1
|
Murata Y, Colonnese MT. Thalamic inhibitory circuits and network activity development. Brain Res 2019; 1706:13-23. [PMID: 30366019 PMCID: PMC6363901 DOI: 10.1016/j.brainres.2018.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Inhibitory circuits in thalamus and cortex shape the major activity patterns observed by electroencephalogram (EEG) in the adult brain. Their delayed maturation and circuit integration, relative to excitatory neurons, suggest inhibitory neuronal development could be responsible for the onset of mature thalamocortical activity. Indeed, the immature brain lacks many inhibition-dependent activity patterns, such as slow-waves, delta oscillations and sleep-spindles, and instead expresses other unique oscillatory activities in multiple species including humans. Thalamus contributes significantly to the generation of these early oscillations. Compared to the abundance of studies on the development of inhibition in cortex, however, the maturation of thalamic inhibition is poorly understood. Here we review developmental changes in the neuronal and circuit properties of the thalamic relay and its interconnected inhibitory thalamic reticular nucleus (TRN) both in vitro and in vivo, and discuss their potential contribution to early network activity and its maturation. While much is unknown, we argue that weak inhibitory function in the developing thalamus allows for amplification of thalamocortical activity that supports the generation of early oscillations. The available evidence suggests that the developmental acquisition of critical thalamic oscillations such as slow-waves and sleep-spindles is driven by maturation of the TRN. Further studies to elucidate thalamic GABAergic circuit formation in relation to thalamocortical network function would help us better understand normal as well as pathological brain development.
Collapse
Affiliation(s)
- Yasunobu Murata
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| |
Collapse
|
2
|
Parajuli LK, Fukazawa Y, Watanabe M, Shigemoto R. Subcellular distribution of α1G subunit of T-type calcium channel in the mouse dorsal lateral geniculate nucleus. J Comp Neurol 2011; 518:4362-74. [PMID: 20853512 DOI: 10.1002/cne.22461] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T-type calcium channels play a pivotal role in regulating neural membrane excitability in the nervous system. However, the precise subcellular distributions of T-type channel subunits and their implication for membrane excitability are not well understood. Here we investigated the subcellular distribution of the α1G subunit of the calcium channel which is expressed highly in the mouse dorsal lateral geniculate nucleus (dLGN). Light microscopic analysis demonstrated that dLGN exhibits intense immunoperoxidase reactivity for the α1G subunit. Electron microscopic observation showed that the labeling was present in both the relay cells and interneurons and was found in the somatodendritic, but not axonal, domains of these cells. Most of the immunogold particles for the α1G subunit were either associated with the plasma membrane or the intracellular membranes. Reconstruction analysis of serial electron microscopic images revealed that the intensity of the intracellular labeling exhibited a gradient such that the labeling density was higher in the proximal dendrite and progressively decreased towards the distal dendrite. In contrast, the plasma membrane-associated particles were distributed with a uniform density over the somatodendritic surface of dLGN cells. The labeling density in the relay cell plasma membrane was about 3-fold higher than that of the interneurons. These results provide ultrastructural evidence for cell-type-specific expression levels and for uniform expression density of the α1G subunit over the plasma membrane of dLGN cells.
Collapse
Affiliation(s)
- Laxmi Kumar Parajuli
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
3
|
Nie L, Zhu J, Gratton MA, Liao A, Mu KJ, Nonner W, Richardson GP, Yamoah EN. Molecular identity and functional properties of a novel T-type Ca2+ channel cloned from the sensory epithelia of the mouse inner ear. J Neurophysiol 2008; 100:2287-99. [PMID: 18753322 DOI: 10.1152/jn.90707.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular identity of non-Cav1.3 channels in auditory and vestibular hair cells has remained obscure, yet the evidence in support of their roles to promote diverse Ca2+-dependent functions is indisputable. Recently, a transient Cav3.1 current that serves as a functional signature for the development and regeneration of hair cells has been identified in the chicken basilar papilla. The Cav3.1 current promotes spontaneous activity of the developing hair cell, which may be essential for synapse formation. Here, we have isolated and sequenced the full-length complementary DNA of a distinct isoform of Cav3.1 in the mouse inner ear. The channel is derived from alternative splicing of exon14, exon25A, exon34, and exon35. Functional expression of the channel in Xenopus oocytes yielded Ca2+ currents, which have a permeation phenotype consistent with T-type channels. However, unlike most multiion channels, the T-type channel does not exhibit the anomalous mole fraction effect, possibly reflecting comparable permeation properties of divalent cations. The Cav3.1 channel was expressed in sensory and nonsensory epithelia of the inner ear. Moreover, there are profound changes in the expression levels during development. The differential expression of the channel during development and the pharmacology of the inner ear Cav3.1 channel may have contributed to the difficulties associated with identification of the non-Cav1.3 currents.
Collapse
Affiliation(s)
- Liping Nie
- Center for Neuroscience, Program in Communication Science, University of California, Davis, 1544 Newton Ct., Davis, CA 95618, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Bringmann A, Schopf S, Reichenbach A. Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells. J Neurophysiol 2000; 84:2975-83. [PMID: 11110825 DOI: 10.1152/jn.2000.84.6.2975] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell voltage-clamp recordings of freshly isolated cells were used to study changes in the currents through voltage-gated Ca(2+) channels during the postnatal development of immature radial glial cells into Müller cells of the rabbit retina. Using Ba(2+) or Ca(2+) ions as charge carriers, currents through transient low-voltage-activated (LVA) Ca(2+) channels were recorded in cells from early postnatal stages, with an activation threshold at -60 mV and a peak current at -25 mV. To increase the amplitude of currents through Ca(2+) channels, Na(+) ions were used as the main charge carriers, and currents were recorded in divalent cation-free bath solutions. Currents through transient LVA Ca(2+) channels were found in all radial glial cells from retinae between postnatal days 2 and 37. The currents activated at potentials positive to -80 mV and displayed a maximum at -40 mV. The amplitude of LVA currents increased during the first postnatal week; after postnatal day 6, the amplitude remained virtually constant. The density of LVA currents was highest at early postnatal days (days 2-5: 13 pA/pF) and decreased to a stable, moderate level within the first three postnatal weeks (3 pA/pF). A significant expression of currents through sustained, high-voltage-activated Ca(2+) channels was found after the third postnatal week in approximately 25% of the investigated cells. The early and sole expression of transient currents at high-density may suggest that LVA Ca(2+) channels are involved in early developmental processes of rabbit Müller cells.
Collapse
Affiliation(s)
- A Bringmann
- Department of Neurophysiology, Paul Flechsig Institute of Brain Research, University of Leipzig, D-04109 Leipzig, Germany.
| | | | | |
Collapse
|
5
|
Emri Z, Antal K, Tóth TI, Cope DW, Crunelli V. Backpropagation of the delta oscillation and the retinal excitatory postsynaptic potential in a multi-compartment model of thalamocortical neurons. Neuroscience 2000; 98:111-27. [PMID: 10858617 DOI: 10.1016/s0306-4522(00)00068-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Uniform and non-uniform somato-dendritic distributions of the ion channels carrying the low-threshold Ca(2+) current (I(T)), the hyperpolarization-activated inward current (I(h)), the fast Na(+) current (I(Na)) and the delayed rectifier current (I(K)) were investigated in a multi-compartment model of a thalamocortical neuron for their suitability to reproduce the delta oscillation and the retinal excitatory post-synaptic potential recorded in vitro from the soma of thalamocortical neurons. The backpropagation of these simulated activities along the dendritic tree was also studied. A uniform somato-dendritic distribution of the maximal conductance of I(T) and I(K) (g(T) and g(K), respectively) was sufficient to simulate with acceptable accuracy: (i) the delta oscillation, and its phase resetting by somatically injected current pulses; as well as (ii) the retinal excitatory postsynaptic potential, and its alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate and/or N-methyl-D-aspartate components. In addition, simulations where the dendritic g(T) and g(K) were either reduced (both by up to 34%) or increased (both by up to 15%) of their respective value on the soma still admitted a successful reproduction of the experimental activity. When the dendritic distributions were non-uniform, models where the proximal and distal dendritic g(T) was up to 1.8- and 1. 2-fold larger, respectively, than g(T(s)) produced accurate simulations of the delta oscillation (and its phase resetting curves) as well as the synaptic potentials without need of a concomitant increase in proximal or distal dendritic g(K). Furthermore, an increase in proximal dendritic g(T) and g(K) of up to fourfold their respective value on the soma resulted in acceptable simulation results. Addition of dendritic Na(+) channels to the uniformly or non-uniformly distributed somato-dendritic T-type Ca(2+) and K(+) channels did not further improve the overall qualitative and quantitative accuracy of the simulations, except for increasing the number of action potentials in bursts elicited by low-threshold Ca(2+) potentials. Dendritic I(h) failed to produce a marked effect on the simulated delta oscillation and the excitatory postsynaptic potential. In the presence of uniform and non-uniform dendritic g(T) and g(K), the delta oscillation propagated from the soma to the distal dendrites with no change in frequency and voltage-dependence, though the dendritic action potential amplitude was gradually reduced towards the distal dendrites. The amplitude and rising time of the simulated retinal excitatory postsynaptic potential were only slightly decreased during their propagation from their proximal dendritic site of origin to the soma or the distal dendrites. These results indicate that a multi-compartment model with passive dendrites cannot fully reproduce the experimental activity of thalamocortical neurons, while both uniform and non-uniform somato-dendritic g(T) and g(K) distributions are compatible with the properties of the delta oscillation and the retinal excitatory postsynaptic potential recorded in vitro from the soma of these neurons. Furthermore, by predicting the existence of backpropagation of low-threshold Ca(2+) potentials and retinal postsynaptic potentials up to the distal dendrites, our findings suggest a putative role for the delta oscillation in the dendritic processing of neuronal activity, and support previous hypotheses on the interaction between retinal and cortical excitatory postsynaptic potentials on thalamocortical neuron dendrites.
Collapse
Affiliation(s)
- Z Emri
- School of Biosciences, Cardiff University, P.O. Box 911, Museum Avenue, CF1 3US, Cardiff, UK
| | | | | | | | | |
Collapse
|
6
|
Zhang W, Elsen F, Barnbrock A, Richter DW. Postnatal development of GABAB receptor-mediated modulation of voltage-activated Ca2+ currents in mouse brain-stem neurons. Eur J Neurosci 1999; 11:2332-42. [PMID: 10383622 DOI: 10.1046/j.1460-9568.1999.00655.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABAB receptors modulate respiratory rhythm generation in adult mammals. However, little is currently known of their functional significance during postnatal development. In the present investigation, the effects of GABAB receptor activation on voltage-activated Ca2+ currents were examined in rhythmically active neurons of the pre-Bötzinger complex (PBC). Both low- (LVA) and high-voltage-activated (HVA) Ca2+ currents were present from the first postnatal day (P1). The density of LVA Ca2+ currents increased during the first week, whilst the density of HVA Ca2+ currents increased after the first week. In the second postnatal week, the HVA Ca2+ currents were composed of L- (47 +/- 10%) and N-type (21 +/- 8%) currents plus a 'residual' current, whilst there were no N-type currents detectable in the first few days. The GABAB receptor agonist baclofen (30 microM) increased LVA Ca2+ currents (30 +/- 11%) at P1-P3, but it decreased the currents (35 +/- 11%) at P7-P15 without changing its time course. At all ages, baclofen (30 microM) decreased the HVA Ca2+ currents by approximately 54%. Threshold of baclofen effects on both LVA and HVA Ca2+ currents was 5 microM at P1-P3 and lower than 1 microM at P7-P15. The effect of baclofen was abolished in the presence of the GABAB receptor antagonist CGP 55845A (50 nM). We conclude that both LVA and HVA Ca2+ currents increased postnatally. The GABAB receptor-mediated modulation of these currents undergo marked developmental changes during the first two postnatal weeks, which may contribute essentially to modulation of respiratory rhythm generation.
Collapse
Affiliation(s)
- W Zhang
- Centre of Physiology, University of Göttingen, 37073 Germany.
| | | | | | | |
Collapse
|
7
|
Tennigkeit F, Schwarz DW, Puil E. Postnatal development of signal generation in auditory thalamic neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:255-63. [PMID: 9729416 DOI: 10.1016/s0165-3806(98)00056-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using whole cell recording techniques, we distinguished immature from mature stages of development in auditory thalamic neurons of rats at ages P5 to P21. We compared voltage responses to injected currents and firing patterns of neurons in ventral partition of medial geniculate body (MGBv) in slices. Resting potential, input resistance and membrane time constant diminished to mature values between P5 and P14. Responses of young neurons to hyperpolarizing pulses showed delayed inward rectification; after P13, this was obscured by a rapid onset of another inward rectifier. All neurons possessed tetrodotoxin (TTX)-sensitive, depolarization-activated rectification, implying persistent Na+-current involvement. Despite a slightly higher voltage threshold for spiking, the current threshold was lower in younger neurons. Young neurons fired a short latency spike with afterhyperpolarization whereas older neurons exhibited a slow ramplike depolarization before tonic firing. Large currents caused continuous firing in all neurons. Before day P13, a high threshold Ca2+ spike (HTS) often was appended to action potentials. The low threshold Ca2+-spike (LTS) was too small in amplitude to evoke action potentials before P11 but produced a single spike at P12 and P13 and burst firing with HTS after P13. MGBv neurons have mature properties after P14, relevant for reactions to sound and the oscillations of slow-wave sleep.
Collapse
Affiliation(s)
- F Tennigkeit
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
8
|
Abstract
In this review we underscore the merits of using voltage-dependent ion channels as markers for neuronal differentiation from the early stages of uncommitted embryonic blastomeres. Furthermore, a fairly large part of the review is devoted to the descriptions of the establishment of a simple model system for neural induction derived from the cleavage-arrested eight-cell ascidian embryo by pairing a single ectodermal with a single vegetal blastomere as a competent and an inducer cell, respectively. The descriptions are focused particularly on the early developmental processes of various ion channels in neuronal and other excitable membranes observed in this extraordinarily simple system, and we compare these results with those in other significant and definable systems for neural differentiation. It is stressed that this simple system, for which most of the electronic and optical methods and various injection experiments are applicable, may be useful for future molecular physiological studies on the intracellular process of differentiation of the early embryonic cells. We have also highlighted the importance of suppressive mechanisms for cellular differentiation from the experimental results, such as epidermal commitment of the cleavage-arrested one-cell Halocynthia embryos or suppression of epidermal-specific transcription of inward rectifier channels by neural induction signals. It was suggested that reciprocal suppressive mechanisms at the transcriptional level may be one of the key processes for cellular differentiation, by which exclusivity of cell types is maintained.
Collapse
Affiliation(s)
- K Takahashi
- Department of Medical Physiology, Meiji College of Pharmacy, Tokyo, Japan
| | | |
Collapse
|
9
|
Guido W, Günhan-Agar E, Erzurumlu RS. Developmental changes in the electrophysiological properties of brain stem trigeminal neurons during pattern (barrelette) formation. J Neurophysiol 1998; 79:1295-306. [PMID: 9497411 DOI: 10.1152/jn.1998.79.3.1295] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the brain stem trigeminal nuclei of rodents there is a patterned representation of whiskers and sinus hairs. The subnucleus interpolaris (SPI) contains the largest and the most conspicuous whisker patterns (barrelettes). Although neural activity plays a role in pattern formation, little is known about the electrophysiological properties of developing barrelette neurons. Here we examined the functional state of early postnatal SPI neurons during and after the consolidation of patterns by using in vitro intracellular recording techniques. After the consolidation of barrelettes [>/= postnatal day (P)4], responses to intracellular current injection consistently reflected the activation of a number voltage-dependent conductances. Most notable was a mixed cation conductance (IH) that prevented strong hyperpolarization and a large low-threshold Ca2+ conductance, which led to Ca2+ spikes and burst firing. At the oldest ages tested (P11-P14) some cells also exhibited an outward K+ conductance (IA), which led to significant delays in action-potential firing. Between P0-3, a time when the formation of barrelettes in the brain stem is still susceptible to damage of the sensory periphery, cells responded linearly to intracellular current injection, indicating they either lacked such voltage-gated properties or weakly expressed them. At all ages tested (P0-14), SPI cells were capable of generating trains of action potentials in response to intracellular injection of depolarizing current pulses. However, during the first few days of postnatal life, spikes were shorter and longer. Additionally, spike trains rose more linearly with stimulus intensity and showed frequency accommodation at early ages. Taken together, these results indicate that the electrophysiological properties of SPI neurons change markedly during the period of barrelette consolidation. Moreover, the properties of developing SPI neurons may play a significant role in pattern formation by minimizing signal distortion and ensuring that excitatory responses from sensory periphery are accurately received and transmitted according to stimulus strength.
Collapse
Affiliation(s)
- W Guido
- Department of Cell Biology and Anatomy and Neuroscience Center of Excellence, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
10
|
Munsch T, Budde T, Pape HC. Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. Neuroreport 1997; 8:2411-8. [PMID: 9261800 DOI: 10.1097/00001756-199707280-00001] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dynamics of intracellular calcium concentration ([Ca2+]i) following activation of low voltage-activated (LVA) and high voltage-activated (HVA) Ca2+ currents were studied in identified relay neurons and interneurons of the rat dorsal lateral geniculate nucleus (LGNd) in situ using Ca2+ imaging and patch-clamp techniques. In relay neurons, [Ca2+]i transients associated with the LVA Ca2+ current showed a fairly homogeneous somatodendritic distribution, whereas HVA transients significantly decreased to 65% of the somatic value at 60 microns dendritic distance. In interneurons, LVA transients significantly increased to 239% of the somatic value at 60 microns dendritic distance, whereas HVA transients were not significantly different in the soma and dendrites. These results indicate differences in [Ca2+]i dynamics, which may reflect a heterogeneous distribution of Ca2+ channels contributing to subcellular compartmentation in the two types of thalamic neurons.
Collapse
Affiliation(s)
- T Munsch
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke Universität, Magdeburg, Germany
| | | | | |
Collapse
|
11
|
Postnatal development of membrane properties and delta oscillations in thalamocortical neurons of the cat dorsal lateral geniculate nucleus. J Neurosci 1997. [PMID: 9204926 DOI: 10.1523/jneurosci.17-14-05428.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of membrane properties, firing patterns, and delta oscillations in neurons of the cat dorsal lateral geniculate nucleus (dLGN) was investigated in vitro during the first 7 postnatal weeks. Compared with adult neurons, the resting membrane potential was more depolarized at postnatal days 1-9 (P1-P9), the input resistance was higher at P1-P7, and action potentials had a higher threshold and a smaller amplitude at P1-P3 and a longer duration at P1-P9. At P1-P3 trains longer than 200 msec were rarely observed, and trains with more than three action potentials were only present in 41% of the neurons, whereas at P1-P7 the normalized slope of the instantaneous frequencies at the first five interspike intervals was smaller than in the adult. A long-lasting (up to 6 sec) afterhyperpolarization followed a short train of action potentials in 88 and 30% of neurons at P1-P3 and P30-P32, respectively, but it was rarely observed in the adult. The low-threshold Ca2+ potential could evoke a burst of action potentials since P1. However, at P1-P7 the number of action potentials per burst was smaller (range, one to five), and at P1-P9 their maximum instantaneous frequency was lower (<190 Hz) than in the adult (range, six to eight, and 344 Hz, respectively). No delta oscillations were observed until P17, and their frequency (0.36 Hz) was lower than that in the adult (1.8 Hz). The percentage of neurons displaying delta oscillations and their frequency reached adult values by the end of the seventh postnatal week, i.e., well after the maturation of the membrane properties and firing patterns (second postnatal week). In conclusion, the maturation of the electrophysiological properties of thalamocortical neurons in the cat dLGN is completed later than the retinogeniculate axon segregation (Shatz CJ, 1983), and the immaturity of the oscillatory, and not of the burst-firing, activity is a limiting factor in the development of delta waves.
Collapse
|
12
|
Zhou Q, Godwin DW, O'Malley DM, Adams PR. Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. J Neurophysiol 1997; 77:2816-25. [PMID: 9163395 DOI: 10.1152/jn.1997.77.5.2816] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thalamic neurons have two firing modes: "tonic" and "burst." During burst mode, both low-threshold (LT) and high-threshold (HT) calcium channels are activated, while in tonic mode, only the HT-type of calcium channel is activated. The calcium signals associated with each firing mode were investigated in rat thalamic slices using whole cell patch clamping and confocal calcium imaging. Action potentials were induced by direct current injection into thalamic relay cells loaded with a fluorescent calcium indicator. In both tonic and burst firing modes, large calcium signals were recorded throughout the soma and proximal dendrites. To map the distribution of the channels mediating these calcium fluxes, LT and HT currents were independently activated using specific voltage-clamp protocols. We focused on the proximal region of the cell (up to 50 microm from the soma) because it appeared to be well clamped. For a voltage pulse of a given size, the largest calcium signals were observed in the proximal dendrites with smaller signals occurring in the soma and nucleus. This was true for both LT and HT signals. Rapid imaging, using one-dimensional linescans, was used to more precisely localize the calcium influx. For both LT and HT channels, calcium influx occurred simultaneously throughout all imaged regions including the soma and proximal dendrites. The presence of sizable calcium signals in the dendrites, soma, and nucleus during both firing modes, and the presence of LT calcium channels in the proximal dendrite where sensory afferents synapse, have implications for both the electrical functioning of relay cells and the transmission of sensory information to cortex.
Collapse
Affiliation(s)
- Q Zhou
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794-5230, USA
| | | | | | | |
Collapse
|
13
|
MacLeod N, Turner C, Edgar J. Properties of developing lateral geniculate neurones in the mouse. Int J Dev Neurosci 1997; 15:205-24. [PMID: 9178039 DOI: 10.1016/s0736-5748(96)00088-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study describes the properties of neurones recorded in vitro from the dorsal lateral geniculate nucleus (dLGN) of the mouse between developmental stages E16 and P36 and represents the first systematic study of the development of rodent thalamic neurones. The results demonstrate that thalamo-cortical neurones in the mouse dLGN undergo a series of important changes as they mature. Prenatally recorded cells had low resting potentials and could not generate action potentials but as they mature, mouse dLGN neurones become more polarised and show an increase in membrane time constant and spike threshold, while action potentials increase in amplitude and decrease in width. The low-threshold spike (LTS) complex appears at the time of birth, but does not show properties typical of adult cells until at least the third postnatal week. Immature action potentials are primarily sodium-dependent but gain a significant calcium component in the second postnatal week, which is associated with a supra-threshold oscillation of the membrane potential. The electrical activity during this critical period is strongly influenced by the interaction of powerful inward and outward rectification with calcium conductances which determines the appearance of voltage responses to intracellular current injection. The membrane potential in recordings from neurones during the first postnatal week was dominated by intense TTX-sensitive depolarising synaptic-like events which attained amplitudes of 60 mV in several neurones at stages P5-P8. These changes are discussed in relationship to the formation of appropriate connections in the developing visual system.
Collapse
Affiliation(s)
- N MacLeod
- Department of Physiology, University Medical School, Edinburgh, U.K
| | | | | |
Collapse
|
14
|
Nifedipine-sensitive low voltage-activated calcium current in neurons of the rat laterodorsal thalamic nucleus. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02463224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Abstract
Postnatal development of physiological properties underlying slow intrathalamic oscillations was studied by whole-cell recording from synaptically coupled neurons of the reticular nucleus (RTN) and ventral posterior nucleus (VPN) of mouse brain slices in vitro and compared with the morphological development of dye-injected cells. Between postnatal days 3 and 11 (P3-P11), progressive changes in RTN and VPN neurons included shortening of the membrane time constant, decreasing input resistance, and lowering of the resting membrane potential (RMP). Low-threshold Ca2+ spikes (LTS) were present from P3, but their capacity to sustain multispike bursts was limited before P11. Synaptic responses were evoked in RTN and VPN neurons by electrical stimulation of the internal capsule from P3. Younger RTN neurons responded with a single spike, but their capacity to fire bursts gradually improved as the RMP reached levels below the LTS activation potential. Concomitantly, as the reversal potential of the inhibitory postsynaptic potential in VPN neurons became more negative, its capacity to deinactivate the LTS increased, and rebound bursts that could maintain oscillations were produced; sustained oscillations became the typical response to internal capsule stimulation at P12. The functional maturation of the intrathalamic circuitry, particularly between P10 and P14, occurs in parallel with the morphological maturation (size, dendritic growth, and dendritic field structure) of individual RTN and VPN neurons, as studied by confocal microscopy. Maturation of RTN cells led that of VPN cells by 2-3 d. The appearance of intrathalamic oscillations is probably correlated with the appearance of slow-wave sleep in postnatal animals.
Collapse
|
16
|
Widmer H, Amerdeil H, Fontanaud P, Desarménien MG. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials. J Neurophysiol 1997; 77:260-71. [PMID: 9120568 DOI: 10.1152/jn.1997.77.1.260] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Action potentials and voltage-gated currents were studied in acutely dissociated neurosecretory cells from the rat supraoptic nucleus during the first three postnatal weeks (PW1-PW3), a period corresponding to the final establishment of neuroendocrine relationships. Action potential duration (at half maximum) decreased from 2.7 to 1.8 ms; this was attributable to a decrease in decay time. Application of cadmium (250 microM) reduced the decay time by 43% at PW1 and 21% at PW3, indicating that the contribution of calcium currents to action potentials decreased during postnatal development. The density of high-voltage-activated calcium currents increased from 4.4 to 10.1 pA/pF at postnatal days 1-5 and 11-14, respectively. The conductance density of sustained potassium current, measured at +20 mV, increased from 0.35 (PW1) to 0.53 (PW3) nS/pF. The time to half-maximal amplitude did not change. Conductance density and time- and voltage-dependent inactivation of the transient potassium current were stable from birth. At PW1, the density and time constant of decay (measured at 0 mV) were 0.29 nS/pF (n = 12) and 17.9 ms (n = 10), respectively. Voltage-dependent properties and density (1.1 nS/pF) of the sodium current did not change postnatally. During PW1, fitting the mean activation data with a Boltzmann function gave a half-activation potential of -25 mV. A double Boltzman equation was necessary to adequately fit the inactivation data, suggesting the presence of two populations of sodium channels. One population accounted for approximately 14% of the channels, with a half-inactivation potential of -86 mV; the remaining population showed a half-inactivation potential of -51 mV. A mathematical model, based on Hodgkin-Huxley equations, was used to assess the respective contributions of individual currents to the action potential. When the densities of calcium and sustained potassium currents were changed from immature to mature values, the decay time of the action potentials generated with the model decreased from 2.85 to 1.95 ms. A similar reduction was obtained when only the density of the potassium current was increased. Integration of the calcium currents generated during mature and immature action potentials demonstrated a significant decrease in calcium entry during development. We conclude that the developmental reduction of the action potential duration 1) is a consequence of the developmentally regulated increase in a sustained potassium current and 2) leads to a reduction of the participation of calcium currents in the action potential, resulting in a decreased amount of calcium entering the cell during each action potential.
Collapse
Affiliation(s)
- H Widmer
- Centre National de la Recherche Scientifique Unité Propre de Recherche 9055, Montpellier, France
| | | | | | | |
Collapse
|
17
|
Abstract
An organotypic explant coculture method is described for the developing retinogeniculate pathway of the cat. Retinal explants and thalamic slices containing the dorsal lateral geniculate nucleus (LGN), derived from early postnatal kittens, can be grown in serum-free culture medium for several days. In such cultures, retinal ganglion cells (RGCs) and LGN neurons retained their age-specific morphological features and developed functional connections. Labeling of RGCs and their processes with DiI showed that all three major classes of RGCs (alpha/Y, beta/X, gamma/W) were present in cocultured retinal explants. Retinal axons readily regenerated into thalamic slices and, over time, developed arbors within the LGN. Retrograde labeling from the LGN traced the origin of these axons almost exclusively to alpha-cells in the retina. In vitro intracellular recordings indicated that LGN cells maintained their basic electrophysiological properties in coculture. Current injection generated action potentials, and, at hyperpolarized levels, it led to low-threshold Ca2+ spiking. Regenerated retinal axons also formed functional connections with LGN neurons. Electrical stimulation of the retinal explant elicited excitatory postsynaptic responses (EPSPs) in LGN cells. Drop application of specific glutamate antagonists indicated that EPSPs had both N-methyl-D-aspartate (NMDA) and non-NMDA receptor components. The morphology of the LGN neurons was examined after intracellular injections of biocytin during recording. Labeled cells were very similar to those of early postnatal kittens. Although, in general, they had relatively small soma and simple dendritic branching patterns, a few could be recognized as X- or Y-cells. Thus the coculture model can be used to assay the regenerative propensity of different types of RGCs during development.
Collapse
Affiliation(s)
- W Guido
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
18
|
Ulrich D, Huguenard JR. Gamma-aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study. Proc Natl Acad Sci U S A 1996; 93:13245-9. [PMID: 8917576 PMCID: PMC24078 DOI: 10.1073/pnas.93.23.13245] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synchronized network responses in thalamus depend on phasic inhibition originating in the thalamic reticular nucleus (nRt) and are mediated by the neurotransmitter gamma-aminobutyric acid (GABA). A suggested role for intra-nRt connectivity in inhibitory phasing remains controversial. Recently, functional GABA type B (GABAB) receptors were demonstrated on nRt cells, and the slow time course of the GABAB synaptic response seems ideally suited to deinactivate low-threshold calcium channels. This promotes burst firing, a characteristic feature of synchronized responses. Here we investigate GABAB-mediated rebound burst firing in thalamic cells. Whole-cell current-clamp recordings were obtained from nRt cells and somatosensory thalamocortical relay cells in rat brain slices. Synthetic GABAB inhibitory postsynaptic potentials, generated by a hybrid computerneuron synapse (dynamic clamp), triggered rebound low-threshold calcium spikes in both cell types when peak inhibitory postsynaptic potential hyperpolarization was greater than -92 mV. The threshold inhibitory postsynaptic potential conductance for rebound burst generation was comparable in nRt (7 nS) and thalamocortical (5 nS) cells. However, burst onset in nRt (1 s) was considerably delayed compared with thalamocortical (0.6 s) cells. Thus, GABAB inhibitory postsynaptic potentials can elicit low-threshold calcium spikes in both relay and nRt neurons, but the resultant oscillation frequency would be faster for thalamocortical-nRt networks (3 Hz) than for nRt-nRt networks (1-2 Hz). We conclude, therefore, that fast (> 2 Hz) GABAB-dependent thalamic oscillations are maintained primarily by reciprocal connections between excitatory and inhibitory cells. These findings further indicate that when oscillatory neural networks contain both recurrent and reciprocal inhibition, then distinct population frequencies may result when one or the other type of inhibition is favored.
Collapse
Affiliation(s)
- D Ulrich
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA 94305-5300, USA
| | | |
Collapse
|
19
|
Meis S, Biella G, Pape HC. Interaction between low voltage-activated currents in reticular thalamic neurons in a rat model of absence epilepsy. Eur J Neurosci 1996; 8:2090-7. [PMID: 8921300 DOI: 10.1111/j.1460-9568.1996.tb00730.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A transient potassium (K+) outward current (IA) contributes to the distinctive patterns of low-threshold spike firing observed in various classes of thalamic neurons through a functional interaction with a calcium (Ca2+)-mediated inward current (IT). The present study was undertaken to investigate the properties of transient K+ currents and their interaction with IT in neurons of the reticular thalamic nucleus, and to compare these properties in reticular thalamic nucleus neurons from a rat model of absence epilepsy, designated the Genetic Absence Epilepsy Rat from Strasbourg (GAERS), with those from a Non-epileptic Control strain (NEC). This comparative approach appeared to be particularly important in view of the recent finding of a selective increase in IT in reticular thalamic nucleus neurons from GAERS. Neurons were acutely isolated from the reticular thalamic nucleus through enzymatic procedures, and identified by morphological and immunocytochemical criteria. Ionic currents were analysed using whole-cell patch-clamp techniques. Transient K+ currents in reticular thalamic nucleus neurons with properties indicative of IA activated at approximately -55 mV (with half-activation at -27 and -33 mV in NEC and GAERS respectively), declined rapidly with a voltage-dependent time constant (tau = 4 ms at +45 mV), were 50% steady-state-inactivated at -81 and -86 mV in the two strains of rats respectively, and rapidly recovered from inactivation with a monoexponential time course (tau = 31 and 37 ms respectively). No significant differences in IA properties or densities were found between reticular thalamic nucleus neurons from GAERS and NEC rats. Analysis of the interaction between IA and IT indicated a shift in the balance between the two opposing membrane conductances towards the generation of a low-voltage-activated inward current in reticular thalamic nucleus neurons from GAERS compared with NEC, and a lack of IA to functionally compensate for this shift, which in turn may contribute to pathological forms of low-threshold spike firing characterizing spike-and-wave discharges.
Collapse
Affiliation(s)
- S Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | | | |
Collapse
|
20
|
Perez Velazquez JL, Carlen PL. Development of firing patterns and electrical properties in neurons of the rat ventrobasal thalamus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:164-70. [PMID: 8852366 DOI: 10.1016/0165-3806(95)00171-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electrophysiological properties of thalamic neurons of the rat ventrobasal complex (VB) in vitro were studied during early postnatal development. Current clamp recordings using the whole cell patch clamp method revealed that immature thalamic neurons had less negative membrane potential and higher input resistance than mature neurons. One of the most remarkable differences was the absence of spike bursts riding on the low threshold calcium spike (LTS) in VB neurons before postnatal day 12 (P12). Action potentials recorded from immature neurons had longer duration than those of mature cells and were followed by a longer afterhyperpolarization (spike-ahp). The spike-ahp became shorter as maturation progressed, reaching mature characteristics around P12, coinciding with the appearance of spike bursting on the LTS. The calcium activated potassium conductance, IC, played a prominent role in the spike-ahp in immature neurons. In conclusion, the major differences in intrinsic membrane properties of VB neurons occur during the first 12 postnatal days. The appearance of spike bursting riding on the LTS at P12 is consistent with the emergence of synchronized thalamocortical oscillations in rats around that age.
Collapse
|
21
|
Erzurumlu RS, Guido W. Cellular mechanisms underlying the formation of orderly connections in developing sensory pathways. PROGRESS IN BRAIN RESEARCH 1996; 108:287-301. [PMID: 8979809 DOI: 10.1016/s0079-6123(08)62547-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R S Erzurumlu
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
22
|
Jassar BS, Pennefather PS, Smith PA. Changes in sodium and calcium channel activity following axotomy of B-cells in bullfrog sympathetic ganglion. J Physiol 1993; 472:203-31. [PMID: 7511687 PMCID: PMC1160483 DOI: 10.1113/jphysiol.1993.sp019943] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Currents mediated by Ca2+ channels using Ba2+ as a charge carrier (IBa), Na+ currents (INa) and voltage- and Ca(2+)-dependent K+ currents (IC) were recorded from bullfrog paravertebral sympathetic ganglion B-cells using whole-cell patch-clamp recording techniques. Currents recorded from control cells were compared with those from axotomized cells 13-15 days after transection of the postganglionic nerve. 2. Axotomy reduced peak IBa at -10 mV (holding potential = -80 mV) from 3.3 +/- 0.3 nA (n = 42) to 1.7 +/- 0.1 nA (n = 39, P < 0.001). Tail IBa at -40 mV following a step to +70 mV from a holding potential of -80 mV was also reduced in axotomized neurones (9.7 +/- 0.6 nA for forty-two control neurones and 5.2 +/- 0.3 nA for thirty-nine axotomized neurones; P < 0.001). Minimal changes were observed in the kinetics of activation and deactivation. 3. Pharmacological experiments using 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2- trifluoromethylphenyl)-pyridine-5-carboxylic acid methyl ester (BayK 8644), nifedipine and omega-conotoxin showed that axotomy predominantly affected the N-type Ca2+ channels which carry the majority of ICa in these neurones. L-type Ca2+ current was little affected and T-type Ca2+ currents were not observed in control or axotomized cells. 4. Development of inactivation of 0 mV and recovery from inactivation of IBa at -80 mV exhibited three distinct components in both control and axotomized neurones: 'fast', 'intermediate' and 'slow'. The relative proportions of both the 'fast' and 'intermediate' components of inactivation at 0 mV were almost doubled after axotomy (fast component was 15% in control and 29% in axotomized neurones; intermediate component was 17% in control and 26% in axotomized neurones). 'Fast' and 'intermediate' inactivation tended to develop more rapidly and recover more slowly after axotomy. The rate of onset of 'slow' inactivation was unaffected by axotomy but the steady-state level at -40 mV was increased. Most of the change in IBa properties may be secondary to enhanced inactivation associated with axotomy. 5. Axotomy reduced IC (measured at the end of a 3 ms step from -40 to +20 mV) from 34.5 +/- 4.9 (n = 26) to 19.2 +/- 1.5 nA (n = 49, P < 0.005). This reduction may be secondary to the reduction in calcium channels available for activation from -40 mV following axotomy. 6. The TTX-sensitive and TTX-insensitive components of peak Na+ conductance (GNa) were both increased after axotomy. Total GNa was increased from 184.9 +/- 8.4 to 315.2 +/- 16.4 nS (n = 37 for both P < 0.001). Most of the kinetic and steady-state properties of INa were unchanged after axotomy.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B S Jassar
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
23
|
White CA, Sur M. Membrane and synaptic properties of developing lateral geniculate nucleus neurons during retinogeniculate axon segregation. Proc Natl Acad Sci U S A 1992; 89:9850-4. [PMID: 1409711 PMCID: PMC50231 DOI: 10.1073/pnas.89.20.9850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During the first postnatal month in the ferret (Mustela putorius furo), the projections from the retina to the lateral geniculate nucleus (LGN) become segregated into eye-specific layers and ON and OFF sublayers, a process that is thought to depend in part on neuronal activity. Remarkably, virtually nothing is known about the physiological features of LGN neurons during this period. We have recorded intracellularly from 46 A-layer neurons in slices of the ferret LGN between the ages of postnatal days 7 and 33. The passive membrane properties and current-voltage relationships of the developing neurons were similar in many, though not all, respects to those of adult LGN neurons. Action potentials in younger animals were smaller in amplitude and longer in duration than in older animals, but cells at all ages were capable of producing spike trains whose latency and spike number varied with stimulus intensity. In addition, cells at all ages responded with low-threshold potentials upon release from hyperpolarization. Slightly more than half of the LGN neurons responded to optic tract stimulation with excitatory postsynaptic potentials (EPSPs), inhibitory postsynaptic potentials (IPSPs), or EPSP-IPSP pairs, beginning with the youngest ages. Thus, as early as the second postnatal week, and much before the onset of pattern vision, LGN neurons have many of the membrane and synaptic properties of adult thalamic neurons. These data are consistent with LGN cells playing a significant role in activity-dependent reshaping of the retinogeniculate pathway.
Collapse
Affiliation(s)
- C A White
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|