1
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
2
|
Pan YL, Rodrigues MJ, Pereira CG, Engrola S, Colen R, Mansinhos I, Romano A, Andrade PB, Fernandes F, Custódio L. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals (Basel) 2021; 11:3557. [PMID: 34944333 PMCID: PMC8697903 DOI: 10.3390/ani11123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sabella spallanzanii and Microcosmus squamiger were profiled for proximate composition, minerals, amino acids, fatty acids (FA), carotenoids, radical scavenging activity on the 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC) and iron and copper chelating properties. Microcosmus squamiger had the highest level of moisture and crude protein, S. spallanzanii was enriched in crude fat and ash. Both species had similar levels of carbohydrates and energy. There was a prevalence of arginine and glycine in S. spallanzanii, and of taurine in M. squamiger. The most abundant minerals in both species were Na, Ca, and K. The methanol extract of S. spallanzanii had metal chelating properties towards copper and iron, while the methanol extract of M. squamiger was able to chelate copper. M. squamiger extracts had similar ORAC values. Fucoxanthinol and fucoxanthin were the major carotenoids in the M. squamiger dichloromethane extract. Saturated FA were more abundant than unsaturated ones in methanol extracts, and unsaturated FA prevailed in the dichloromethane extracts. Palmitic acid was the predominant FA in methanol extracts, whereas eicosapentaenoic (EPA) and dihomo-γ-linolenic acids were the major compounds in dichloromethane extracts. Low n-6/n-3 ratios were obtained. Our results suggests that both species could be explored as sources of bioactive ingredients with multiple applications.
Collapse
Affiliation(s)
- Yu-Lun Pan
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Catarina G. Pereira
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Rita Colen
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Inês Mansinhos
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, University of Algarve, 8005-139 Faro, Portugal; (I.M.); (A.R.)
| | - Anabela Romano
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, University of Algarve, 8005-139 Faro, Portugal; (I.M.); (A.R.)
| | - Paula B. Andrade
- REQUIMTE/LAQV: Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (P.B.A.); (F.F.)
| | - Fátima Fernandes
- REQUIMTE/LAQV: Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (P.B.A.); (F.F.)
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| |
Collapse
|
3
|
Nutritional Value of Sea Urchin Roe (Strongylocentrotidae)—Study of Composition and Storage Conditions. SEPARATIONS 2021. [DOI: 10.3390/separations8100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the roe of sea urchins inhabiting the Far Eastern seas possesses many healing properties and may be used as a dietary product, a reduction and deterioration in its nutritional quality during storage occurs. Therefore, in order to make sea urchin products widely accessible to the world population, it is very important to have appropriate technology to keep the roe from spoiling. To store sea urchin roe for a long time, methods of pre-processing sea urchin gonads before freezing were tested. In terms of preserving organoleptic properties and nutritional quality, the most adequate procedure consists of a short period (20 or 30 s) of heat (boiling water) treatment of sea urchin roe after removal from the shell. This procedure results in an inactivation of enzymes that catalyze the hydrolytic processes of lipids and proteins during storage. After blanching and cooling, the roe was packed, frozen and kept at a temperature of −18 °C and −25 °C. The quality of sea urchin roe did not change during storage at the temperature of −18 °C for 6 months, and at the temperature of −25 °C for 10 months.
Collapse
|
4
|
Galasso C, Corinaldesi C, Sansone C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants (Basel) 2017; 6:E96. [PMID: 29168774 PMCID: PMC5745506 DOI: 10.3390/antiox6040096] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 01/02/2023] Open
Abstract
As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.
Collapse
Affiliation(s)
- Christian Galasso
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Università Politecnica delle Marche, 60121 Ancona, Italy.
| | | |
Collapse
|
5
|
Cirino P, Brunet C, Ciaravolo M, Galasso C, Musco L, Vega Fernández T, Sansone C, Toscano A. The Sea Urchin Arbacia lixula: A Novel Natural Source of Astaxanthin. Mar Drugs 2017; 15:E187. [PMID: 28635649 PMCID: PMC5484137 DOI: 10.3390/md15060187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 11/16/2022] Open
Abstract
Several echinoderms, including sea urchins, are valuable sources of bioactive compounds but their nutraceutical potential is largely unexplored. In fact, the gonads of some sea urchin species contain antioxidants including carotenoids and polyhydroxylated naphthoquinones (PHNQ's), such as echinochrome A. Astaxanthin is known to have particular bioactivity for the prevention of neurodegenerative diseases. This carotenoid is produced by microalgae, while several marine invertebrates can bioaccumulate or synthetize it from metabolic precursors. We determined the carotenoid content and analyzed the bioactivity potential of non-harvested Atlantic-Mediterranean sea urchin Arbacia lixula. The comparison of methanol crude extracts obtained from eggs of farmed and wild specimens revealed a higher bioactivity in farmed individuals fed with a customized fodder. HPLC-analysis revealed a high concentration of astaxanthin (27.0 μg/mg), which was the only pigment observed. This study highlights the potential of farmed A. lixula as a new source of the active stereoisomer of astaxanthin.
Collapse
Affiliation(s)
- Paola Cirino
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Martina Ciaravolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Christian Galasso
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Federico Delpino 1, 80137 Naples, Italy.
| | - Luigi Musco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Tomás Vega Fernández
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
- National Research Council (CNR)-Institute of Coastal Marine Environment (IAMC), Calata Porta di Massa, 80133 Naples, Italy.
| | | | - Alfonso Toscano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
6
|
Pilbrow J, Sabherwal M, Garama D, Carne A. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus. PLoS One 2014; 9:e106465. [PMID: 25192378 PMCID: PMC4156332 DOI: 10.1371/journal.pone.0106465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9'-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid.
Collapse
Affiliation(s)
- Jodi Pilbrow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Manya Sabherwal
- Centre for Protein Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Daniel Garama
- Monash Institute of Medical Research-Prince Henry's Institute, Monash University, Melbourne, Victoria, Australia
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Symonds RC, Kelly MS, Caris-Veyrat C, Young AJ. Carotenoids in the sea urchin Paracentrotus lividus: Occurrence of 9′-cis-echinenone as the dominant carotenoid in gonad colour determination. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:432-44. [DOI: 10.1016/j.cbpb.2007.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 12/01/2022]
|
8
|
Irie T, Kajiwara S, Kojima N, Senoo H, Seki T. Retinal is the essential form of retinoid for storage and transport in the adult of the ascidian Halocynthia roretzi. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:597-606. [PMID: 15581792 DOI: 10.1016/j.cbpc.2004.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 07/13/2004] [Accepted: 07/15/2004] [Indexed: 11/18/2022]
Abstract
Retinoids in the organs (gonad [GND], body wall muscle [BWM], hepatopancreas [HP], gill, hemolymph cells and hemolymph plasma) of the adult ascidian Halocynthia roretzi were analyzed by high performance liquid chromatography. Retinal (RAL) occurred in every organ examined, and most of RAL (>/=99%) was localized in the GND and BWM. None of the organs contained significant amounts of retinol (ROL) or retinyl ester (RE). Lipid droplets, which are characteristic of stellate cells (RE-storing cells of vertebrates), could not be found in the GND, BWM and HP by microscopic observations. These results indicate that this ascidian lacks the RE-storing mechanism, which is ubiquitous in adult vertebrates. The amount and localization of RAL showed the annual change in relation to the reproductive cycle. During summer, the growing season, RAL was present in both GND and BWM at a ratio of about 3:2. From summer to winter, RAL in the GND gradually increased, concomitant with the decrease of RAL in the BWM. In winter, the spawning season, most of RAL was present in the GND (ca. 98%). RAL appears to be accumulated first in the BWM and transported to oocytes accompanying yolk accumulation. ROL and RE were not implicated in the storage and transport of retinoids. The results in the present research strongly suggest that retinoic acid (RA) is produced by the two-step enzymatic reaction: carotenoid cleavage to RAL followed by RAL oxidation to RA and that the prevertebrate chordate lacks ROL-metabolizing systems.
Collapse
Affiliation(s)
- Toshiaki Irie
- Osaka Meijo Women's College, Kumatori-cho, Sennan-gun, Osaka 590-0493, Japan.
| | | | | | | | | |
Collapse
|
9
|
Borisovets EE, Zadorozhny PA, Kalinina MV, Lepskaya NV, Yakush EV. Changes of major carotenoids in gonads of sea urchins (Strongylocentrotus intermedius and S. nudus) at maturation. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:779-90. [PMID: 12128064 DOI: 10.1016/s1096-4959(02)00099-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in the carotenoid content in gonads of two sea urchins species were investigated during maturation. The content of echinenones and carotenes, the two major carotenoid fractions in gonads, is highest for Strongylocentrotus intermedius at the spawning gametogenic stage of gonad maturation for both sexes. For S. nudus, the content of these pigments is highest at stages of active gametogenesis and spawning for males and at the growth stage for females. A comparison of the carotenoid content dynamics during maturation of gonads for males, females and animals at the resting (sexual inactivity) stage was also carried out.
Collapse
Affiliation(s)
- Eugene E Borisovets
- Pacific Research Fisheries Centre (TINRO-Centre), Shevchenko Alley, 4, 690950, Vladivostok, Russia
| | | | | | | | | |
Collapse
|
10
|
Jong-Westman MD, Qian PY, March BE, Carefoot TH. Artificial diets in sea urchin culture: effects of dietary protein level and other additives on egg quality, larval morphometries, and larval survival in the green sea urchin, Strongylocentrotus droebachiensis. CAN J ZOOL 1995. [DOI: 10.1139/z95-245] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of artificial diets on the size and energy content of eggs and morphometry, survival, and metamorphic success of larvae was investigated in the green sea urchin, Strongylocentrotus droebachiensis, from the standpoint of developing a good broodstock diet for culturists. Groups of sea urchins were fed eight diets over a period of 9 months, then five of these dietary groups were selected for detailed larval-growth studies. The artificial diets differed in protein content and in various additives including mannitol, algin, cholesterol, and β-carotene; a diet of air-dried kelp was also included. Egg-energy content was highest on a high-protein diet with cholesterol and β-carotene additives, and the largest eggs so far recorded for the species (2.39 mm3 × 10−3) were produced on a high-protein diet with cholesterol additive. Larval survival to metamorphosis was >92% for all diets save for kelp (<5%). Kelp-fed adults also produced poorly metamorphosing larvae (<2%), suggesting that air-drying causes chemical changes in the kelp that are ultimately detrimental to larval health. Larval developmental rates were fastest on the high-protein β-carotene formulation. Larvae from this diet group also had the longest arms relative to body length, largest rudiment diameter, largest absolute and relative ciliated-band length (for efficient feeding), and had a high percentage of metamorphosis. These data suggest that a high-protein β-carotene diet will be useful for conditioning broodstock by prospective sea urchin culturists.
Collapse
|
11
|
Jong-Westman MD, March BE, Carefoot TH. The effect of different nutrient formulations in artificial diets on gonad growth in the sea urchin Strongylocentrotus droebachiensis. CAN J ZOOL 1995. [DOI: 10.1139/z95-177] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several artificial diets were tested for their ability to promote growth of gonads in the green sea urchin, Strongylocentrotus droebachiensis, over a 9-month period. Survival and test growth were also monitored, as were gonad lipid levels and water content (at the middle and end of the reproductive cycle only). The artificial diets differed in amount of protein and in the presence of various additives such as mannitol, algin, cholesterol, and β-carotene; a diet of air-dried kelp (Nereocystis luetkeana) was included for comparison. Survival was > 95% for all diets save a low-protein one (82% survival). Test diameters showed no significant change over time or among dietary treatments. All high-protein formulations produced significantly higher gonad indices than low-protein ones. Addition of β-carotene to the high-protein formulation significantly increased gonad growth relative to all other diets; this was especially noticeable in December, at the time of best market quality for the roe. Lipid levels were not significantly different among dietary treatments in either November or March, but did show a slight statistically significant rise between these months (21.4–22.7% dry mass). Water content also showed no significant difference among treatments, but was significantly higher in March (82% live weight), just prior to spawning, than in November (70%). Gonad indices for all artificial-diet formulations were higher than any previously recorded for S. droebachiensis.
Collapse
|