.
Collapse
Affiliation(s)
- Herbert Itabangi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Poppy C S Sephton-Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Diana P Tamayo
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Xin Zhou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina P Starling
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Zamzam Mahamoud
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ignacio Insua
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark Probert
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Teclegiorgis Gebremariam
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yiyou Gu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ashraf S Ibrahim
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Jason S King
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
10
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
11
|
Plants under the Attack of Allies: Moving towards the Plant Pathobiome Paradigm. PLANTS 2021; 10:plants10010125. [PMID: 33435275 PMCID: PMC7827841 DOI: 10.3390/plants10010125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Plants are functional macrobes living in a close association with diverse communities of microbes and viruses as complex systems that continuously interact with the surrounding environment. The microbiota within the plant holobiont serves various essential and beneficial roles, such as in plant growth at different stages, starting from seed germination. Meanwhile, pathogenic microbes—differentiated from the rest of the plant microbiome based on their ability to damage the plant tissues through transient blooming under specific conditions—are also a part of the plant microbiome. Recent advances in multi-omics have furthered our understanding of the structure and functions of plant-associated microbes, and a pathobiome paradigm has emerged as a set of organisms (i.e., complex eukaryotic, microbial, and viral communities) within the plant’s biotic environment which interact with the host to deteriorate its health status. Recent studies have demonstrated that the one pathogen–one disease hypothesis is insufficient to describe the disease process in many cases, particularly when complex organismic communities are involved. The present review discusses the plant holobiont and covers the steady transition of plant pathology from the one pathogen–one disease hypothesis to the pathobiome paradigm. Moreover, previous reports on model plant diseases, in which more than one pathogen or co-operative interaction amongst pathogenic microbes is implicated, are reviewed and discussed.
Collapse
|
12
|
Liniger M, Neuhaus CM, Altmann KH. Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins. Molecules 2020; 25:E4527. [PMID: 33023218 PMCID: PMC7582377 DOI: 10.3390/molecules25194527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
Efforts are described towards the total synthesis of the bacterial macrolide rhizoxin F, which is a potent tubulin assembly and cancer cell growth inhibitor. A significant amount of work was expanded on the construction of the rhizoxin core macrocycle by ring-closing olefin metathesis (RCM) between C(9) and C(10), either directly or by using relay substrates, but in no case was ring-closure achieved. Macrocycle formation was possible by ring-closing alkyne metathesis (RCAM) at the C(9)/C(10) site. The requisite diyne was obtained from advanced intermediates that had been prepared as part of the synthesis of the RCM substrates. While the direct conversion of the triple bond formed in the ring-closing step into the C(9)-C(10) E double bond of the rhizoxin macrocycle proved to be elusive, the corresponding Z isomer was accessible with high selectivity by reductive decomplexation of the biscobalt hexacarbonyl complex of the triple bond with ethylpiperidinium hypophosphite. Radical-induced double bond isomerization, full elaboration of the C(15) side chain, and directed epoxidation of the C(11)-C(12) double bond completed the total synthesis of rhizoxin F.
Collapse
Affiliation(s)
| | | | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zürich, Switzerland; (M.L.); (C.M.N.)
| |
Collapse
|
13
|
Navarrete KR, Jiménez VA. Interdimeric Curvature in Tubulin-Tubulin Complexes Delineates the Microtubule-Destabilizing Properties of Plocabulin. J Chem Inf Model 2020; 60:4076-4084. [PMID: 32687349 DOI: 10.1021/acs.jcim.0c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plocabulin is a novel microtubule (MT) destabilizer agent with potent antineoplastic activity. This compound binds to the maytansine site at the longitudinal interface between tubulin dimers and exerts a hinge-like effect that disrupts normal microtubule assembly. Plocabulin has emerged as a valuable model for the rational design of novel MT destabilizers because of its unique structural and mechanistic features. To make progress on this matter, detailed molecular-level understanding of the ligand-protein interactions responsible for plocabulin association and the conformation and energetic effects arising from plocabulin binding on the longitudinal interaction between tubulin dimers must be provided. In this work, fully atomistic MD simulations and MM/GBSA binding free-energy calculations were used to examine the association of plocabulin to one or two tubulin dimers in longitudinal arrangement. Our results revealed that plocabulin binding is favored by the addition of a second tubulin dimer and that this ligand promotes the assembly of curved tetrameric arrangements with strengthened longitudinal interdimeric interactions compared to ligand-free systems. The applicability of these findings to the rational discovery of novel MT destabilizers was tested using MD and MM/GBSA calculations as filtering tools to narrow the results of virtual screening among an FDA-approved drug database. Our results confirmed that tight-binding ligands do not necessarily exert the expected conformational and energetic effects on longitudinal tubulin-tubulin interactions, which is a matter to consider in future design strategies.
Collapse
Affiliation(s)
- Karen R Navarrete
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| |
Collapse
|
14
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
15
|
Carter AC, Petersen CL, Wendt KL, Helff SK, Risinger AL, Mooberry SL, Cichewicz RH. In Situ Ring Contraction and Transformation of the Rhizoxin Macrocycle through an Abiotic Pathway. JOURNAL OF NATURAL PRODUCTS 2019; 82:886-894. [PMID: 30865445 DOI: 10.1021/acs.jnatprod.8b00974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A Rhizopus sp. culture containing an endosymbiont partner ( Burkholderia sp.) was obtained through a citizen-science-based soil-collection program. An extract prepared from the pair of organisms exhibited strong inhibition of Ewing sarcoma cells and was selected for bioassay-guided fractionation. This led to the purification of rhizoxin (1), a potent antimitotic agent that inhibited microtubule polymerization, along with several new (2-5) and known (6) analogues of 1. The structures of 2-6 were established using a combination of NMR data analysis, while the configurations of the new stereocenters were determined using ROESY spectroscopy and comparison of GIAO-derived and experimental data for NMR chemical shift and 3 JHH coupling values. Whereas compound 1 showed modest selectivity for Ewing sarcoma cell lines carrying the EWSR1/ FLI1 fusion gene, the other compounds were determined to be inactive. Chemically, compound 2 stands out from other rhizoxin analogues because it is the first member of this class that is reported to contain a one-carbon-smaller 15-membered macrolactone system. Through a combination of experimental and computational tests, we determined that 2 is likely formed via an acid-catalyzed Meinwald rearrangement from 1 because of the mild acidic culture environment created by the Rhizopus sp. isolate and its symbiont.
Collapse
Affiliation(s)
- Adam C Carter
- Natural Product Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Cora L Petersen
- Department of Pharmacology , University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Karen L Wendt
- Natural Product Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Sara K Helff
- Natural Product Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - April L Risinger
- Department of Pharmacology , University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
- Mays Cancer Center , University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Susan L Mooberry
- Department of Pharmacology , University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
- Mays Cancer Center , University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Robert H Cichewicz
- Natural Product Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , Norman , Oklahoma 73019 , United States
| |
Collapse
|
16
|
Arora P, Riyaz-Ul-Hassan S. Endohyphal bacteria; the prokaryotic modulators of host fungal biology. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Mannaa M, Park I, Seo YS. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species. Int J Mol Sci 2018; 20:E121. [PMID: 30598000 PMCID: PMC6337347 DOI: 10.3390/ijms20010121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
18
|
Karier P, Ungeheuer F, Ahlers A, Anderl F, Wille C, Fürstner A. Metathesis at an Implausible Site: A Formal Total Synthesis of Rhizoxin D. Angew Chem Int Ed Engl 2018; 58:248-253. [DOI: 10.1002/anie.201812096] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Pol Karier
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Ungeheuer
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Andreas Ahlers
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Anderl
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Christian Wille
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
19
|
Karier P, Ungeheuer F, Ahlers A, Anderl F, Wille C, Fürstner A. Metathesis at an Implausible Site: A Formal Total Synthesis of Rhizoxin D. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pol Karier
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Ungeheuer
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Andreas Ahlers
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Felix Anderl
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Christian Wille
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
20
|
Menchon G, Prota AE, Lucena-Agell D, Bucher P, Jansen R, Irschik H, Müller R, Paterson I, Díaz JF, Altmann KH, Steinmetz MO. A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nat Commun 2018; 9:2106. [PMID: 29844393 PMCID: PMC5974090 DOI: 10.1038/s41467-018-04535-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/26/2023] Open
Abstract
Microtubule-targeting agents (MTAs) like taxol and vinblastine are among the most successful chemotherapeutic drugs against cancer. Here, we describe a fluorescence anisotropy-based assay that specifically probes for ligands targeting the recently discovered maytansine site of tubulin. Using this assay, we have determined the dissociation constants of known maytansine site ligands, including the pharmacologically active degradation product of the clinical antibody-drug conjugate trastuzumab emtansine. In addition, we discovered that the two natural products spongistatin-1 and disorazole Z with established cellular potency bind to the maytansine site on β-tubulin. The high-resolution crystal structures of spongistatin-1 and disorazole Z in complex with tubulin allowed the definition of an additional sub-site adjacent to the pocket shared by all maytansine-site ligands, which could be exploitable as a distinct, separate target site for small molecules. Our study provides a basis for the discovery and development of next-generation MTAs for the treatment of cancer.
Collapse
Affiliation(s)
- Grégory Menchon
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Daniel Lucena-Agell
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas CIB-CSIC, Madrid, 28040, Spain
| | - Pascal Bucher
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Rolf Jansen
- Abteilung Mikrobielle Wirkstoffe, Helmholtz Zentrum für Infektionsforschung, Braunschweig, 38124, Germany
| | - Herbert Irschik
- Abteilung Mikrobielle Wirkstoffe, Helmholtz Zentrum für Infektionsforschung, Braunschweig, 38124, Germany
| | - Rolf Müller
- Department Microbial Natural Products and Department of Pharmacy at Saarland University, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, 66123, Germany
| | - Ian Paterson
- University Chemical Laboratory, Cambridge University, Cambridge, CB2 1EW, UK
| | - J Fernando Díaz
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas CIB-CSIC, Madrid, 28040, Spain
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland.
- University of Basel, Biozentrum, Basel, 4056, Switzerland.
| |
Collapse
|
21
|
Bailon-Moscoso N, Cevallos-Solorzano G, Romero-Benavides JC, Orellana MIR. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies. Curr Genomics 2017; 18:106-131. [PMID: 28367072 PMCID: PMC5345333 DOI: 10.2174/1389202917666160808125645] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.
Collapse
|
22
|
Heine D, Sundaram S, Bretschneider T, Hertweck C. Twofold polyketide branching by a stereoselective enzymatic Michael addition. Chem Commun (Camb) 2016; 51:9872-5. [PMID: 25994388 DOI: 10.1039/c5cc03085d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The versatility of the branching module of the rhizoxin polyketide synthase was tested in an in vitro enzyme assay with a polyketide mimic and branched (di)methylmalonyl-CoA extender units. Comparison of the products with synthetic reference compounds revealed that the module is able to stereoselectively introduce two branches in one step by a Michael addition-lactonisation sequence, thus expanding the scope of previously studied PKS systems.
Collapse
Affiliation(s)
- Daniel Heine
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
23
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
24
|
Heine D, Bretschneider T, Sundaram S, Hertweck C. Enzymatic Polyketide Chain Branching To Give Substituted Lactone, Lactam, and Glutarimide Heterocycles. Angew Chem Int Ed Engl 2014; 53:11645-9. [DOI: 10.1002/anie.201407282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 01/01/2023]
|
25
|
Heine D, Bretschneider T, Sundaram S, Hertweck C. Enzymatische Polyketid-Kettenverzweigung zur Bildung substituierter Lacton-, Lactam- und Glutarimidheterocyclen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
|
27
|
A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc Natl Acad Sci U S A 2014; 111:13817-21. [PMID: 25114240 DOI: 10.1073/pnas.1408124111] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent success of antibody-drug conjugates (ADCs) in the treatment of cancer has led to a revived interest in microtubule-destabilizing agents. Here, we determined the high-resolution crystal structure of the complex between tubulin and maytansine, which is part of an ADC that is approved by the US Food and Drug Administration (FDA) for the treatment of advanced breast cancer. We found that the drug binds to a site on β-tubulin that is distinct from the vinca domain and that blocks the formation of longitudinal tubulin interactions in microtubules. We also solved crystal structures of tubulin in complex with both a variant of rhizoxin and the phase 1 drug PM060184. Consistent with biochemical and mutagenesis data, we found that the two compounds bound to the same site as maytansine and that the structures revealed a common pharmacophore for the three ligands. Our results delineate a distinct molecular mechanism of action for the inhibition of microtubule assembly by clinically relevant agents. They further provide a structural basis for the rational design of potent microtubule-destabilizing agents, thus opening opportunities for the development of next-generation ADCs for the treatment of cancer.
Collapse
|
28
|
Venghateri JB, Gupta TK, Verma PJ, Kunwar A, Panda D. Ansamitocin P3 depolymerizes microtubules and induces apoptosis by binding to tubulin at the vinblastine site. PLoS One 2013; 8:e75182. [PMID: 24124473 PMCID: PMC3790769 DOI: 10.1371/journal.pone.0075182] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022] Open
Abstract
Maytansinoid conjugates are currently under different phases of clinical trials and have been showing promising activity for various types of cancers. In this study, we have elucidated the mechanism of action of ansamitocin P3, a structural analogue of maytansine for its anticancer activity. Ansamitocin P3 potently inhibited the proliferation of MCF-7, HeLa, EMT-6/AR1 and MDA-MB-231 cells in culture with a half-maximal inhibitory concentration of 20±3, 50±0.5, 140±17, and 150±1.1 pM, respectively. Ansamitocin P3 strongly depolymerized both interphase and mitotic microtubules and perturbed chromosome segregation at its proliferation inhibitory concentration range. Treatment of ansamitocin P3 activated spindle checkpoint surveillance proteins, Mad2 and BubR1 and blocked the cells in mitotic phase of the cell cycle. Subsequently, cells underwent apoptosis via p53 mediated apoptotic pathway. Further, ansamitocin P3 was found to bind to purified tubulin in vitro with a dissociation constant (Kd) of 1.3±0.7 µM. The binding of ansamitocin P3 induced conformational changes in tubulin. A docking analysis suggested that ansamitocin P3 may bind partially to vinblastine binding site on tubulin in two different positions. The analysis indicated that the binding of ansamitocin P3 to tubulin is stabilized by hydrogen bonds. In addition, weak interactions such as halogen-oxygen interactions may also contribute to the binding of ansamitocin P3 to tubulin. The study provided a significant insight in understanding the antiproliferative mechanism of action of ansamitocin P3.
Collapse
Affiliation(s)
- Jubina B. Venghateri
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Tilak Kumar Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Paul J. Verma
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail:
| |
Collapse
|
29
|
Scherlach K, Busch B, Lackner G, Paszkowski U, Hertweck C. Symbiotic Cooperation in the Biosynthesis of a Phytotoxin. Angew Chem Int Ed Engl 2012; 51:9615-8. [DOI: 10.1002/anie.201204540] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 01/08/2023]
|
30
|
Scherlach K, Busch B, Lackner G, Paszkowski U, Hertweck C. Symbiotic Cooperation in the Biosynthesis of a Phytotoxin. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Musiol EM, Weber T. Discrete acyltransferases involved in polyketide biosynthesis. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20048a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Amos LA. What tubulin drugs tell us about microtubule structure and dynamics. Semin Cell Dev Biol 2011; 22:916-26. [PMID: 22001382 DOI: 10.1016/j.semcdb.2011.09.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 09/29/2011] [Indexed: 12/13/2022]
Abstract
A wide range of small molecules, including alkaloids, macrolides and peptides, bind to tubulin and disturb microtubule assembly dynamics. Some agents inhibit assembly, others inhibit disassembly. The binding sites of drugs that stabilize microtubules are discussed in relation to the properties of microtubule associated proteins. The activities of assembly inhibitors are discussed in relation to different nucleotide states of tubulin family protein structures.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
33
|
Antiproliferative Effects of Ester- and Amide-Functionalized Rhizoxin Derivatives. ChemMedChem 2011; 6:1998-2001. [DOI: 10.1002/cmdc.201100319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/25/2011] [Indexed: 11/07/2022]
|
34
|
Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 2011; 31:443-81. [PMID: 21381049 DOI: 10.1002/med.20242] [Citation(s) in RCA: 394] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These "biological vectors" can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work.
Collapse
|
35
|
Abstract
This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
36
|
Yao Y, Cheng Z, Ye H, Xie Y, He J, Tang M, Shen T, Wang J, Zhou Y, Lu Z, Luo F, Chen L, Yu L, Yang JL, Peng A, Wei Y. Preparative isolation and purification of anti-tumor agent ansamitocin P-3 from fermentation broth of Actinosynnema pretiosum using high-performance counter-current chromatography. J Sep Sci 2010; 33:1331-7. [DOI: 10.1002/jssc.200900746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters. PLoS One 2009; 4:e7238. [PMID: 19798419 PMCID: PMC2749935 DOI: 10.1371/journal.pone.0007238] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/05/2009] [Indexed: 01/15/2023] Open
Abstract
Background Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. Method and Findings A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. Conclusions The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.
Collapse
|
38
|
Evolution of host resistance in a toxin-producing bacterial–fungal alliance. ISME JOURNAL 2008; 2:632-41. [DOI: 10.1038/ismej.2008.19] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Brendel N, Partida-Martinez LP, Scherlach K, Hertweck C. A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org Biomol Chem 2007; 5:2211-3. [PMID: 17609750 DOI: 10.1039/b707762a] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted gene inactivation and metabolic profiling revealed that the cryptic PKS-NRPS gene cluster in the genome of the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of antiproliferative and antifungal rhizoxin derivatives.
Collapse
Affiliation(s)
- Nicole Brendel
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11 a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
40
|
Scherlach K, Partida-Martinez LP, Dahse HM, Hertweck C. Antimitotic Rhizoxin Derivatives from a Cultured Bacterial Endosymbiont of the Rice Pathogenic Fungus Rhizopus microsporus. J Am Chem Soc 2006; 128:11529-36. [PMID: 16939276 DOI: 10.1021/ja062953o] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent antimitotic polyketide macrolide rhizoxin, the causal agent of rice seedling blight, is not produced by the fungus Rhizopus microsporus, as has been believed for over two decades, but by endosymbiotic bacteria that reside within the fungal mycelium. Here we report the successful isolation and large-scale fermentation of the bacterial endosymbiont ("Burkholderia rhizoxina") in pure culture, which resulted in a significantly elevated (10x higher) production of antimitotics. In addition to several known rhizoxin derivatives, numerous novel natural and semisynthetic variants were isolated, and their structures were fully elucidated. Cell-based assays as well as tubulin binding experiments revealed that methylated seco-rhizoxin derivatives are 1000-10000 times more active than rhizoxin and thus rank among the most potent antiproliferative agents known to date. Furthermore, more stable didesepoxy rhizoxin analogues were obtained by efficiently inhibiting a putative P-450 monooxygenase involved in macrolide tailoring.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Leibniz-Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
Studies on vinca domain binding drugs were done in great details by a number of workers as it is recognized as a potential target for anticancer drug development. Their structures, properties, mode of action, success and failures as potential anticancer drug have been discussed in short details in this review. Among these drugs rhizoxin and maytansine are competitive inhibitors, and bind at the vinblastine binding site of tubulin where as others are non-competitive inhibitors. Besides binding, these drugs also differ in the extent of GTP hydrolysis, GTP exchange and in the stabilization of colchicine binding site. The toxicity level of these drugs towards the host cells and the extent of efflux of drugs by the P-glycoprotein mediated pump are also discussed.
Collapse
Affiliation(s)
- Suvroma Gupta
- Department of Biochemistry, Bose Institute, Centenary Campus, Calcutta, India
| | | |
Collapse
|
42
|
Rivera RM, Kelley KL, Erdos GW, Hansen PJ. Reorganization of Microfilaments and Microtubules by Thermal Stress in Two-Cell Bovine Embryos1. Biol Reprod 2004; 70:1852-62. [PMID: 14960486 DOI: 10.1095/biolreprod.103.024901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Two-cell bovine embryos become arrested in development when exposed to a physiologically relevant heat shock. One of the major ultrastructural modifications caused by heat shock is translocation of organelles toward the center of the blastomere. The objective of the present study was to determine if heat- shock-induced movement of organelles is a result of cytoskeletal rearrangement. Two-cell bovine embryos were cultured at 38.5 degrees C (homeothermic temperature of the cow), 41.0 degrees C (physiologically relevant heat shock), or 43.0 degrees C (severe heat shock) for 6 h in the presence of either vehicle, latrunculin B (a microfilament depolymerizer), rhizoxin (a microtubule depolymerizer), or paclitaxel (a microtubule stabilizer). Heat shock caused a rearrangement of actin-containing filaments as detected by staining with phalloidin. Moreover, latrunculin B reduced the heat-shock-induced movement of organelles at 41.0 degrees C but not at 43.0 degrees C. In contrast, movement of organelles caused by heat shock was inhibited by rhizoxin at both temperatures. Furthermore, rhizoxin, but not latrunculin B, reduced the swelling of mitochondria caused by heat shock. Paclitaxel, while causing major changes in ultrastructure, did not prevent the movement of organelles or mitochondrial swelling. It is concluded that heat shock disrupts microtubule and microfilaments in the two-cell bovine embryo and that these changes are responsible for movement of organelles away from the periphery. In addition, intact microtubules are a requirement for heat-shock-induced swelling of mitochondria. Differences in response to rhizoxin and paclitaxel are interpreted to mean that deformation of microtubules can occur through a mechanism independent of microtubule depolymerization.
Collapse
Affiliation(s)
- Rocío M Rivera
- Department of Animal Sciences, University of Florida, Gainesville, 32611, USA
| | | | | | | |
Collapse
|
43
|
Hong J, White JD. The chemistry and biology of rhizoxins, novel antitumor macrolides from Rhizopus chinensis. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.04.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Cassady JM, Chan KK, Floss HG, Leistner E. Recent Developments in the Maytansinoid Antitumor Agents. Chem Pharm Bull (Tokyo) 2004; 52:1-26. [PMID: 14709862 DOI: 10.1248/cpb.52.1] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maytansine and its congeners have been isolated from higher plants, mosses and from an Actinomycete, Actinosynnema pretiosum. Many of these compounds are antitumor agents of extraordinary potency, yet phase II clinical trials with maytansine proved disappointing. The chemistry and biology of maytansinoids has been reviewed repeatedly in the late 1970s and early 1980s; the present review covers new developments in this field during the last two decades. These include the use of maytansinoids as "warheads" in tumor-specific antibodies, preliminary metabolism studies, investigations of their biosynthesis at the biochemical and genetic level, and ecological issues related to the occurrence of such typical microbial metabolites in higher plants.
Collapse
Affiliation(s)
- John M Cassady
- College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
45
|
White JD, Blakemore PR, Green NJ, Hauser EB, Holoboski MA, Keown LE, Nylund Kolz CS, Phillips BW. Total synthesis of rhizoxin D, a potent antimitotic agent from the fungus Rhizopus chinensis. J Org Chem 2002; 67:7750-60. [PMID: 12398499 DOI: 10.1021/jo020537q] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhizoxin D (2) was synthesized from four subunits, A, B, C, and D representing C3-C9, C10-C13, C14-C19, and C20-C27, respectively. Subunit A was prepared by cyclization of iodo acetal 21, which set the configuration at C5 of 2 through a stereoselective addition of the radical derived from dehalogenation of 21 at the beta carbon of the (Z)-alpha,beta-unsaturated ester. Aldehyde 29 was obtained from phenylthioacetal 24 and condensed with phosphorane 30, representing subunit B, in a Wittig reaction that gave the (E,E)-dienoate 31. This ester was converted to aldehyde 33 in preparation for coupling with subunit C. The latter in the form of methyl ketone 55 was obtained in six steps from propargyl alcohol. An aldol reaction of 33 with the enolate of 55 prepared with (+)-DIPCl gave the desired beta-hydroxy ketone 56 bearing a (13S)-configuration in a 17-20:1 ratio with its (13R)-diastereomer. After reduction to anti diol 57 and selective protection as TIPS ether 58, the C15 hydroxyl was esterified to give phosphonate 59. An intramolecular Wadsworth-Emmons reaction of aldehyde 62, derived from delta-lactone 60, furnished macrolactone 63, which was coupled in a Stille reaction with stannane 68 to give 2 after cleavage of the TIPS ether.
Collapse
Affiliation(s)
- James D White
- Department of Chemistry, Oregon State University, Corvallis 97331-4003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Natsume T, Watanabe J, Tamaoki S, Fujio N, Miyasaka K, Kobayashi M. Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin. Jpn J Cancer Res 2000; 91:737-47. [PMID: 10920282 PMCID: PMC5926414 DOI: 10.1111/j.1349-7006.2000.tb01007.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
TZT-1027, a derivative of dolastatin 10 isolated from the Indian Ocean sea hare Dolabella auricularia in 1987 by Pettit et al., is a potent antimicrotubule agent. We have compared the activity of TZT-1027 with that of dolastatin 10 as well as the vinca alkaloids vinblastine (VLB), vincristine (VCR) and vindesine (VDS). TZT-1027 and dolastatin 10 inhibited microtubule polymerization concentration-dependently at 1 - 100 microM with IC50 values of 2.2 +/- 0.6 and 2.3 +/- 0.7 microM, respectively. VLB, VCR and VDS inhibited microtubule polymerization at 1 - 3 microM with IC50 values of 2.7 +/- 0.6, 1.6 +/- 0.4 and 1.6 +/- 0.2 microM, respectively, but showed a slight decrease in inhibitory effect at concentrations of 10 microM or more. TZT-1027 also inhibited monosodium glutamate-induced tubulin polymerization concentration-dependently at 0.3 - 10 microM, with an IC50 of 1.2 microM, whereas VLB was only effective at 0.3 - 3 microM, with an IC50 of 0.6 microM, and caused so-called "aggregation" of tubulin at 10 microM. Scatchard analysis of the binding data for [(3)H]VLB suggested one binding site (Kd 0.2 +/- 0.04 microM and Bmax 6.0 +/- 0.26 nM / mg protein), while that for [(3)H]TZT-1027 suggested two binding sites, one of high affinity (Kd 0.2 +/- 0.01 microM and Bmax 1.7 +/- 0.012 nM / mg protein) and the other of low affinity (Kd 10. 3 +/- 1.46 microM and Bmax 11.6 +/- 0.83 nM / mg protein). [(3)H]TZT-1027 was completely displaced by dolastatin 10 but only incompletely by VLB. [(3)H]VLB was completely displaced by dolastatin 10 and TZT-1027. Furthermore, TZT-1027 prevented [(3)H]VLB from binding to tubulin in a non-competitive manner according to Lineweaver-Burk analysis. TZT-1027 concentration-dependently inhibited both [(3)H]guanosine 5'-triphosphate (GTP) binding to and GTP hydrolysis on tubulin. VLB inhibited the hydrolysis of GTP on tubulin concentration-dependently to a lesser extent than TZT-1027, but no inhibitory effect of VLB on [(3)H]GTP binding to tubulin was evident even at 100 microM. Thus, TZT-1027 affected the binding of VLB to tubulin, but its binding site was not completely identical to that of VLB. TZT-1027 had a potent inhibitory effect on tubulin polymerization and differed from vinca alkaloids in its mode of action against tubulin polymerization.
Collapse
Affiliation(s)
- T Natsume
- Teikoku Hormone Mfg. Co., Ltd., Takatsu-ku, Kawasaki, Kanagawa 213-8522, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Kurihara A, Shibayama Y, Kasuya A, Ikeda M, Hisaoka M. Species variation in pharmacokinetics and opsonization of palmitoyl rhizoxin (RS-1541) incorporated in lipid emulsions. J Drug Target 1998; 5:491-505. [PMID: 9783680 DOI: 10.3109/10611869808997875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Highly lipophilic antitumor agent, palmitoyl rhizoxin (RS-1541), was incorporated into stable lipid emulsions about 100-1000nm in mean diameter consisting of triglyceride ODO and surfactant HCO-60. The pharmacokinetics of RS-1541 were studied after i.v. injection in mice, rats, rabbits, and dogs. Dog showed characteristic pharmacokinetics of RS-1541, compared with other species. RS-1541 was much more rapidly eliminated from plasma with emulsion particles in dogs than in mice, rats, and rabbits. Most amounts of injected RS-1541 were recovered in the liver six hours after administration to dogs, while less than 20% recoveries were observed for mice and rats. To clarify this species variation, opsonization of emulsion particles were evaluated. When emulsions (about 200nm in size) were opsonized by dog plasma, and intravenously injected to rats, total clearance and liver uptake of RS-1541 were increased to 1.8 fold and 2.7 fold of control values, respectively. In contrasts, emulsions opsonized by mouse, rabbit and human plasma did not show such drastic changes in pharmacokinetics of RS-1541 in rats. Furthermore, total clearance of RS-1541 for emulsions opsonized by dog plasma was increased to 1.9 fold of controls after injection to rabbits. These results indicate that opsonizing activities of dog plasma for RS-1541 emulsions are high, compared with other species. This species variation in opsonizing process probably caused the species variation in the pharmacokinetics of RS-1541 incorporated in lipid emulsions.
Collapse
Affiliation(s)
- A Kurihara
- Analytical and Metabolic Research Laboratories, Sankyo Co., Ltd, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
48
|
Burke SD, Hong J, Lennox JR, Mongin AP. Synthetic Studies of Antitumor Macrolide Rhizoxin: Stereoselective Syntheses of the C(1)-C(9) and C(12)-C(26) Subunits. J Org Chem 1998; 63:6952-6967. [PMID: 11672317 DOI: 10.1021/jo980754k] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A triply convergent synthetic approach which culminates in the enantioselective syntheses of the C(1)-C(9) and C(12)-C(26) subunits of the macrolide antitumor agent rhizoxin is described. The central C(12)-C(20) subunit 4 has been prepared efficiently via diastereoselective enzymatic acetate hydrolysis of 15 with porcine pancreatic lipase, a chelation-controlled Ireland-Claisen rearrangement (10 --> 12) combined with kinetic bromolactonization (12 --> 14), and Mitsunobu inversion (23 --> 26) to introduce the three contiguous C(15)-C(17) stereocenters. Formation of the C(18)-C(19) trisubstituted (E)-olefin was achieved by a stereoselective Horner-Wadsworth-Emmons reaction. The central segment 4 and the oxazole chromophore side chain 3 were coupled using another highly stereoselective Horner-Wadsworth-Emmons reaction. Two different lactone subunits [C(1)-C(9) segment 5 and C(3)-C(10) segment 47] were also prepared, employing a thermodynamically controlled diastereotopic group differentiation tactic for establishing the C(5) stereochemistry.
Collapse
Affiliation(s)
- Steven D. Burke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and Department of Chemical Sciences, Wyeth-Ayerst Research, Princeton, New Jersey 08543-8000
| | | | | | | |
Collapse
|
49
|
|
50
|
Usui T, Kondoh M, Cui CB, Mayumi T, Osada H. Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 1998; 333 ( Pt 3):543-8. [PMID: 9677311 PMCID: PMC1219615 DOI: 10.1042/bj3330543] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated the cell cycle inhibition mechanism and primary target of tryprostatin A (TPS-A) purified from Aspergillus fumigatus. TPS-A inhibited cell cycle progression of asynchronously cultured 3Y1 cells in the M phase in a dose- and time-dependent manner. In contrast, TPS-B (the demethoxy analogue of TPS-A) showed cell-cycle non-specific inhibition on cell growth even though it inhibited cell growth at lower concentrations than TPS-A. TPS-A treatment induced the reversible disruption of the cytoplasmic microtubules of 3Y1 cells as observed by indirect immunofluorescence microscopy in the range of concentrations that specifically inhibited M-phase progression. TPS-A inhibited the assembly in vitro of microtubules purified from bovine brains (40% inhibition at 250 microM); however, there was little or no effect on the self-assembly of purified tubulin when polymerization was induced by glutamate even at 250 microM TPS-A. TPS-A did not inhibit assembly promoted by taxol or by digestion of the C-terminal domain of tubulin. However, TPS-A blocked the tubulin assembly induced by inducers interacting with the C-terminal domain, microtubule-associated protein 2 (MAP2), tau and poly-(l-lysine). These results indicate that TPS-A is a novel inhibitor of MAP-dependent microtubule assembly and, through the disruption of the microtubule spindle, specifically inhibits cell cycle progression at the M phase.
Collapse
Affiliation(s)
- T Usui
- Antibiotics Laboratory, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-01, Japan
| | | | | | | | | |
Collapse
|