1
|
Beal AM. The effect of acetazolamide, amiloride, bumetanide and SITS on secretion of fluid and electrolytes by the parotid gland of common wombats, Vombatus ursinus. J Comp Physiol B 2021; 191:777-791. [PMID: 33877412 DOI: 10.1007/s00360-021-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Mechanisms of saliva formation by wombat parotid glands were investigated in anaesthetized wombats at two levels of cholinergically-stimulated flow viz. mid-range (30-40% maximum flow) and maximum flow using ion-transport and carbonic-anhydrase inhibitors. Bumetanide (0.005-0.1 mmol l-1 carotid plasma) progressively reduced mid-range flow by 52 ± 3.4% (mean ± SEM). Concurrently, saliva [Cl] decreased, [Na] and [HCO3] increased but HCO3 excretion was unaltered. Salivary flow during high-rate cholinergic stimulation was 31 ± 1.1% of the pre-bumetanide maximum. During mid-range stimulation, SITS (0.075 mmol l-1) was without effect whereas 0.75 mmol l-1 stimulated transient increases in fluid output. The higher SITS concentration caused no alterations to flow or electrolyte concentrations during maximal stimulation. Carotid plasma [amiloride] (0.05 mmol l-1) caused immediate falls in flow rate of 20-30% followed by progressive recovery over 25 min to levels above pre-amiloride flow rates despite plasma [amiloride] increasing tenfold. Concurrently, salivary [Na] and [Cl] rose to equal plasma concentrations and [K] fell by 50% indicating blockade of acinar Na/H exchangers and luminal Na channels in the ducts. Increased salivary osmolarity caused the flow recovery. Saliva flow during maximum cholinergic stimulation was reduced by 38-46%. The depression of flow was interpreted as resulting from competition between amiloride and acetylcholine for access to the muscarinic receptors. Plasma [acetazolamide] (0.35-2.5 mmol l-1) did not alter saliva outflow during mid-range or maximum flow regimes whereas salivary [Cl] increased and [HCO3] decreased consistent with reduced anion exchange resulting from inhibition of carbonic anhydrase. Combined with bumetanide, acetazolamide (1.5 mmol l-1) reduced flow by an additional 18-22% relative to bumetanide alone thereby demonstrating that acinar HCO3 synthesis supported a limited proportion of saliva formation and that some HCO3 secretion was independent of carbonic anhydrase activity.
Collapse
Affiliation(s)
- A M Beal
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
2
|
Zarzycka B, Zaidi SA, Roth BL, Katritch V. Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 2019; 71:571-595. [PMID: 31551350 PMCID: PMC6782022 DOI: 10.1124/pr.119.017863] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na+-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na+ site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na+ and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.
Collapse
Affiliation(s)
- Barbara Zarzycka
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Saheem A Zaidi
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan L Roth
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vsevolod Katritch
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Massink A, Amelia T, Karamychev A, IJzerman AP. Allosteric modulation of G protein-coupled receptors by amiloride and its derivatives. Perspectives for drug discovery? Med Res Rev 2019; 40:683-708. [PMID: 31495942 PMCID: PMC7028016 DOI: 10.1002/med.21633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 01/09/2023]
Abstract
The function of G protein‐coupled receptors (GPCRs) can be modulated by compounds that bind to other sites than the endogenous orthosteric binding site, so‐called allosteric sites. Structure elucidation of a number of GPCRs has revealed the presence of a sodium ion bound in a conserved allosteric site. The small molecule amiloride and analogs thereof have been proposed to bind in this same sodium ion site. Hence, this review seeks to summarize and reflect on the current knowledge of allosteric effects by amiloride and its analogs on GPCRs. Amiloride is known to modulate adenosine, adrenergic, dopamine, chemokine, muscarinic, serotonin, gonadotropin‐releasing hormone, GABAB, and taste receptors. Amiloride analogs with lipophilic substituents tend to be more potent modulators than amiloride itself. Adenosine, α‐adrenergic and dopamine receptors are most strongly modulated by amiloride analogs. In addition, for a few GPCRs, more than one binding site for amiloride has been postulated. Interestingly, the nature of the allosteric effect of amiloride and derivatives varies considerably between GPCRs, with both negative and positive allosteric modulation occurring. Since the sodium ion binding site is strongly conserved among class A GPCRs it is to be expected that amiloride also binds to class A GPCRs not evaluated yet. Investigating this typical amiloride‐GPCR interaction further may yield general insight in the allosteric mechanisms of GPCR ligand binding and function, and possibly provide new opportunities for drug discovery.
Collapse
Affiliation(s)
- Arnault Massink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Tasia Amelia
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Alex Karamychev
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
4
|
Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC. Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 2014; 39:233-44. [PMID: 24767681 DOI: 10.1016/j.tibs.2014.03.002] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/16/2023]
Abstract
Despite their functional and structural diversity, G-protein-coupled receptors (GPCRs) share a common mechanism of signal transduction via conformational changes in the seven-transmembrane (7TM) helical domain. New major insights into this mechanism come from the recent crystallographic discoveries of a partially hydrated sodium ion that is specifically bound in the middle of the 7TM bundle of multiple class A GPCRs. This review discusses the remarkable structural conservation and distinct features of the Na(+) pocket in this most populous GPCR class, as well as the conformational collapse of the pocket upon receptor activation. New insights help to explain allosteric effects of sodium on GPCR agonist binding and activation, and sodium's role as a potential co-factor in class A GPCR function.
Collapse
Affiliation(s)
- Vsevolod Katritch
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Gustavo Fenalti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Enrique E Abola
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan L Roth
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27599, USA
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Raymond C Stevens
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Pauwels PJ. Competitive and silent antagonism of recombinant 5-HT1B receptors by amiloride. GENERAL PHARMACOLOGY 1997; 29:749-51. [PMID: 9347320 DOI: 10.1016/s0306-3623(97)00008-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. The cyclic adenosine monophosphate (cAMP) response of the diuretic amiloride was compared with sumatriptan at recombinant human 5-HT1B (h5-HT1B) receptor sites in stably transfected Chinese hamster ovary (CHO-K1) cells. 2. Amiloride, free of intrinsic activity (pEC50 < 3.0), competitively antagonized the sumatriptan-mediated inhibition (pEC50: 7.37) of 100 microM forskolin-induced cAMP formation with a pA2 value of 4.46. 3. The antagonist feature was not shared by the amiloride derivative ethylisopropylamiloride, notwithstanding a slightly higher 5-HT1B receptor-binding affinity (pKi: 4.87) than that of amiloride (pKi: 4.70).
Collapse
Affiliation(s)
- P J Pauwels
- Centre de Recherche Pierre Fabre, Laboratory of Cellular and Molecular Neurobiology, Castres, France
| |
Collapse
|