1
|
|
2
|
Stjärne L. Basic mechanisms and local modulation of nerve impulse-induced secretion of neurotransmitters from individual sympathetic nerve varicosities. Rev Physiol Biochem Pharmacol 2005; 112:1-137. [PMID: 2479077 DOI: 10.1007/bfb0027496] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Van der Kloot W. Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction. Prog Neurobiol 2003; 71:269-303. [PMID: 14698765 DOI: 10.1016/j.pneurobio.2003.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vertebrate motor nerve terminals and in the electromotor nerve terminals of Torpedo there are two major pools of synaptic vesicles: readily releasable and reserve. The electromotor terminals differ in that the reserve vesicles are twice the diameter of the readily releasable vesicles. The vesicles contain high concentrations of ACh and ATP. Part of the ACh is brought into the vesicle by the vesicular ACh transporter, VAChT, which exchanges two protons for each ACh, but a fraction of the ACh seems to be accumulated by different, unexplored mechanisms. Most of the vesicles in the terminals do not exchange ACh or ATP with the axoplasm, although ACh and ATP are free in the vesicle interior. The VAChT is controlled by a multifaceted regulatory complex, which includes the proteoglycans that characterize the cholinergic vesicles. The drug (-)-vesamicol binds to a site on the complex and blocks ACh exchange. Only 10-20% of the vesicles are in the readily releasable pool, which therefore is turned over fairly rapidly by spontaneous quantal release. The turnover can be followed by the incorporation of false transmitters into the recycling vesicles, and by the rate of uptake of FM dyes, which have some selectivity for the two recycling pathways. The amount of ACh loaded into recycling vesicles in the readily releasable pool decreases during stimulation. The ACh content of the vesicles can be varied over eight-fold range without changing vesicle size.
Collapse
Affiliation(s)
- William Van der Kloot
- Department of Physiology and Biophysics, SUNY at Stony Brook, 8661 SUNT, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
4
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
5
|
Abstract
Images of vesicle openings in the presynaptic membrane have regularly been shown to increase in number after stimulation of cholinergic nerves. However, with a very few exceptions, the occurrence of vesicle openings is delayed in time with respect to the precise moment of transmitter release. In contrast, a transient change in the size and distribution of intramembrane particles (IMPs) has constantly been found as a characteristic change affecting the presynaptic membrane in a strict time coincidence with the release of acetylcholine quanta. This is illustrated here in a rapid-freezing experiment performed on small specimens of the Torpedo electric organ during transmission of a single nerve impulse. A marked change affected IMPs in the presynaptic membrane for 3-4 ms, i.e., a population of IMPs larger than 10 nm momentarily occurred in coincidence with the passage of the impulse. The nicotinic receptors, abundantly visible in the postsynaptic membranes, also underwent very fleeting structural changes during synaptic transmission. In conclusion, for rapidly operating neurotransmitters like acetylcholine, a characteristic IMP change was regularly found to coincide in the presynaptic membrane with the production of neurotransmitter quanta, whereas images of vesicles fusion were either delayed or even dissociated from the release process. This is discussed in connection to the different modes of release recently described for other secreting systems.
Collapse
Affiliation(s)
- Y Dunant
- Département de Pharmacologie, Centre Médical Universitaire, CH-1211 Geneve 4, Switzerland.
| |
Collapse
|
6
|
Bugnard E, Sors P, Roulet E, Bloc A, Loctin F, Dunant Y. Morphological changes related to reconstituted acetylcholine release in a release-deficient cell line. Neuroscience 1999; 94:329-38. [PMID: 10613523 DOI: 10.1016/s0306-4522(99)00241-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The membrane changes accompanying Ca(2+)-dependent acetylcholine release were investigated by comparing release-competent and release-incompetent clones of mouse neuroblastoma N18TG-2 cells. No release could be elicited in native N18 cells or in a N18-choline acetyltransferase clone in which acetylcholine synthesis was induced by transfection with the gene for rat choline acetyltransferase. However, acetylcholine release was operative in a To/9 clone which was co-transfected with complementary DNAs from rat choline acetyltransferase and Torpedo mediatophore 16,000 mol. wt subunit. In thin sections, the aspect of resting N18 and To/9 cells was identical: a very dense cytoplasm with practically no vesicle-like organelles. Cells were chemically fixed at different times during a stimulation using A-23187 and Ca2+, and examined following both freeze-fracture and thin section. Stimulation of To/9 cells induced a marked change affecting the intramembrane particles. The number of medium-sized particles (9.9-12.38 nm) increased, while that of the small particles decreased. This change was not observed in control, release-incompetent cell lines. In the To/9 clone (but not in control clones), this was followed by occurrence of a large new population of pits which initially had a large diameter, but subsequently became smaller as their number decreased. Coated depressions and invaginations became abundant after stimulation, suggesting an endocytosis process. By considering the succession of events and by comparison with data from experiments performed on synapses in situ, it is proposed that a particle alteration was the counterpart of acetylcholine release in co-transfected To/9 cells; this was followed by a massive endocytosis.
Collapse
Affiliation(s)
- E Bugnard
- Département de Pharmacologie/APSIC, Centre Médical Universitaire, Genève 4, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Marxen M, Volknandt W, Zimmermann H. Endocytic vacuoles formed following a short pulse of K+ -stimulation contain a plethora of presynaptic membrane proteins. Neuroscience 1999; 94:985-96. [PMID: 10579591 DOI: 10.1016/s0306-4522(99)00351-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is now well established that the membrane of synaptic vesicles is recycled following exocytosis. However, little is known concerning the identity of the primary or secondary endocytic structures and their molecular composition. Using cultured rat cerebellar granule cells we combined uptake of horseradish peroxidase as a fluid phase marker and immunogold labeling for a variety of presynaptic proteins to assess the molecular identity of the stimulation-induced endocytic compartments. Short periods (5 or 30 s) of stimulation with 50 mM KCl were followed by periods of recovery for up to 30 min. Stimulation resulted in the formation of horseradish-peroxidase-filled vacuoles in the axonal varicosities as the apparent primary endocytic compartment. Horseradish peroxidase-filled synaptic vesicles were formed when stimulated cells were allowed to recover in horseradish peroxidase-free culture medium. Horseradish peroxidase-filled vacuoles as wells as vesicles contained the synaptic vesicle membrane proteins VAMP II, synaptotagmin, SV2, and synaptophysin, the vesicle-associated proteins rab 3A and synapsin I, and in addition SNAP-25. No incorporation of vesicle proteins into the plasma membrane was observed. Horseradish peroxidase-filled vesicles and vacuoles generated on incubation of unstimulated granule cells with horseradish peroxidase for prolonged periods of time were equally immunolabeled. Renewed stimulation of prestimulated granule cells with either 100 mM KCl or 30 microM Ca2+ ionophore A23187 resulted in a reduction of horseradish peroxidase-filled vacuoles suggesting that the vacuolar membrane compartment was exocytosis-competent. Our results suggest that varicosities of cultured cerebellar granule cells possess a fast stimulation-induced pathway for recycling the entire synaptic vesicle membrane compartment. The primary endocytic compartment represents not a synaptic vesicle but a somewhat larger vesicle protein-containing vacuolar entity from which smaller vesicles of identical protein composition may be regenerated. Endocytic vacuoles and synaptic vesicles share membrane and membrane-associated proteins and presumably also major functional properties.
Collapse
Affiliation(s)
- M Marxen
- Biozentrum der J.W. Goethe-Universität, AK Neurochemie, Frankfurt am Main, Germany
| | | | | |
Collapse
|
8
|
Issa AM, Gauthier S, Collier B. Effects of calyculin A and okadaic acid on acetylcholine release and subcellular distribution in rat hippocampal formation. J Neurochem 1999; 72:166-73. [PMID: 9886067 DOI: 10.1046/j.1471-4159.1999.0720166.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms regulating the compartmentation of acetylcholine (ACh) and the relationship between transmitter release and ACh stores are not fully understood. In the present experiments, we investigated whether the inhibitors of serine/threonine phosphatases 1 and 2A, calyculin A and okadaic acid, alter subcellular distribution and the release of ACh in rat hippocampal slices. Calyculin A and okadaic acid significantly (p < 0.05) depleted the occluded ACh of the vesicular P3 fraction, but cytoplasmic ACh contained in the S3 fraction was not significantly affected. The P3 fraction is known to be heterogeneous; calyculin A and okadaic acid reduced significantly (p < 0.05) the amount of ACh recovered with a monodispersed fraction (D) of synaptic vesicles, but the other nerve terminal bound pools (E-F and G-H) were not so affected. K+-evoked ACh release decreased significantly (p < 0.01) in the presence of calyculin A and okadaic acid, suggesting that fraction D's vesicular store of ACh contributes to transmitter release. The loss of ACh from synaptic vesicle fractions prepared from tissue exposed to phosphatase inhibitors appeared not to result from a reduced ability to take up ACh. Thus, when tissue was allowed to synthesize [3H]ACh from [3H]choline, the ratio of [3H]ACh in the S3 to P3 fractions was not much changed by exposure of tissue to calyculin A or okadaic acid; furthermore, the specific activity of ACh recovered from the D fraction was not reduced disproportionately to that of cytosolic ACh. The changes are considered to reflect reduced synthesis of ACh by tissue treated with the phosphatase inhibitors, rather than an effect on vesicle uptake mechanisms. Thus, exposure of tissue to calyculin A or okadaic acid appears to produce selective depletion of tissue ACh content in a subpopulation of synaptic vesicles, suggesting that phosphatases play a role in ACh compartmentation.
Collapse
Affiliation(s)
- A M Issa
- Department of Pharmacology and Therapeutics, Centre for Studies in Aging, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
9
|
Abstract
Synaptic vesicle recycling is a critical feature of neuronal communication as it ensures a constant supply of releasable transmitter at the nerve terminal. Physiological studies predict that vesicle recycling is rapid and recent studies with fluorescent dyes have confirmed that the entire process may occur in less than a minute. Two competing hypotheses have been proposed for the first step in the process comprising endocytosis of vesicular membrane. The coated vesicle model proposes that vesicular membrane components merge with the plasma membrane and are subsequently recovered and possibly sorted in coated pits. These pinch off as coated vesicles that either fuse with a sorting endosome from which new vesicles emerge or uncoat to become synaptic vesicles directly. The alternative "kiss-and-run" model proposes that "empty" vesicles are retrieved intact from the plasma membrane after secretion occurs via a fusion pore; they are then immediately refilled with transmitter and re-enter the secretion-competent pool. This article summarizes the data for both models and focusses on new information that supports the kiss-and-run model. In particular, the phenomenon of rapid endocytosis, which may represent the key endocytotic step in recycling, is discussed. Rapid endocytosis has time-constants in the order of a few seconds, thus is temporally consistent with the rate of vesicle recycling. Moreover, rapid endocytosis appears to be clathrin-independent, thus does not involve the coated vesicle pathway. We present a model that accommodates both types of endocytosis, which appear to coexist in many secretory tissues including neurons. Rapid endocytosis may reflect the principal mechanism operative under normal physiological rates of stimulation while coated vesicles may come into play at higher rates of stimulation. These two processes may feed into different populations of vesicles corresponding to distinct pools defined by studies of the kinetics of transmitter release.
Collapse
Affiliation(s)
- H C Palfrey
- Department of Pharmacological and Physiological Sciences, University of Chicago, IL 60637, USA
| | | |
Collapse
|
10
|
Subsynaptic units as a universal system-forming and regulating factor of brain synapses. Bull Exp Biol Med 1997. [DOI: 10.1007/bf02445045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zimmermann H, Volknandt W, Hausinger A, Herrmann C. Molecular properties and cellular distribution of cholinergic synaptic proteins. PROGRESS IN BRAIN RESEARCH 1996; 109:31-40. [PMID: 9009690 DOI: 10.1016/s0079-6123(08)62085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H Zimmermann
- Biozentrum J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
12
|
Linial M, Ilouz N, Feinstein N. alpha-latrotoxin is a potent inducer of neurotransmitter release in Torpedo electric organ--functional and morphological characterization. Eur J Neurosci 1995; 7:742-52. [PMID: 7620623 DOI: 10.1111/j.1460-9568.1995.tb00678.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this report we show that alpha-latrotoxin from black widow spider venom is a potent activator of neurotransmitter release in synaptosomes from the Torpedo electric organ. Binding of the purified toxin (5 nM) to the synaptosomal fraction occurs already at 4 degrees C and is dependent on the presence of divalent ions. However, neurotransmitter release commences only after temperature elevation (22 degrees C) and is completed within 2 min. The effect of alpha-latrotoxin on release is achieved at 1 nM and is already saturated at 5 nM. The release is stimulated by the presence of Ca2+ ions. Activation of release by alpha-latrotoxin is accompanied by morphological changes in electric organ synaptosomes. The synaptosomes swell, resulting in a 55% increase in section area. Moreover, the number of synaptic vesicles per unit area decreases about three-fold, and rows of docked synaptic vesicles are rarely detected as opposed to control synaptosomes. These morphological changes indicate that the massive release is mainly due to synaptic vesicle fusion. alpha-Latrotoxin binding sites are highly concentrated in the innervated face of the electrocytes. Immunoelectron microscopy on electric organ sections reveals alpha-latrotoxin binding sites over the entire plasma membrane at release sites and facing Schwann cells surrounding Torpedo nerve terminals. Surprisingly, a high concentration of binding sites is also found at structures surrounding branching unmyelinated axons. This staining is in close proximity to Schwann cell envelopes and to the basal lamina around axonal tips. The mode of action of alpha-latrotoxin in view of the localization of its binding sites is discussed.
Collapse
Affiliation(s)
- M Linial
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | | | | |
Collapse
|
13
|
Valtorta F, Benfenati F. Membrane trafficking in nerve terminals. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:505-57. [PMID: 7748803 DOI: 10.1016/s1054-3589(08)61021-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- F Valtorta
- Department of Medical Pharmacology, San Raffaele Scientific Institute, University of Milan, Italy
| | | |
Collapse
|
14
|
Linial M, Levius O, Ilouz N, Parnas D. The effect of calcium levels on synaptic proteins. A study on VAT-1 from Torpedo. JOURNAL OF PHYSIOLOGY, PARIS 1995; 89:103-12. [PMID: 8520571 DOI: 10.1016/0928-4257(96)80557-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study we compare major synaptic proteins from Torpedo electric organ to their homologues from mammalian brain. Most of these proteins are members of small gene families. We demonstrate a high degree of evolutionary conservation of most synaptic proteins. However, in the electric organ each gene family is represented only by a single member. We focus on VAT-1, a major protein of the vesicle membrane in Torpedo. VAT-1 is located on the synaptic vesicle membrane and is highly concentrated on the plasma membrane following the application of alpha-latrotoxin. Taking advantage of the relative simplicity of Torpedo synapses, we performed an in vitro study on the properties of VAT-1 affected by changes in Ca2+ levels. VAT-1 is a low affinity Ca2+ binding protein whose ability to bind Ca2+ resides mainly, but not entirely, on the carboxy-terminal domain of the protein. In the presence of Ca2+, the protein is organized in a high molecular mass complex, which is destabilized by depleting Ca2+. This effect occurs only by chelating Ca2+ ions, but not with other divalent ions. VAT-1 is not complexed to any of the proteins which were implicated in the docking/fusion complex such as VAMP, synaptophysin or syntaxin, regardless of Ca2+ levels. Dependence of the stability of protein complexes on Ca2+ levels is also demonstrated on Torpedo n-Sec1. The possible physiological implications of such Ca2+ dependence are discussed.
Collapse
Affiliation(s)
- M Linial
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
15
|
Fox GQ, Kriebel ME. Dynamic responses of presynaptic terminal membrane pools to electrical stimulation. Brain Res 1994; 660:113-28. [PMID: 7827988 DOI: 10.1016/0006-8993(94)90845-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The anatomical tenets of the quantal-vesicular hypothesis of neurotransmission are a 1:1 ratio between numbers of releasable quanta and vesicles, a reciprocal response between vesicle and terminal membrane pools and constancy of the total membrane pool. We have used electrical stimulation and morphometry to study these relationships in the cholinergic presynaptic terminals of Torpedo electric organ. Our results show that during neurotransmission changes in vesicle numbers do not correlate with quantal release, vesicle and terminal membranes do not change in reciprocal fashion and total nerve terminal membrane does not remain constant. We conclude that these vesicular tenets of quantal release are not verifiable at the Torpedo electric organ junction.
Collapse
Affiliation(s)
- G Q Fox
- AbG. 161, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | |
Collapse
|
16
|
Verhage M, Ghijsen WE, Lopes da Silva FH. Presynaptic plasticity: the regulation of Ca(2+)-dependent transmitter release. Prog Neurobiol 1994; 42:539-74. [PMID: 7916469 DOI: 10.1016/0301-0082(94)90050-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Verhage
- Rudolf Magnus Institute, Department of Medical Pharmacology, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
17
|
Dolezal V, Sbia M, Diebler MF, Varoqui H, Morel N. Effect of N,N'-dicyclohexylcarbodiimide on compartmentation and release of newly synthesized and preformed acetylcholine in Torpedo synaptosomes. J Neurochem 1993; 61:1454-60. [PMID: 7690849 DOI: 10.1111/j.1471-4159.1993.tb13640.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using isolated cholinergic synaptosomes prepared from Torpedo electric organ, we studied the effects of N,N'-dicyclohexylcarbodiimide (DCCD) on acetylcholine (ACh) synthesis, compartmentation, and release after stimulation. Whereas ACh synthesis was unchanged, ACh compartmentation inside synaptosomes was affected by the presence of DCCD. In resting conditions, the uptake into the synaptic vesicle pool of newly synthesized ACh (i.e., [14C]ACh synthesized in the presence of the drug) was progressively and markedly inhibited as the duration of DCCD preincubation was increased, whereas compartmentation of endogenous ACh was unchanged in the presence of DCCD. After stimulation, the release of endogenous ACh from DCCD-treated synaptosomes was similar to that of control, in contrast to the release of [14C]ACh, which was markedly inhibited. This inhibition was observed whatever the conditions of stimulation used (gramicidin D, calcium ionophore A23187, or KCl depolarization). The study of the compartmentation of [14C]ACh during stimulation revealed a transfer of highly labeled ACh from the free to the bound ACh compartment in the presence of DCCD, suggesting the existence of several ACh subcompartments within the free and bound ACh pools. The present results are discussed in comparison with the previously reported effects of vesamicol (AH5183) on ACh compartmentation and release.
Collapse
Affiliation(s)
- V Dolezal
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague
| | | | | | | | | |
Collapse
|
18
|
Zimmermann H, Volknandt W, Wittich B, Hausinger A. Synaptic vesicle life cycle and synaptic turnover. JOURNAL OF PHYSIOLOGY, PARIS 1993; 87:159-70. [PMID: 8136785 DOI: 10.1016/0928-4257(93)90027-q] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cholinergic synaptic vesicles contain a mixture of soluble low molecular mass constituents. Besides acetylcholine these include Ca2+, ATP, GTP, small amounts of ADP and AMP, and also the diadenosine polyphosphates Ap4A and Ap5A. In synaptic vesicles isolated from the electric ray these diadenosine polyphosphates occur in mmol concentrations and might represent a novel cotransmitter. The membrane proteins of cholinergic synaptic vesicles presumably are identical to those in other types of electron-lucent synaptic vesicles. A presumptive exception are the transmitter-specific carriers. The life cycle of the synaptic vesicle in intact neurons and in situ was investigated by analysis of all cytoplasmic membrane compartments that share membrane integral proteins with synaptic vesicles. The results suggest that the synaptic vesicle membrane compartment might originate from the trans-Golgi network and, after cycles of exo- and endocytosis in the nerve terminal, might fuse into an endosomal membrane compartment early on retrograde transport. Tracer experiments using membrane proteins and soluble contents suggest that the synaptic vesicle membrane compartment does not intermix with the presynaptic plasma membrane on repeated cycles of exo- and endocytosis if low frequency stimulation is applied. A cDNA has been isolated from the electric ray electric lobe that codes for o-rab3, a small GTP-binding protein highly homologous to mammalian rab3. While abundant in the nerve terminals of the electric organ and at the neuromuscular junction this protein occurs only in limited subpopulations of nerve terminals in electric ray brain. Immunocytochemical analysis using the colloidal gold technique and a monospecific antibody against o-rab3 suggests that the GTP-binding protein remains attached to recycling synaptic vesicles. No evidence was found for a major contribution of an intraterminal endosomal sorting compartment involved in synaptic vesicle recycling.
Collapse
Affiliation(s)
- H Zimmermann
- AK Neurochemie, Zoologisches Institut, JW Goethe-Universität, Frankfurt-am-Main, Germany
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- T Gotow
- Department of Anatomy, Osaka University Medical School, Japan
| |
Collapse
|
20
|
Lapchak PA, Jenden DJ, Hefti F. Pharmacological stimulation reveals recombinant human nerve growth factor-induced increases of in vivo hippocampal cholinergic function measured in rats with partial fimbrial transections. Neuroscience 1992; 50:847-56. [PMID: 1448201 DOI: 10.1016/0306-4522(92)90208-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study determined the effects of chronic recombinant human nerve growth factor administration [1 microgram given intracerebroventricularly q.i.d. (every other day) for three weeks] on in vivo hippocampal cholinergic function in adult rats with unilateral partial fimbrial transections. Partial fimbrial transections did not significantly alter the levels of endogenous acetylcholine or [2H4]acetylcholine in the hippocampus due to functional compensation by surviving cholinergic terminals. In animals chronically treated with nerve growth factor, the levels of endogenous choline, endogenous acetylcholine, [2H4]choline and [2H4]acetylcholine accumulated in the hippocampus on the lesioned side were not significantly different from those on the contralateral unlesioned side or from values measured in animals treated with cytochrome c, a control protein. However, changes in cholinergic parameters induced by the partial lesions or recombinant human nerve growth factor treatment became manifest when animals were challenged using pharmacological agents such as pentylenetetrazole or pilocarpine given after lithium chloride pretreatment. First, in nerve growth factor-treated animals administered the general stimulant pentylenetetrazole (10 mg/kg) 2 min prior to measuring in vivo cholinergic parameters, we observed a significant increase in the hippocampal content of [2H4]choline in both lesioned and unlesioned hippocampi. The magnitude of the increase was significantly higher on the lesioned compared to the unlesioned side. Although chronic recombinant human nerve growth factor treatment induced increases of hippocampal [2H4]choline levels, there were no concomitant increases in the level of [2H4]acetylcholine. Second, in nerve growth factor-treated animals administered lithium chloride (3 mmol/kg) 20 h prior to pilocarpine (30 mg/kg), we observed a significant enhancement of the content of endogenous acetylcholine in the hippocampus of the lesioned side. Partial fimbrial transections also reduced in vitro cholinergic parameters reflecting endogenous acetylcholine levels in hippocampal slices. The content of endogenous acetylcholine in the slices was decreased by approximately 50% and chronic nerve growth factor treatment significantly elevated this value to approximately non-lesioned control values. Similarly, reductions in spontaneous and veratridine-evoked release of endogenous acetylcholine induced by partial fimbrial transections were counteracted by recombinant human nerve growth factor treatment. These findings demonstrate that chronic recombinant human nerve growth factor treatment effectively enhances the in vivo and in vitro synthesis, storage and release of endogenous acetylcholine. The results from the in vivo studies suggest that recombinant human nerve growth factor-induced differences in functional performance of hippocampal neurons may only be manifest during behavioral and/or pharmacological stimulation.
Collapse
Affiliation(s)
- P A Lapchak
- Division of Neurogerontology, Andrus Gerontology Center, University of Southern California, Los Angeles 90089
| | | | | |
Collapse
|
21
|
Isozumi K, Gotoh F, Koto A, Suzuki N, Tsuzuki Y. Controlled ultraviolet irradiation generates endothelial damage without affecting the nerve terminals of the cerebral artery in cats. Neurosci Lett 1992; 137:45-8. [PMID: 1625816 DOI: 10.1016/0304-3940(92)90294-h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vesicles of adventitial autonomic nerve terminals were examined quantitatively under an electron microscope in controlled ultraviolet ray (UV)-irradiated cerebral vessels. Five cats whose basilar arteries were irradiated with UV (UV group) and 5 cats whose basilar arteries were irradiated with visible rays (control group) were compared. Endothelial vacuolation was observed only in the UV group. There was no statistically significant difference in the diameters of the dense-cored vesicles, related to noradrenaline, and clear vesicles, related to acetylcholine, between the two groups. It is concluded that controlled UV irradiation which generates endothelial damage does not affect the vascular adventitia ultrastructurally.
Collapse
Affiliation(s)
- K Isozumi
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
The fluorescent dyes FM1-43 and RH414 label motor nerve terminals in an activity-dependent fashion that involves dye uptake by synaptic vesicles that are recycling. This allows optical monitoring of vesicle recycling in living nerve terminals to determine how recycled vesicles reenter the vesicle pool. The results suggest that recycled vesicles mix with the pool morphologically and functionally. One complete cycle of release of transmitter, recycling of a vesicle, and rerelease of transmitter appears to take about 1 minute.
Collapse
Affiliation(s)
- W J Betz
- Department of Physiology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
23
|
Wessler I. Acetylcholine at motor nerves: storage, release, and presynaptic modulation by autoreceptors and adrenoceptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1992; 34:283-384. [PMID: 1587718 DOI: 10.1016/s0074-7742(08)60100-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- I Wessler
- Department of Pharmacology, University of Mainz, Germany
| |
Collapse
|
24
|
von Grafenstein H, Knight DE. Membrane recapture and early triggered secretion from the newly formed endocytotic compartment in bovine chromaffin cells. J Physiol 1992; 453:15-31. [PMID: 1464827 PMCID: PMC1175544 DOI: 10.1113/jphysiol.1992.sp019215] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Recycling of secretory vesicles in cultured bovine adrenal medullary cells was investigated. 2. Extracellular horseradish peroxidase (HRP), a fluid phase marker, was taken up into cultured adrenal medullary cells following carbamylcholine-induced secretion of catecholamine. 3. The endocytosed HRP remained compartmentalized within the cell, migrating to a low density band on a Percoll density gradient. The endocytotic compartment was distinct from the major pool of catecholamine-containing chromaffin granules, which were found at much higher densities on the Percoll gradient. 4. The chromaffin granule membrane marker dopamine beta-hydroxylase was associated with the endocytosed HRP compartment as well as with the heavier chromaffin granules. 5. A subsequent challenge of the cells with carbamylcholine triggered the release of up to forty per cent of the endocytosed HRP. 6. The time course for secretion of the fluid phase marker was similar to that for catecholamine secretion. 7. Triggered release of HRP was dependent on extracellular calcium. The dependence on the extracellular calcium concentration was similar to that of catecholamine release. 8. Release of HRP could be triggered from electropermeabilized cells by raising the intracellular Ca2+ into the micromolar range. The intracellular Ca2+ dependence of triggered HRP release was similar to that for catecholamine release. 9. HRP could be secreted as early as 5 min, and as late as 2 h after endocytosis. 10. These data provide evidence that endocytotic vesicles can rapidly re-enter the secretory cycle. Endocytosed vesicles may therefore not have to recycle via the trans-Golgi reticulum to form high-density chromaffin granules in order to re-enter the regulated secretory pathway.
Collapse
|
25
|
Isozumi K, Fukuuchi Y, Koto A, Suzuki N, Izumi Y, Tsuzuki Y. Moderate hypoglycemia induces ultrastructural changes in perivascular nerve terminals of cat cerebral arteries. Neurosci Lett 1991; 134:67-70. [PMID: 1815151 DOI: 10.1016/0304-3940(91)90510-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A quantitative morphological analysis of the perivascular nerve terminals of cerebral arteries during moderate hypoglycemia was performed. 5-Hydroxydopamine (5-OHDA) was applied to discriminate dense-cored vesicles, related to noradrenaline, and clear vesicles, related to acetylcholine, under the electron microscope. Five hypoglycemic and 5 normoglycemic cats, all receiving 5-OHDA, were compared. In both the middle cerebral artery and vertebral artery, the dense-cored vesicles were significantly smaller and clear vesicles were significantly larger in hypoglycemia than in normoglycemia. These morphological changes in the vesicles may indicate hyperactivity of the sympathetic system and hypoactivity of the parasympathetic system of the cerebral vessels during hypoglycemia.
Collapse
Affiliation(s)
- K Isozumi
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ripps H, Chappell RL. Ultrastructural and electrophysiological changes associated with K(+)-evoked release of neurotransmitter at the synaptic terminals of skate photoreceptors. Vis Neurosci 1991; 7:597-609. [PMID: 1685329 DOI: 10.1017/s0952523800010385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bathing the skate retina in a Ringer solution containing a high concentration (100 mM) of potassium ions depolarized the visual cells, depleted the receptor terminals of synaptic vesicles, and suppressed completely the b-wave of the ERG and the intracellularly recorded response of horizontal cells (the S-potential). The depletion of synaptic vesicles was accompanied by a large increase in the extent of the plasma membrane resulting in distortion of the normal terminal profile, i.e. distension of the basal surface and elaborate infolding of protoplasmic extensions. Morphometric analysis showed that despite the changes in vesicle content and terminal structure, the combined linear extent of the vesicular and plasma membranes was unchanged from control (superfusion with normal Ringer solution); the increase in plasma membrane was equivalent to the observed loss of vesicular membrane. When returned to a normal Ringer solution, the terminals rapidly began to reform, and in about 10 min they were morphologically indistinguishable from receptor terminals seen in control preparations. After 30 min in the normal Ringer solution, the amount of membrane associated with the vesicles and the plasma membrane had reverted to control values, and once again the total membrane estimated morphometrically remained essentially the same. Thus, there is an efficient mechanism at the photoreceptor terminal for the recycling of vesicle membrane following exocytosis. The K(+)-induced depletion of synaptic vesicles was paralleled by a precipitous loss of responsivity in both the b-wave of the ERG and the S-potential of the horizontal cells. However, after 30-min exposure to the high K+ and a return to normal Ringer solution, the recovery of electrophysiological activity followed a much slower time course from that associated with the structural changes; 60 min or longer were required for the potentials to exhibit maximum response amplitudes. It appears that the rate-limiting step in restoring normal synaptic function following massive depletion of vesicular stores is transmitter resynthesis and vesicle loading rather than vesicle recycling.
Collapse
Affiliation(s)
- H Ripps
- Lions of Illinois Eye Research Institute, Chicago
| | | |
Collapse
|
27
|
McMahon HT, Nicholls DG. The bioenergetics of neurotransmitter release. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1059:243-64. [PMID: 1680396 DOI: 10.1016/s0005-2728(05)80210-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H T McMahon
- Department of Biochemistry, University of Dundee, U.K
| | | |
Collapse
|
28
|
Adam-Vizi V, Deri Z, Vizi ES, Sershen H, Lajtha A. Ca2+o-independent veratridine-evoked acetylcholine release from striatal slices is not inhibited by vesamicol (AH5183): mobilization of distinct transmitter pools. J Neurochem 1991; 56:52-8. [PMID: 1987325 DOI: 10.1111/j.1471-4159.1991.tb02561.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol), a compound known to block the uptake of acetylcholine (ACh) into cholinergic synaptic vesicles, on the release of endogenous and [14C]ACh from slices of rat striatum was investigated. ACh release was evoked either by electrical stimulation or by veratridine. The effect of electrical stimulation was entirely dependent on external Ca2+. By contrast, veratridine (40 microM) also enhanced ACh release in the absence of Ca2+. Indeed, with veratridine two components were clearly distinguished: one dependent on external Ca2+ and the other not. Vesamicol inhibited [14C]ACh release evoked by both veratridine and electrical stimulation in the presence of external Ca2+, provided it was added to the tissue prior to loading with [14C]choline. With the same treatment vesamicol only slightly affected the release of endogenous ACh. Under the same conditions the Ca2(+)-independent [14C]ACh release evoked by veratridine was not prevented by vesamicol. The differential responsiveness to vesamicol suggests that ACh pools involved in Ca2+o-dependent ACh release are different from those mobilized during Ca2+o-independent ACh release.
Collapse
Affiliation(s)
- V Adam-Vizi
- 2nd Institute of Biochemistry, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
29
|
Bonzelius F, Zimmermann H. Recycled synaptic vesicles contain vesicle but not plasma membrane marker, newly synthesized acetylcholine, and a sample of extracellular medium. J Neurochem 1990; 55:1266-73. [PMID: 2398359 DOI: 10.1111/j.1471-4159.1990.tb03134.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To monitor the fate of the synaptic vesicle membrane compartment, synaptic vesicles were isolated under varying experimental conditions from blocks of perfused Torpedo electric organ. In accordance with previous results, after low-frequency stimulation (0.1 Hz, 1,800 pulses) of perfused blocks of electric organ, a population of vesicles (VP2 type) can be separated by density gradient centrifugation and chromatography on porous glass beads that is denser and smaller than resting vesicles (VP1 type). By simultaneous application of fluorescein isothiocyanate-dextran as extracellular volume marker and [3H]acetate as precursor of vesicular acetylcholine, and by identifying the vesicular membrane compartment with an antibody against the synaptic vesicle transmembrane glycoprotein SV2, we can show that the membrane compartment of part of the synaptic vesicles becomes recycled during the stimulation period. It then contains both newly synthesized acetylcholine and a sample of extracellular medium. Recycled vesicles have not incorporated the presynaptic plasma membrane marker acetylcholinesterase. Cisternae or vacuoles are presumably not involved in vesicle recycling. After a subsequent period of recovery (18 h), all vesicular membrane compartments behave like VP1 vesicles on subcellular fractionation and still retain both volume markers. Our results imply that on low-frequency stimulation, synaptic vesicles are directly recycled, equilibrating their luminal contents with the extracellular medium and retaining their membrane identity and capability to accumulate acetylcholine.
Collapse
Affiliation(s)
- F Bonzelius
- AK Neurochemie, Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, F.R.G
| | | |
Collapse
|
30
|
Story DF, Rand MJ, Standford-Starr CA, Widodo MA. Conditions for the operation of presynaptic receptors. Ann N Y Acad Sci 1990; 604:439-51. [PMID: 2171401 DOI: 10.1111/j.1749-6632.1990.tb32010.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D F Story
- Department of Pharmacology, University of Melbourne, Victoria, Parkville, Australia
| | | | | | | |
Collapse
|
31
|
Pocock JM, Osborne MP, Nicholson RA. The effect of in vivo stimulation on the cytology of neuromuscular junctions of locust flight muscles. JOURNAL OF NEUROCYTOLOGY 1990; 19:566-73. [PMID: 2173741 DOI: 10.1007/bf01257244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ultrastructure of neuromuscular junctions in dorsoventral (tergosternal) flight muscle no. 113 and dorsolongitudinal flight muscle no. 112 of the locust Schistocerca gregaria is described. Following in vivo stimulation by enforced flight, morphological and statistical analyses reveal cytological changes at these junctions suggestive of vesicular release of neurotransmitter and membrane recycling. Flight periods from 30 min to 3 h produced a progressive decrease in the density of terminal synaptic vesicles, an increase in terminal surface area and circumference, increases in the occurrence of membranous cisternae, increases in mitochondrial numbers, and increases in the frequency of coated pits.
Collapse
Affiliation(s)
- J M Pocock
- Department of Physiology, Medical School, University of Birmingham, UK
| | | | | |
Collapse
|
32
|
Abstract
Axon terminals release more than one physiologically active substance. Synaptic messengers may be stored in two different types of vesicles. Small electron-lucent vesicles mainly store classical low molecular weight transmitter substances and the larger electron-dense granules store and release proteins and peptides. Release of the two types of substances underlies different physiological control. Release of messenger molecules from axon terminals is triggered by influx of Ca2+ through voltage sensitive Ca2+ channels and a rise in cytosolic Ca2+ concentrations. Neither the immediate Ca2+ target(s) nor the molecular species involved in synaptic vesicle docking, fusion and retrieval are known. It is, however, likely that steps involved in the molecular cascade of transmitter release include liberation of vesicles from their association with the cytonet and phosphorylation by protein kinase C of proteins which have the ability to alter between membrane bound and cytoplasmic forms and thus facilitate or initiate the molecular interaction between synaptic vesicles and the plasma membrane.
Collapse
Affiliation(s)
- H Zimmermann
- AK Neurochemie, Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, FRG
| |
Collapse
|
33
|
Abstract
The vesicle hypothesis describing quantal release of neurotransmitter at the cholinergic neuromuscular junction was introduced in 1956. Since then, the concept of vesicular storage and release of acetylcholine has become firmly established and extended to include other synapses and neurotransmitters. However, for the amino acids, which are the major class of neurotransmitters in the mammalian CNS, there was no direct experimental evidence of the participation of synaptic vesicles in neurotransmission. This area of research has now moved out of the shadows and this article discusses recent findings which indicate that amino acid neurotransmitters are accumulated and stored by synaptic vesicles in presynaptic nerve endings.
Collapse
Affiliation(s)
- P R Maycox
- Department of Neurochemistry, Max-Planck-Institute for Psychiatry, Martinsried, FRG
| | | | | |
Collapse
|
34
|
Bruno C, Cuppini C, Cuppini R. Maturation of the spontaneous transmitter release by regenerated nerve endings in vitamin E-deficient rats. J Neural Transm (Vienna) 1990; 81:53-61. [PMID: 2162677 DOI: 10.1007/bf01245445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to verify the importance of the protection against lipid peroxidation in presynaptic differentiation and maturation, the reappearance and maturation of the spontaneous transmitter release during the extensor digitorum longus muscle reinnervation following a lesion of the sciatic nerve were studied in normal and vitamin E-deficient rats. The study was carried out by intracellular recordings in order to observe the miniature end plate potentials in the reinnervated end plates. In control and vitamin E-deficient rats the first signs of muscle innervation reappeared simultaneously, but in the latter the spontaneous transmitter release mechanism matured more slowly; furthermore, in the long-term, very low mepp frequencies continued to occur. The data suggest a slowing of the transmitter release mechanism maturation and a protracted rearrangement of innervation in the deficient rats.
Collapse
Affiliation(s)
- C Bruno
- Istituto di Anatomia e Fisiologia generale, University of Urbino, Italy
| | | | | |
Collapse
|
35
|
Torri-Tarelli F, Villa A, Valtorta F, De Camilli P, Greengard P, Ceccarelli B. Redistribution of synaptophysin and synapsin I during alpha-latrotoxin-induced release of neurotransmitter at the neuromuscular junction. J Biophys Biochem Cytol 1990; 110:449-59. [PMID: 1967610 PMCID: PMC2116013 DOI: 10.1083/jcb.110.2.449] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The distribution of two synaptic vesicle-specific phosphoproteins, synaptophysin and synapsin I, during intense quantal secretion was studied by applying an immunogold labeling technique to ultrathin frozen sections. In nerve-muscle preparations treated for 1 h with a low dose of alpha-latrotoxin in the absence of extracellular Ca2+ (a condition under which nerve terminals are depleted of both quanta of neurotransmitter and synaptic vesicles), the immunolabeling for both proteins was distributed along the axolemma. These findings indicate that, in the presence of a block of endocytosis, exocytosis leads to the permanent incorporation of the synaptic vesicle membrane into the axolemma and suggest that, under this condition, at least some of the synapsin I molecules remain associated with the vesicle membrane after fusion. When the same dose of alpha-latrotoxin was applied in the presence of extracellular Ca2+, the immunoreactivity patterns resembled those obtained in resting preparations: immunogold particles were selectively associated with the membrane of synaptic vesicles, whereas the axolemma was virtually unlabeled. Under this condition an active recycling of both quanta of neurotransmitter and vesicles operates. These findings indicate that the retrieval of components of the synaptic vesicle membrane is an efficient process that does not involve extensive intermixing between molecular components of the vesicle and plasma membrane, and show that synaptic vesicles that are rapidly recycling still have the bulk of synapsin I associated with their membrane.
Collapse
Affiliation(s)
- F Torri-Tarelli
- Department of Medical Pharmacology, University of Milano, Italy
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
|
38
|
Torri Tarelli F, Valtorta F, Villa A, Meldolesi J. Functional morphology of the nerve terminal at the frog neuromuscular junction: recent insights using immunocytochemistry. PROGRESS IN BRAIN RESEARCH 1990; 84:83-92. [PMID: 2125131 DOI: 10.1016/s0079-6123(08)60891-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- F Torri Tarelli
- Department of Medical Pharmacology, B. Ceccarelli Center for the Study of Peripheral Neuropathies and Neuromuscular Diseases, University of Milan, Italy
| | | | | | | |
Collapse
|
39
|
Thureson-Klein AK, Klein RL. Exocytosis from neuronal large dense-cored vesicles. INTERNATIONAL REVIEW OF CYTOLOGY 1990; 121:67-126. [PMID: 1972143 DOI: 10.1016/s0074-7696(08)60659-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A K Thureson-Klein
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216
| | | |
Collapse
|
40
|
Affiliation(s)
- R Fesce
- Department of Pharmacology, University of Milano, Italy
| |
Collapse
|
41
|
Gaudry-Talarmain YM, Diebler MF, O'Regan S. Compared effects of two vesicular acetylcholine uptake blockers, AH5183 and cetiedil, on cholinergic functions in Torpedo synaptosomes: acetylcholine synthesis, choline transport, vesicular uptake, and evoked acetylcholine release. J Neurochem 1989; 52:822-9. [PMID: 2493069 DOI: 10.1111/j.1471-4159.1989.tb02527.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the effects of two drugs, AH5183 and cetiedil, demonstrated to be potent inhibitors of acetylcholine (ACh) transport by isolated synaptic vesicles on cholinergic functions in Torpedo synaptosomes. AH5183 exhibited a high specificity toward vesicular ACh transport, whereas cetiedil was shown to inhibit both high-affinity choline uptake and vesicular ACh transport. Choline acetyltransferase was not affected by either drug. High external choline concentrations permitted us to overcome cetiedil inhibition of high-affinity choline transport, and thus synthesis of [14C]ACh in treated preparations was similar to that in controls. We then tested evoked ACh release in drug-treated synaptosomes under conditions where ACh translocation into the vesicles was blocked. We observed that ACh release was impaired only in cetiedil-treated preparations; synaptosomes treated with AH5183 behaved like the controls. Thus, this comparative study on isolated nerve endings allowed us to dissociate two steps in drug action: upstream, where both AH5183 and cetiedil are efficient blockers of the vesicular ACh translocation, and downstream, where only cetiedil is able to block the ACh release process.
Collapse
|
42
|
Ivy MT, Townsel JG. A vinblastine sensitive high affinity choline uptake system. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1989; 92:81-8. [PMID: 2566449 DOI: 10.1016/0742-8413(89)90207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The Limulus cardiac ganglion high affinity choline uptake system (HAChUS) was inhibited 40, 51 and 64% following pre-exposure to 10, 100 and 500 microM vinblastine, respectively. 2. In contrast, high affinity uptake of choline in the Limulus corpora pedunculata and abdominal ganglia, tissues in which a cholinergic function has been described, were unaffected. 3. In pulse-chase experiments, the cardiac ganglion was incubated in 0.1 microM [3H]choline for 60 min and then switched to an incubation medium containing 1 mM unlabelled choline for varying periods of time. 4. Under these conditions, a 3-fold increase of radiolabel above basal level was measured in the pellet fraction within 2 hr of post-labelling incubation. 5. Prior exposure of the ganglion to 500 microM vinblastine completely eliminated this increase of radioactivity in the pellet fraction. 6. Treatment of the radiolabelled pellet fraction with phospholipase C resulted in the solubilization of 72% of the radiolabel. 7. Ten (10) microM 5-hydroxytryptamine (5-HT), a concentration previously shown to inhibit spontaneous electrical activity within the cardiac ganglion, resulted in a 40% decrease in high affinity choline uptake in this tissue selectively. 8. These results are consistent with the view that a probable role of the Limulus cardiac ganglion HAChUS is the supply of choline subserving the synthesis of membrane phospholipid. 9. It is further speculated that this membrane phospholipid synthesis may be associated with synaptic vesicle turnover.
Collapse
Affiliation(s)
- M T Ivy
- Department of Physiology and Biophysics, University of Illinois, Chicago 60680
| | | |
Collapse
|
43
|
Janetzko A, Zimmermann H, Volknandt W. Intraneuronal distribution of a synaptic vesicle membrane protein: antibody binding sites at axonal membrane compartments and trans-Golgi network and accumulation at nodes of Ranvier. Neuroscience 1989; 32:65-77. [PMID: 2586752 DOI: 10.1016/0306-4522(89)90108-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution of a cholinergic synaptic vesicle-specific transmembrane glycoprotein (Buckley and Kelly, 1985, J. Cell Biol. 100, 1284-1294) was investigated in the entire electromotor neuron of Torpedo marmorata using a monoclonal antibody and immunocytochemistry at the light- and electron-microscopical level (immunoperoxidase, colloidal gold). In the nerve, terminal binding of immunogold particles is restricted to synaptic vesicles. In the axon a number of additional membrane compartments like multivesicular bodies, vesiculotubular structures, lamellar bodies and electron-dense granules share the surface located synaptic vesicle-specific transmembrane glycoprotein-epitope. Membranous structures likely to represent the axoplasmic reticulum inside axons and nerve terminals are not labelled. Antibody-binding membrane compartments are accumulated at nodes of Ranvier. In the perikaryon the tubules of the trans-Golgi network as well as multivesicular bodies, lamellar bodies, electron-lucent vesicles, granules with electron-dense core and peroxisomes are labelled. Immunotransfer blots of isolated synaptic vesicles and tissue extracts of electric organ display a 100,000 mol. wt band of broad electrophoretic mobility typical of the synaptic vesicle-specific transmembrane glycoprotein. Extracts of electromotor nerve and electric lobe contain in addition a strong band at 85,000 mol. wt and a few lower molecular weight bands. We suggest that the synaptic vesicle originates directly from the trans-Golgi network. The endoplasmic reticulum is not involved in vesicle formation or retrieval. On retrograde transport the vesicle membrane compartment is likely to fuse with other intra-axonal (endosomal?) organelles.
Collapse
Affiliation(s)
- A Janetzko
- AK Neurochemie, Zoologisches Institut der J. W. Goethe-Universität, Frankfurt am Main, F.R.G
| | | | | |
Collapse
|
44
|
Abstract
Synaptic vesicle populations have been morphometrically analyzed for size and density. Populations composed of a single size class of vesicles are represented by normal (Gaussian) or positive (log-normal) skew histograms. Populations with multiple size classes generate negative (left) skew distributions. Fixatives containing aldehydes differentially affect these distribution patterns but vesicles are able to withstand tonic effects over a wide range. Reader bias' contribute the most error in the data-collecting process. But despite this, the sizing of vesicle populations can be accomplished with great accuracy. Vesicle density computations, on the other hand, vary over a wide range and are of less value for comparative purposes.
Collapse
Affiliation(s)
- G Q Fox
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, F.R.G
| |
Collapse
|
45
|
Scherman D, Boschi G. Time required for transmitter accumulation inside monoaminergic storage vesicles differs in peripheral and in central systems. Neuroscience 1988; 27:1029-35. [PMID: 3252170 DOI: 10.1016/0306-4522(88)90207-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Monoamine storage vesicles accumulate transmitters via an active transport process which presents similar pharmacological and bioenergetic properties in all monoaminergic systems. Using [3H]reserpine, a specific ligand of the vesicular monoamine transporter on isolated storage vesicles, we have determined the molecular turnover number of the monoamine transporter and found in various monoaminergic systems an identical value of 135 molecules of substrate transported per min. Using high performance liquid chromatography-electrochemical monoamine determination and the binding of [3H]dihydrotetrabenazine, a specific ligand of the vesicular monoamine transporter in tissue homogenates, we have measured the ratio of transmitter molecules per transporter in various rat tissues containing high amounts of monoamines. This ratio is about 500 in brain regions (striatum, hypothalamus, midbrain) and in the maxillary gland, it varies from 2000 to 7000 in sympathetic nerve terminals in the heart, brown adipose tissue and vas deferens, and it is 6000 in platelets and 280,000 in the adrenal medulla. The minimal time required in vivo for biogenic amine accumulation inside storage vesicles could be derived from these data. Values of 2-4 min were found for brain or maxillary gland synaptic vesicles, 15-50 min for heart, brown adipose tissue or vas deferens sympathetic vesicles and for platelet granules, and 35 h for adrenal medulla chromaffin granules. Thus the maturation time of monoaminergic vesicles, in terms of monoamine accumulation, is highly variable, being short in the brain and maxillary glands, 5-20-fold longer in the sympathetic nervous system and in platelets, and much increased in adrenals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Scherman
- Unité CNRS de Neurobiologie Physico-Chimique, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
46
|
Nishiye H, Obata K, Ozaki T, Uchizono K. A new method for electron microscopic observation of isolated synaptic vesicles labelled with monoclonal antibody. Neurosci Res 1988; 5:567-76. [PMID: 3173813 DOI: 10.1016/0168-0102(88)90044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The immunoreaction of a monoclonal antibody (Mab) and an isolated synaptic vesicle (SV) was processed on a grid mesh and the result could be easily observed with electron microscopy. The SV suspension was obtained and dispersed on the grid mesh where immunoreaction procedures were performed. The resulting immunoreaction was visualized by labelling with ferritin particle (FAD) or horseradish peroxidase (HRP) for the electron microscopic observation. The SV specimen was observed by electron microscopy after faint negative staining with 1% uranyl acetate. With this method, the positive immunoreaction of Mab 171B5 and the isolated SV could be easily identified by the formation of a halo of FAD or a cobweb of HRP surrounding the SV. In the control experiment, the SV specimen was incubated with normal mouse serum instead of the Mab while the other procedures were performed in the same way. The SV was not outlined by FAD in the control experiment. Thus, the positive immunoreaction of the Mab and SV was thought to be an immunologically specific one. It was also determined that the Mab reacted specifically with the SV but not with the small membrane fragments and other unknown material. The present method seems to be useful for observing the immunoreaction of subcellular structures and their antibodies under electron microscopy.
Collapse
Affiliation(s)
- H Nishiye
- Department of Physiology, School of Medicine, Juntendo University, Hongo, Japan
| | | | | | | |
Collapse
|
47
|
Trimble WS, Cowan DM, Scheller RH. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 1988; 85:4538-42. [PMID: 3380805 PMCID: PMC280466 DOI: 10.1073/pnas.85.12.4538] [Citation(s) in RCA: 396] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters.
Collapse
Affiliation(s)
- W S Trimble
- Department of Biological Sciences, Stanford University, CA 94305
| | | | | |
Collapse
|
48
|
Domowicz MS, Kivatinitz SC, Caputto BL, Caputto R. Synthesis and translocation of gangliosides and glycoproteins during urethane anesthesia. J Neurochem 1988; 50:1369-74. [PMID: 2834510 DOI: 10.1111/j.1471-4159.1988.tb03018.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this work, we have studied (a) the contents of gangliosides, glycoproteins, and phospholipids of the vesicle and plasma membrane fractions from brains of anesthetized and control rats and chickens and (b) the labeling of gangliosides and glycoproteins in the retina ganglion cell layer and optic tectum of urethane-anesthetized and control chickens after intraocular injection of a labeled N-acetylneuraminic acid precursor and the distribution of the label after subcellular fractionation. We found an increase in the content of gangliosides relative to protein in the vesicle fraction of both anesthetized rats and chickens relative to their controls. Other values were not affected by anesthesia. These results do not reflect a faster synthesis of gangliosides stimulated by urethane, because their rate of labeling was diminished in anesthetized animals. During the 4-h period after the animals were injected intraocularly with the radioactive precursor, the highest values of ganglioside-specific radioactivity were found in the vesicle fraction of control and anesthetized animals; at longer intervals, the specific radioactivity of the vesicle and plasma membrane fractions became rather similar. These data are in accordance with previous studies from this laboratory suggesting that the synthesis of the carbohydrate chain of gangliosides is regulated by the physiological demands made by the neurotransmitting system.
Collapse
Affiliation(s)
- M S Domowicz
- Departamento de Química Biológica, CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
49
|
Soares-da-Silva P, Azevedo I. Differential effects of 6-hydroxydopamine on the two types of nerve vesicles and dopamine and noradrenaline content in mesenteric arterial vessels. JOURNAL OF AUTONOMIC PHARMACOLOGY 1988; 8:1-10. [PMID: 3134357 DOI: 10.1111/j.1474-8673.1988.tb00163.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1 6-hydroxydopamine (6-OHDA) reduced the noradrenaline content by 50% in the proximal branches of the canine mesenteric artery without significant change of dopamine content. For the main trunk from the same blood vessel a parallel depletion of dopamine and noradrenaline was found to occur. 2 In the proximal branches of control animals 43% of nerve profiles have a very high proportion of small dense cored vesicles (SDCV), whereas in the remaining nerve profiles the proportion of SDCV and large dense cored vesicles (LDCV) was about the same. In the main trunk 89% of nerve profiles have a similar proportion of both types of vesicles. 3 In the proximal branches, 6-OHDA drastically reduced the number of nerve profiles with a high proportion of SDCV, thus resulting in a preferential disappearance of SDCV. In the main trunk, 6-OHDA produced a parallel reduction of both SDCV and LDCV. 4 The results presented suggest that the 6-OHDA-insensitive dopamine pool found in the proximal branches of the mesenteric artery is mainly localized in LDCV, whereas SDCV appear to be the major store of noradrenaline.
Collapse
|
50
|
Diez-Guerra FJ, Richardson PJ, Emson PC. Subcellular distribution of mammalian tachykinins in rat basal ganglia. J Neurochem 1988; 50:440-50. [PMID: 2447239 DOI: 10.1111/j.1471-4159.1988.tb02931.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A combined differential and density gradient centrifugation procedure was used to study the subcellular localisation of the mammalian tachykinins in rat caudateputamen and substantia nigra. Substance P, neurokinin A, neuropeptide K, and neurokinin B were found to be concentrated in the synaptosomal fractions and in fractions containing heavy synaptic vesicles in both regions studied. In contrast, the catecholamines dopamine and noradrenaline had a more widespread distribution throughout the gradient. HPLC analysis of the immunoreactivity recovered showed that the tachykinin immunoreactivity coeluted with the relevant synthetic tachykinins, except in the soluble gradient fraction where neurokinin A immunoreactivity eluted in position consistent with neurokinin A3-10. These results suggest that, in the basal ganglia, the mammalian tachykinins are localised in fractions containing large dense cored synaptic vesicles. This vesicular localisation would be consistent with the proposed role of the tachykinins as neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- F J Diez-Guerra
- Department of Neuroendocrinology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge
| | | | | |
Collapse
|