1
|
Agtuca BJ, Stopka SA, Tuleski TR, do Amaral FP, Evans S, Liu Y, Xu D, Monteiro RA, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. In-Situ Metabolomic Analysis of Setaria viridis Roots Colonized by Beneficial Endophytic Bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:272-283. [PMID: 31544655 DOI: 10.1094/mpmi-06-19-0174-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decades, crop yields have risen in parallel with increasing use of fossil fuel-derived nitrogen (N) fertilizers but with concomitant negative impacts on climate and water resources. There is a need for more sustainable agricultural practices, and biological nitrogen fixation (BNF) could be part of the solution. A variety of nitrogen-fixing, epiphytic, and endophytic plant growth-promoting bacteria (PGPB) are known to stimulate plant growth. However, compared with the rhizobium-legume symbiosis, little mechanistic information is available as to how PGPB affect plant metabolism. Therefore, we investigated the metabolic changes in roots of the model grass species Setaria viridis upon endophytic colonization by Herbaspirillum seropedicae SmR1 (fix+) or a fix- mutant strain (SmR54) compared with uninoculated roots. Endophytic colonization of the root is highly localized and, hence, analysis of whole-root segments dilutes the metabolic signature of those few cells impacted by the bacteria. Therefore, we utilized in-situ laser ablation electrospray ionization mass spectrometry to sample only those root segments at or adjacent to the sites of bacterial colonization. Metabolites involved in purine, zeatin, and riboflavin pathways were significantly more abundant in inoculated plants, while metabolites indicative of nitrogen, starch, and sucrose metabolism were reduced in roots inoculated with the fix- strain or uninoculated, presumably due to N limitation. Interestingly, compounds, involved in indole-alkaloid biosynthesis were more abundant in the roots colonized by the fix- strain, perhaps reflecting a plant defense response.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC 20052, U.S.A
| | - Thalita R Tuleski
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, CP 19046, 81.531-990 Curitiba, PR, Brazil
| | - Fernanda P do Amaral
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri Columbia
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri Columbia
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, CP 19046, 81.531-990 Curitiba, PR, Brazil
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, U.S.A
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, U.S.A
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, U.S.A
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC 20052, U.S.A
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
2
|
Abstract
Sugars are simple carbohydrates composed primarily of carbon, hydrogen, and oxygen. They play a central role in metabolism as sources of energy and as building blocks for synthesis of structural and nonstructural polymers. Many different techniques have been used to measure sugars, including refractometry, colorimetric and enzymatic assays, gas chromatography, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy. In this chapter we describe a method that combines an initial separation of sugars by high-performance anion-exchange chromatography (HPAEC) with detection and quantification by tandem mass spectrometry (MS/MS). This combination of techniques provides exquisite specificity, allowing measurement of a diverse range of high- and low-abundance sugars in biological samples. This method can also be used for isotopomer analysis in stable-isotope labeling experiments to measure metabolic fluxes.
Collapse
Affiliation(s)
- Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Carillo P, Feil R, Gibon Y, Satoh-Nagasawa N, Jackson D, Bläsing OE, Stitt M, Lunn JE. A fluorometric assay for trehalose in the picomole range. PLANT METHODS 2013; 9:21. [PMID: 23786766 PMCID: PMC3698175 DOI: 10.1186/1746-4811-9-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/13/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trehalose is a non-reducing disaccharide that is used as an osmolyte, transport sugar, carbon reserve and stress protectant in a wide range of organisms. In plants, trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is thought to be a signal of sucrose status. Trehalose itself may play a role in pathogenic and symbiotic plant-microbe interactions, in responses to abiotic stress and in developmental signalling, but its precise functions are unknown. A major obstacle to investigating its function is the technical difficulty of measuring the very low levels of trehalose usually found in plant tissues, as most of the established trehalose assays lack sufficient specificity and/or sensitivity. RESULTS A kinetic assay for trehalose was established using recombinant Escherichia coli cytoplasmic trehalase (treF), which was shown to be highly specific for trehalose. Hydrolysis of trehalose to glucose is monitored fluorometrically and the trehalose content of the tissue extract is determined from an internal calibration curve. The assay is linear for 0.2-40 pmol trehalose, and recoveries of trehalose were ≥88%. A. thaliana Col-0 rosettes contain about 20-30 nmol g-1FW of trehalose, increasing to about 50-60 nmol g-1FW in plants grown at 8°C. Trehalose is not correlated with sucrose content, whereas a strong correlation between Tre6P and sucrose was confirmed. The trehalose contents of ear inflorescence primordia from the maize ramosa3 mutant and wild type plants were 6.6±2.6 nmol g-1FW and 19.0±12.7 nmol g-1FW, respectively. The trehalose:Tre6P ratios in the ramosa3 and wild-type primordia were 2.43±0.85 and 6.16±3.45, respectively. CONCLUSION The fluorometric assay is highly specific for trehalose and sensitive enough to measure the trehalose content of very small amounts of plant tissue. Chilling induced a 2-fold accumulation of trehalose in A. thaliana rosettes, but the levels were too low to make a substantial quantitative contribution to osmoregulation. Trehalose is unlikely to function as a signal of sucrose status. The abnormal inflorescence branching phenotype of the maize ramosa3 mutant might be linked to a decrease in trehalose levels in the inflorescence primordia or a downward shift in the trehalose:Tre6P ratio.
Collapse
Affiliation(s)
- Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, I-81100, Caserta, Italy
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Yves Gibon
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- INRA Bordeaux, University of Bordeaux, UMR1332 Fruit Biology and Pathology, F-33883, Villenave d’Ornon, France
| | - Namiko Satoh-Nagasawa
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Laboratory of Plant Genetics and Breeding, Department of Biological Production, Faculty of Bioresource Sciences, Kaidobata-nishi 241-438, Shimo-Shinjyo Nakano, Akita City 010-0195, Japan
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Oliver E Bläsing
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Metanomics GmbH, Tegeler Weg 33, Berlin, 10589, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
4
|
|
5
|
Desbrosses GG, Kopka J, Udvardi MK. Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. PLANT PHYSIOLOGY 2005; 137:1302-18. [PMID: 15749991 PMCID: PMC1088322 DOI: 10.1104/pp.104.054957] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/08/2004] [Accepted: 12/12/2004] [Indexed: 05/18/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in legume root nodules requires differentiation and integration of both plant and bacterial metabolism. Classical approaches of biochemistry, molecular biology, and genetics have revealed many aspects of primary metabolism in legume nodules that underpin SNF. Functional genomics approaches, especially transcriptomics and proteomics, are beginning to provide a more holistic picture of the metabolic potential of nodules in model legumes like Medicago truncatula and Lotus japonicus. To extend these approaches, we have established protocols for nonbiased measurement and analysis of hundreds of metabolites from L. japonicus, using gas chromatography coupled with mass spectrometry. Following creation of mass spectral tag libraries, which represent both known and unknown metabolites, we measured and compared relative metabolite levels in nodules, roots, leaves, and flowers of symbiotic plants. Principal component analysis of the data revealed distinct metabolic phenotypes for the different organs and led to the identification of marker metabolites for each. Metabolites that were enriched in nodules included: octadecanoic acid, asparagine, glutamate, homoserine, cysteine, putrescine, mannitol, threonic acid, gluconic acid, glyceric acid-3-P, and glycerol-3-P. Hierarchical cluster analysis enabled discrimination of 10 groups of metabolites, based on distribution patterns in diverse Lotus organs. The resources and tools described here, together with ongoing efforts in the areas of genome sequencing, and transcriptome and proteome analysis of L. japonicus and Mesorhizobium loti, should lead to a better understanding of nodule metabolism that underpins SNF.
Collapse
|
6
|
Streeter JG, Strimbu CE. Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal Biochem 1998; 259:253-7. [PMID: 9618204 DOI: 10.1006/abio.1998.2675] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simultaneous extraction and derivatization of carbohydrates was performed by mixing dry ground plant tissue with derivatization reagents in pyridine; trimethylsilyl derivatives were analyzed by gas-liquid chromatography. This "direct analysis" was compared to analysis of samples prepared by exhaustive ethanol extraction of the same ground plant tissues. Comparisons included leaf blades from apple, grape, corn, and tomato and leaf blade, petiole, stem, and pod tissues from soybean plants. Direct analysis gave superior quantification of sucrose, glucose, and fructose because of sucrose hydrolysis during ethanol extraction. Sucrose hydrolysis was highly variable among plant species and use of hot ethanol at the first extraction step reduced sucrose hydrolysis but did not always abolish it. Sucrose hydrolysis was probably due to the activity of hydrolytic enzymes in 75% ethanol at room temperature. Direct analysis was inferior for the quantification of cyclitols in the fibrous tissues of soybean but provided acceptable results for cyclitol analysis in leaf blade tissue. When the time for extraction/reaction was extended from 40 to 60 min, some improvement in recovery of cyclitols was observed, but recovery remained 10 to 20% below that obtained with exhaustive ethanol extraction. Mannitol was vacuum infiltrated into the five types of leaf tissue and recovery averaged 100% by the direct method relative to ETOH extraction for apple, grape, corn, and soybean leaves but was only 76% for tomato leaves. Direct analysis provides very large time savings and is clearly the method of choice when the analysis of large numbers of samples of plant tissues for carbohydrate composition is required.
Collapse
Affiliation(s)
- J G Streeter
- Department of Horticulture and Crop Science, Ohio State University and OARDC, 1680 Madison Avenue, Wooster, Ohio 44691, USA.
| | | |
Collapse
|
7
|
Binder RG, Haddon WF. Analysis of O-methylinositols by gas-liquid chromatography-mass spectrometry. Carbohydr Res 1984. [DOI: 10.1016/0008-6215(84)85295-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Skøt L, Egsgaard H. Identification of ononitol and O-methyl-scyllo-inositol in pea root nodules. PLANTA 1984; 161:32-36. [PMID: 24253552 DOI: 10.1007/bf00951457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/1983] [Accepted: 10/18/1983] [Indexed: 06/02/2023]
Abstract
Ononitol (4-O-methyl-myo-inositol) and O-methyl-scyllo-inositol were identified in pea (Pisum sativum L.) root nodules formed by twoRhizobium leguminosarum strains. Ononitol was the major soluble carbohydrate in nodules formed by strain 1045 while O-methyl-scyllo-inositol and two unidentified components were dominant in the carbohydrate pattern of the nodules formed by strain 1 a. The cyclitols were also present in the denodulated roots, but to a much smaller extent; in the above-ground plant parts only traces were found. The identification of ononitol and O-methyl-scyllo-inositol was established by gas chromatography and gas chromatography-mass spectrometry utilizing trimethylsilyl- and acetyl-derivatives.
Collapse
Affiliation(s)
- L Skøt
- Agricultural Research Department, Risø National Laboratory, DK-4000, Roskilde, Denmark
| | | |
Collapse
|
9
|
Nordin P. Monitoring of carbohydrates with periodate in effluents from high-pressure liquid chromatography columns. Anal Biochem 1983; 131:492-8. [PMID: 6311055 DOI: 10.1016/0003-2697(83)90203-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Application of periodate to monitoring of carbohydrates in effluents from borate anion-exchange columns is described. The effect of temperature to speed the reaction in a postcolumn reactor was investigated at pH 5.0 and 8.6. The alkaline conditions increase sensitivity for some carbohydrates due to overoxidation. Temperatures up to 100 degrees C may be employed to detect less reactive sugars such as cyclitols. Peaks are detected by an absorbance decrease at 260 nm with a high-pressure liquid chromatography detector. The reagent permits detection of a wide variety of carbohydrates, aldoses, ketoses, alditols, cyclitols, and oligosaccharides with sensitivities of less than 1 nmol.
Collapse
|
10
|
Streeter JG. Enzymes of sucrose, maltose, and α,α-trehalose catabolism in soybean root nodules. PLANTA 1982; 155:112-115. [PMID: 24271663 DOI: 10.1007/bf00392540] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/1981] [Accepted: 04/08/1982] [Indexed: 06/02/2023]
Abstract
Crude, Sephadex-filtered extracts of soybean (Glycine max (L.) Merr.) root nodules contained invertase (E.C. 3.2.1.26) activity with pH optima at 5.4 and 7.8, α,α-trehalase (E.C. 3.2.1.28) activity with pH optima at 3.8 and 6.6, and maltase (E.C. 3.2.1.20) activity with a broad pH optimum between 4.5 and 5.0. Bacteroids and cytosol were separated using Percoll density gradients. Cellulase and pectinase were employed to separate protoplasts from the infected region from the nodule cortex, which remained intract. Assays of disaccharidases from these nodule fractions indicated the following localization of enzymes: (1) Bacteroids lack invertase activity (pH 5.4 and 7.8). (2) Much, if not most, of the invertase activity may be localized in the nodule cortex; this is especially likely for acid invertase. However, there was substantial invertase activity in cytosol from the infected region. (3) Most of the maltase activity (pH 5.0) and trehalase activity (pH 3.8 and 6.6) were localized in the cytosol. It is likely that most of these disaccharidase activities are in the cytosol of the infected region, in contrast to invertase. (4) Bacteroids contain maltase (pH 5.0) and trehalase (pH 3.8 and 6.6), but the amount of these enzyme activities was less than 15% of total activity in nodules. Bacteroids and nodule cortex were capable of in-vivo hydrolysis of [(14)C]trehalose and [(14)C]maltose. These disaccharides were also hydrolyzed by soybean roots and hypocotyls. Therefore, while α,α-trehalose in soybean nodules is probably synthesized by the bacteroids, the capability for utilization of trehalose was not restricted to the bacteroids.
Collapse
Affiliation(s)
- J G Streeter
- Department of Agronomy, Ohio Agricultural Research and Development Center, 44691, Wooster, Ohio, USA
| |
Collapse
|
11
|
|
12
|
Dreyer DL, Binder RG, Chan BG, Waiss AC, Hartwig EE, Beland GL. Pinitol, a larval growth inhibitor for Heliothis zea in soybeans. Cell Mol Life Sci 1979; 35:1182-3. [PMID: 573698 DOI: 10.1007/bf01963275] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A search for insect growth inhibitors in methanol extracts of soybean leaves resulted in isolation of pinitol. Pinitol caused a 50% reduction in weight gain (ED50) of Heliothis zea larvae at about 0.7% when added to a synthetic diet. Although myo-inositol is a normal component of the insect diet, it also caused growth inhibition at higher concentrations; ED50 4%.
Collapse
|
13
|
Wooi KC, Broughton WJ. Isolation and metabolism of Vigna unguiculata root nodule protoplasts. PLANTA 1979; 145:487-495. [PMID: 24317866 DOI: 10.1007/bf00380104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1978] [Accepted: 01/25/1979] [Indexed: 06/02/2023]
Abstract
Axenic cultures of bacteroid-containing protoplasts were isolated from root nodules of Vigna unguiculata L. Walp. Dimensions of the protoplasts were 35 to 135 μm long x 35 to 95 μm wide. Yields were about 30 to 50 mg dry weight per gram fresh weight of nodules. About 5x10(8) protoplasts packed into 1 ml of basal medium under the influence of gravity. When incubated in hypertonic, nitrogen-free media, freshly isolated protoplasts began to reduce acetylene to ethylene after a lag period of 24 to 48 h. Various additions to the basal medium showed that the system possessed functional glycolytic and tricarboxylic acid pathways. Endogenous application of various intermediary metabolites stimulated both acetylene reduction and respiration, though not often equally. As acetylene reduction, but not respiration, was inhibitable by both asparagine and glutamine, the system appears suitable for the study of mechanisms controlling symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- K C Wooi
- Department of Genetics and Cellular Biology, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
14
|
|