1
|
Egaña-Huguet J, Bonilla-Del Río I, Gómez-Urquijo SM, Mimenza A, Saumell-Esnaola M, Borrega-Roman L, García Del Caño G, Sallés J, Puente N, Gerrikagoitia I, Elezgarai I, Grandes P. The Absence of the Transient Receptor Potential Vanilloid 1 Directly Impacts on the Expression and Localization of the Endocannabinoid System in the Mouse Hippocampus. Front Neuroanat 2021; 15:645940. [PMID: 33692673 PMCID: PMC7937815 DOI: 10.3389/fnana.2021.645940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.
Collapse
Affiliation(s)
- Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Sonia M Gómez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Roman
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
2
|
Peñasco S, Rico-Barrio I, Puente N, Gómez-Urquijo SM, Fontaine CJ, Egaña-Huguet J, Achicallende S, Ramos A, Reguero L, Elezgarai I, Nahirney PC, Christie BR, Grandes P. Endocannabinoid long-term depression revealed at medial perforant path excitatory synapses in the dentate gyrus. Neuropharmacology 2019; 153:32-40. [PMID: 31022405 DOI: 10.1016/j.neuropharm.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
The endocannabinoid system modulates synaptic plasticity in the hippocampus, but a link between long-term synaptic plasticity and the type 1 cannabinoid (CB1) receptor at medial perforant path (MPP) synapses remains elusive. Here, immuno-electron microscopy in adult mice showed that ∼26% of the excitatory synaptic terminals in the middle 1/3 of the dentate molecular layer (DML) contained CB1 receptors, and field excitatory postsynaptic potentials evoked by MPP stimulation were inhibited by CB1 receptor activation. In addition, MPP stimulation at 10 Hz for 10 min triggered CB1 receptor-dependent excitatory long-term depression (eCB-eLTD) at MPP synapses of wild-type mice but not on CB1-knockout mice. This eCB-eLTD was group I mGluR-dependent, required intracellular calcium influx and 2-arachydonoyl-glycerol (2-AG) synthesis but did not depend on N-methyl-d-aspartate (NMDA) receptors. Overall, these results point to a functional role for CB1 receptors with eCB-eLTD at DML MPP synapses and further involve these receptors in memory processing within the adult brain.
Collapse
Affiliation(s)
- Sara Peñasco
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Irantzu Rico-Barrio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Sonia María Gómez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Svein Achicallende
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada.
| |
Collapse
|
3
|
The transient receptor potential vanilloid-1 is localized at excitatory synapses in the mouse dentate gyrus. Brain Struct Funct 2014; 220:1187-94. [PMID: 24487914 DOI: 10.1007/s00429-014-0711-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/15/2014] [Indexed: 01/30/2023]
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that plays an important role in pain perception and modulates neurotransmitter release and synaptic plasticity in the brain. TRPV1 function must lay on its anatomical distribution in the peripheral and central nervous system regions involved in the physiological roles of the channel. However, the anatomical localization of TRPV1 is well established in the periphery, but in the brain it is a matter of debate. While some studies support the presence of TRPV1 in several brain regions, recent evidences suggest a restricted distribution of the channel in the central nervous system. To investigate to what extent central TRPV1 function stands on a precise brain distribution of the channel, we examined the mouse hippocampal dentate molecular layer (ML) where TRPV1 mediates long-term synaptic plasticity. Using pre-embedding immunocytochemistry for high resolution electron microscopy, we show that TRPV1 immunoparticles are highly concentrated in postsynaptic dendritic spines to asymmetric perforant path synapses in the outer 2/3 of the ML. However, TRPV1 is poorly expressed at the excitatory hilar mossy cell synapses in the inner 1/3 of this layer. Importantly, the TRPV1 pattern distribution disappeared in the ML of TRPV1-knockout mice. Taken together, these findings support the notion of the presence of TRPV1 in a brain region where the channel has been shown to have a functional role, such as the perforant path synapses in the hippocampal dentate ML.
Collapse
|
4
|
Woodhams PL. Laminar and region‐specific cell surface markers in the entorhinal cortex and hippocampus. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter L. Woodhams
- Norman and Sadie Lee Research Centre, National Institute for Medical Research, London, U.K
| |
Collapse
|
5
|
Walton JR. Cognitive deterioration and associated pathology induced by chronic low-level aluminum ingestion in a translational rat model provides an explanation of Alzheimer's disease, tests for susceptibility and avenues for treatment. Int J Alzheimers Dis 2012; 2012:914947. [PMID: 22928148 PMCID: PMC3423924 DOI: 10.1155/2012/914947] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022] Open
Abstract
A translational aging rat model for chronic aluminum (Al) neurotoxicity mimics human Al exposure by ingesting Al, throughout middle age and old age, in equivalent amounts to those ingested by Americans from their food, water, and Al additives. Most rats that consumed Al in an amount equivalent to the high end of the human total dietary Al range developed severe cognitive deterioration in old age. High-stage Al accumulation occurred in the entorhinal cortical cells of origin for the perforant pathway and hippocampal CA1 cells, resulting in microtubule depletion and dendritic dieback. Analogous pathological change in humans leads to destruction of the perforant pathway and Alzheimer's disease dementia. The hippocampus is thereby isolated from neocortical input and output normally mediated by the entorhinal cortex. Additional evidence is presented that Al is involved in the formation of neurofibrillary tangles, amyloid plaques, granulovacuolar degeneration, and other pathological changes of Alzheimer's disease (AD). The shared characteristics indicate that AD is a human form of chronic Al neurotoxicity. This translational animal model provides fresh strategies for the prevention, diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- J. R. Walton
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Clinical Outcomes Research, St George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
6
|
Gundersen V, Ottersen OP, Storm-Mathisen J. Aspartate- and Glutamate-like Immunoreactivities in Rat Hippocampal Slices: Depolarization-induced Redistribution and Effects of Precursors. Eur J Neurosci 2002; 3:1281-1299. [PMID: 12106226 DOI: 10.1111/j.1460-9568.1991.tb00061.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light microscopic localization of aspartate-like immunoreactivity (Asp-LI) was compared to that of glutamate-like immunoreactivity (Glu-LI) in hippocampal slices by means of specific polyclonal antibodies recognizing the amino acids fixed by glutaraldehyde. After incubation in Krebs' solution with normal (5 mM) or depolarizing concentrations of K+, and various additives, the slices were fixed with glutaraldehyde, resectioned and processed according to the peroxidase - antiperoxidase procedure. At 5 mM K+, Glu-LI was localized in nerve-terminal like dots with a conspicuous laminar distribution, the highest Glu-LI concentrations coinciding with the terminal fields of major excitatory pathways thought to use glutamate or aspartate as transmitters. The localization of Asp-LI showed some similarity to that of Glu-LI, but the laminar distribution was less differentiated and the immunoreactivity was much weaker. At 40 and 55 mM K+ the nerve terminal localizations of Glu-LI and Asp-LI were strongly reduced. Concomitantly, both immunoreactivities appeared in astroglial cells. These changes were Ca2+-dependent. The nerve ending staining patterns of Asp-LI and Glu-LI could be sustained during depolarization if the medium was supplemented with glutamine (0.5 mM). Under these conditions Asp-LI became more intense and its distribution approached that of Glu-LI. This suggests that, when stimulated, some nerve endings can increase their reservoir of releasable aspartate. The presence of glutamine during depolarization strongly reduced glial Asp-LI and Glu-LI, possibly due to its providing nitrogen for conversion of glutamate to glutamine. alpha-Ketoglutarate, another glia-derived precursor of neuronal glutamate, was virtually ineffective in supporting Glu-LI and Asp-LI in nerve endings, and did not suppress Glu-LI or Asp-LI in glia. Our findings provide morphological support for the view that excitatory nerve endings under certain conditions can contain high levels of both aspartate and glutamate (possibly in the same terminals), and that aspartate as well as glutamate can be released synaptically. Further, they underline the importance of the glial supply of the nerve endings with precursor glutamine, which allows them to build up and sustain high concentrations of transmitter amino acids during release.
Collapse
Affiliation(s)
- V. Gundersen
- Anatomical Institute, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo 3, Norway
| | | | | |
Collapse
|
7
|
Derouiche A. Topical correlation of increased hippocampal glutamine synthetase immunoreactivity and glutamatergic terminal fields after entorhinal cortex lesion. Glia 2000; 29:386-91. [PMID: 10652448 DOI: 10.1002/(sici)1098-1136(20000215)29:4<386::aid-glia9>3.0.co;2-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many astrocyte functions are related to glutamatergic transmission and to other synaptic functions, such as glutamate uptake and glutamate metabolism. While many of these functions can be executed by perisynaptic astrocyte processes, it is not clear how these processes are formed. One of the factors guiding them to the synapse may be synaptically released glutamate. This would explain the topical correlation between laminated glutamatergic terminal fields and laminae most intensely labeled by a cytoplasmic astrocyte marker, anti-glutamine synthetase (GS). This hypothesis was tested by selectively increasing the glutamate content in one terminal field. The rat entorhinal cortex, the origin of the glutamatergic projection to the outer molecular layer (OML) of the hippocampal fascia dentata, was lesioned electrolytically. In line with the hypothesis, GS immunoreactivity was strongly increased in the OML at 6 and 8 days postlesion. Lesion of only the medial entorhinal cortex resulted in heavily increased GS immunoreactivity only in the central portion of the molecular layer (i.e., the corresponding terminal field). The laminae affected were always separated from neighboring fields by a straight and clear-cut line. Although many other factors are released in the terminal field after lesion, the results are consistent with a guiding role for glutamate. The lamina-specific effect suggests that the factor(s) involved have a very limited diffusion distance. The straight border line between affected and unaffected laminae, which cuts across astrocyte territories, can best be explained by ramification of only those processes of a given astrocyte that are contained within the lamina affected.
Collapse
Affiliation(s)
- A Derouiche
- Institute of Anatomy, J.W. Goethe-University, Frankfurt/M and Institute of Anatomy, Dresden University, Germany.
| |
Collapse
|
8
|
Magnusson KR. Distributions of taurine, glutamate, and glutamate receptors during post-natal development and plasticity in the rat brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 403:435-44. [PMID: 8915381 DOI: 10.1007/978-1-4899-0182-8_47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In summary, taurine and glutamate distributions seemed to be related spatio-temporally during development in the hippocampus and cerebellum and during plasticity of the adult dentate gyrus. In some cases, the amino acids appeared to be setting up adult localizations, while others involved a change in distribution from early development to adulthood that may indicate a related role for taurine and glutamate in dendritic outgrowth and synapse formation. Further elucidation of the subcellular localizations should provide some insight into the functions of taurine and glutamate during these critical periods in development. In addition, there appeared to be developmental patterns of decreased density of kainate and Met2 glutamate receptors that may be worth exploring in terms of interrelationships with taurine.
Collapse
Affiliation(s)
- K R Magnusson
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
9
|
Azkue J, Bidaurrazaga A, Mateos JM, Sarría R, Streit P, Grandes P. Glutamate-like immunoreactivity in synaptic terminals of the posterior cingulopontine pathway: a light and electron microscopic study in the rabbit. J Chem Neuroanat 1995; 9:261-9. [PMID: 8719275 DOI: 10.1016/0891-0618(95)00090-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A postembedding immunoperoxidase method for light microscopy was used to localize glutamate-like immunoreactivity in the rabbit basilar pontine nuclei. Labelled fibre bundles, neuronal cell bodies and numerous puncta of diverse size were heavily glutamate immunoreactive throughout all subdivisions of the pontine nuclei. To determine whether some of the glutamate-immunoreactive puncta were synaptic terminals of posterior cingulate cortical neurons, a double-labelling technique involving an anterograde tract-tracing method and a postembedding immunogold procedure for electron microscopy was used. A quantitative evaluation of gold particle densities revealed that anterogradely labelled cingulopontine synaptic terminals were about twice as immunoreactive as their postsynaptic dendrites, perikaryal and glial profiles and about three times more than symmetric synaptic terminals. The present results indicate that the posterior cingulopontine projection contains high levels of glutamate at its synaptic terminals. This observation provides further support to the role for glutamate as a neurotransmitter in the corticopontine pathway.
Collapse
Affiliation(s)
- J Azkue
- Department of Neurosciences, Basque Country University, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Baude A, Nusser Z, Molnár E, McIlhinney RA, Somogyi P. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 1995; 69:1031-55. [PMID: 8848093 DOI: 10.1016/0306-4522(95)00350-r] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cellular and subcellular localization of the GluRA, GluRB/C and GluRD subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate receptor was determined in the rat hippocampus using polyclonal antipeptide antibodies in immunoperoxidase and immunogold procedures. For the localization of the GluRD subunit a new polyclonal antiserum was developed using the C-terminal sequence of the protein (residues 869-881), conjugated to carrier protein and absorbed to colloidal gold for immunization. The purified antibodies immunoprecipitated about 25% of 3[H]AMPA binding activity from the hippocampus, cerebellum or whole brain, but very little from neocortex. These antibodies did not precipitate a significant amount of 3[H]kainate binding activity. The antibodies also recognize the GluRD subunit, but not the other AMPA receptor subunits, when expressed in transfected COS-7 cells and only when permeabilized with detergent, indicating an intracellular epitope. All subunits were enriched in the neuropil of the dendritic layers of the hippocampus and in the molecular layer of the dentate gyrus. The cellular distribution of the GluRD subunit was studied more extensively. The strata radiatum, oriens and the dentate molecular layer were more strongly immunoreactive than the stratum lacunosum moleculare, the stratum lucidum and the hilus. However, in the stratum lucidum of the CA3 area and in the hilus the weakly reacting dendrites were surrounded by immunopositive rosettes, shown in subsequent electron microscopic studies to correspond to complex dendritic spines. In the stratum radiatum, the weakly reacting apical dendrites contrasted with the surrounding intensely stained neuropil. The cell bodies of pyramidal and granule cells were moderately reactive. Some non-principal cells and their dendrites in the pyramidal cell layer and in the alveus also reacted very strongly for the GluRD subunit. At the subcellular level, silver intensified immunogold particles for the GluRA, GluRB/C and GluRD subunits were present at type 1 synaptic membrane specializations on dendritic spines of pyramidal cells throughout all layers of the CA1 and CA3 areas. The most densely labelled synapses tended to be on the largest spines and many smaller spines remained unlabelled. Immunoparticle density at type 1 synapses on dendritic shafts of some non-principal cells was consistently higher than at labelled synapses of dendritic spines of pyramidal cells. Synapses established between dendritic spines and mossy fibre terminals, were immunoreactive for all studied subunits in stratum lucidum of the CA3 area. The postembedding immunogold method revealed that the AMPA type receptors are concentrated within the main body of the anatomically defined type 1 (asymmetrical) synaptic junction. Often only a part of the membrane specialization showed clustered immunoparticles. There was a sharp decrease in immunoreactive receptor density at the edge of the synaptic specialization. Immunolabelling was consistently demonstrated at extrasynaptic sites on dendrites, dendritic spines and somata. The results demonstrate that the GluRA, B/C and D subunits of the AMPA type glutamate receptor are present in many of the glutamatergic synapses formed by the entorhinal, CA3 pyramidal and mossy fibre terminals. Some interneurons have a higher density of AMPA type receptors in their asymmetrical afferent synapses than pyramidal cells. This may contribute to a lower activation threshold of interneurons as compared to principal cells by the same afferents in the hippocampal formation.
Collapse
Affiliation(s)
- A Baude
- Department of Pharmacology, University of Oxford, U.K
| | | | | | | | | |
Collapse
|
11
|
Ortega F, Hennequet L, Sarría R, Streit P, Grandes P. Changes in the pattern of glutamate-like immunoreactivity in rat superior colliculus following retinal and visual cortical lesions. Neuroscience 1995; 67:125-34. [PMID: 7477893 DOI: 10.1016/0306-4522(95)00057-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the pattern of glutamate-like immunoreactivity in the superficial layers of the rat superior colliculus by means of postembedding immunocytochemical methods for light and electron microscopy. At the light microscopic level, labelling was faintly to moderately intense in most perikarya of the stratum zonale, stratum griseum superficiale and stratum opticum. Furthermore, strong glutamate-immunoreactive terminal-like elements were accumulated most densely in stratum zonale, stratum griseum superficiale and stratum opticum. At the electron microscopic level, a postembedding immunogold method revealed that the vast majority of those labelled elements corresponded to retinal and visual cortical terminals. These profiles were about twice as heavily labelled as their postsynaptic partners. To determine the contribution of retinal and cortical afferents to the pattern of glutamate-like immunoreactivity, rats were subjected to right retinal ablation, left cortical ablation or combined right retinal and left cortical ablations. After retinal ablation, strongly labelled perikarya were observed in the retinorecipient layers. Furthermore, a prominent loss of glutamate-immunoreactive terminal-like elements occurred in stratum zonale and stratum griseum superficiale. Ipsilateral superior colliculus to cortical ablation exhibited subtle changes characterized by a moderate increase in perikaryal immunostaining in stratum zonale, stratum griseum superficiale and stratum opticum and by an apparent discrete reduction of labelled dots in stratum griseum superficiale and stratum opticum. In cases with combined lesions, strongly immunoreactive cell bodies and dendrites were accompanied by a massive disappearance of labelled terminal-like elements in stratum zonale, stratum griseum superficiale and stratum opticum. The effect of retinal and visual cortical ablations on the pattern of glutamate-like immunoreactivity suggests that these afferents are the major sources for glutamate-immunoreactive terminals in the rat superior colliculus. In addition, these findings provide further evidence for glutamate as neurotransmitter in the visual pathways studied.
Collapse
Affiliation(s)
- F Ortega
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | |
Collapse
|
12
|
Grandes P, Ortega F, Streit P. Glutamate-immunoreactive climbing fibres in the cerebellar cortex of the rat. HISTOCHEMISTRY 1994; 101:427-37. [PMID: 7960942 DOI: 10.1007/bf00269493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The climbing fibre system, one of the two main excitatory inputs to the cerebellar cortex, is anatomically and physiologically well characterized, while the nature of its neurotransmitter is still a matter of debate. We wished to determine whether glutamate-immunoreactive profiles with the morphological characteristics of climbing fibres could be found in the rat cerebellar cortex. For this purpose, a monoclonal 'anti-glutamate' antibody has been used in combination with a sensitive postembedding immunoperoxidase method on semi-thin sections or in combination with a postembedding immunogold method on ultrathin sections. At the light microscopic level, climbing fibres appeared as strongly stained fibrous profiles, chains of interconnected varicosities or heavily labelled dots of various sizes, often in close apposition to principal Purkinje cell dendrites. At the electron microscopic level, certain labelled varicosities or more elongated profiles resembling climbing fibre terminals were in synaptic contact with dendritic spines of Purkinje cells. Quantitative analysis of gold particle densities showed that such elements were about three to four times more heavily labelled than their postsynaptic partners. The results obtained in this study demonstrate that at least a subset of climbing fibres and their terminals contain relatively high levels of glutamate-like immunoreactivity and provide additional evidence for a role of glutamate as transmitter in these cerebellar afferents.
Collapse
Affiliation(s)
- P Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | |
Collapse
|
13
|
Nitsch C, Maly IP, Möri D, Scotti AL. Evidence for the colocalization of parvalbumin and glutamate, but not GABA, in the perforant path of the gerbil hippocampal formation: a combined immunocytochemical and microquantitative analysis. J Neurochem 1994; 62:1276-84. [PMID: 7907649 DOI: 10.1046/j.1471-4159.1994.62041276.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gerbils (Meriones unguiculatus) are known for their seizure sensitivity, which is dependent on an intact perforant path from the entorhinal cortex to the hippocampus. In contrast with other species, the perforant path in gerbils contains parvalbumin, a cytosolic high-affinity calcium-binding protein. Parvalbumin is known to be present in a subpopulation of GABA-containing neurons and is thought to be responsible for their physiological characteristics of fast spiking activity and lack of spike adaptation. Therefore, the question arose of whether this projection in gerbils is GABAergic or glutamatergic as in other species. In a first approach to this question, the effect of lesioning the origin of the perforant path, the entorhinal cortex, on levels of GABA and glutamate was determined by enzymatic-luminometric assay in single layers of the dentate gyrus of lyophilized brain sections. Parallel sections were cryofixed using an acidified acetone-formaldehyde mixture at -20 degrees C for 48 h, and subsequently stained for parvalbumin immunocytochemistry. Seven days after ablation of the entorhinal cortex, parvalbumin staining was undetectable in the termination zone of the perforant path, the outer two-thirds of the stratum moleculare. In parallel, glutamate content was reduced to 80% of controls (and of the unoperated contralateral side) but unchanged in the inner third of the stratum moleculare and in stratum granulare. GABA content was not significantly altered by the lesion. From these results, we conclude that in the gerbil as in other species, the perforant path contains glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Nitsch
- Institute of Anatomy, University of Basel, Switzerland
| | | | | | | |
Collapse
|
14
|
Diekmann S, Nitsch R, Ohm TG. The organotypic entorhinal-hippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:61-71. [PMID: 7897400 DOI: 10.1007/978-3-7091-9350-1_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The entorhinal-hippocampal system is severely altered in many neurodegenerative disorders with mnemonic malfunction, e.g. Alzheimer's, Parkinson's and Huntington's disease. The present approach characterizes an organotypic complex slice culture comprising both the entorhinal cortex and the hippocampal formation in order to establish a tool for experimental studies of the entorhinal-hippocampal interaction and its presumed neurodegenerative alterations in vitro. Slices were obtained from rats at about postnatal day 15 and maintained in culture using the interface technique. Thus, also structures known to be developed gradually during the first weeks postnatally are in accord to structures seen in adult rats. After two-three weeks in vitro, slices in the culture dish still revealed the typical morphological features of the entorhinal-hippocampal formation as visible with the dissecting microscope. Biocytin, which is taken up by and transported within living cells, labeled typical cell bodies, dendrites and axons of stellate neurons in layer II and pyramidal cells in layer III when applied to the outer layers of the entorhinal cortex. Small injections of biocytin within the dentate gyrus displayed living granule cells and the maintenance of their projection to the pyramidal cells in CA3, i.e., a typical suprapyramidal plexus of mossy fibers. The presence of axons of entorhinal neurons traveling towards the hippocampus and growth cones traversing the deep layers of the entorhinal cortex indicate that both brain regions are still interacting. Immunocytochemistry for calbindin D-28K revealed labeled neurons in layer II of the entorhinal cortex and dentate granule cells which are known to contain this calcium-binding protein.
Collapse
Affiliation(s)
- S Diekmann
- Zentrum der Morphologie, Johann Wolfgang-Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| | | | | |
Collapse
|
15
|
Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P. The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 1993; 11:771-87. [PMID: 8104433 DOI: 10.1016/0896-6273(93)90086-7] [Citation(s) in RCA: 747] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An antiserum to mGluR1 alpha labeled a 160 kd protein in immunoblots of membranes derived from rat brain or cells transfected with mGluR1 alpha. Immunoreactivity for mGluR1 alpha was present in discrete subpopulations of neurons. The GABAergic neurons of the cerebellar cortex were strongly immunoreactive; only some Golgi cells were immunonegative. Somatostatin/GABA-immunopositive cells in the neocortex and hippocampus were enriched in mGluR1 alpha. The hippocampal cells had spiny dendrites that were precisely codistributed with the local axon collaterals of pyramidal and granule cells. Electron microscopic immunometal detection of mGluR1 alpha showed a preferential localization at the periphery of the extensive postsynaptic densities of type 1 synapses in both the cerebellum and the hippocampus. The receptor was also present at sites in the dendritic and somatic membrane where synapses were not located.
Collapse
Affiliation(s)
- A Baude
- Anatomical Neuropharmacology Unit, University of Oxford, England
| | | | | | | | | | | |
Collapse
|
16
|
Broman J, Anderson S, Ottersen OP. Enrichment of glutamate-like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn. Eur J Neurosci 1993; 5:1050-61. [PMID: 7904222 DOI: 10.1111/j.1460-9568.1993.tb00958.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although several lines of evidence indicate that glutamate is a neurotransmitter in primary afferent terminals, controversies exist on the proportion and types of such terminals that release glutamate. In the present study quantitative analysis of immunogold labelling was used to assess the presence of glutamate-like immunoreactivity in primary afferent terminals in laminae I-V of the rat spinal cord dorsal horn. Anterograde transport of choleragenoid-horseradish peroxidase from a spinal ganglion and tetramethyl benzidine histochemistry were used to identify primary afferent terminals in laminae I and III-V. Presumed C-fibre terminals in lamina II were identified on morphological criteria (dense sinusoid axon terminals). Primary afferent terminals in all dorsal horn laminae displayed significantly higher levels of glutamate-like immunoreactivity than pleomorphic vesicle-containing profiles in laminae III-IV and large neuronal cell bodies in laminae III-V. The density of gold particles over primary afferent terminals also significantly exceeded the average density of gold particles over laminae II and III-IV. The highest densities of gold particles were present over dense sinusoid axon terminals in lamina II. These findings suggest that glutamate, alone or in combination with other neuroactive compounds, is involved in the transfer of all sensory modalities from primary afferent fibres to dorsal horn neurons.
Collapse
Affiliation(s)
- J Broman
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | |
Collapse
|
17
|
Halasy K, Somogyi P. Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur J Neurosci 1993; 5:411-29. [PMID: 8261118 DOI: 10.1111/j.1460-9568.1993.tb00508.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sources of GABAergic innervation to granule cells were studied to establish how the basic cortical circuit is implemented in the dentate gyrus. Five types of neuron having extensive local axons were recorded electrophysiologically in vitro and filled intracellularly with biocytin (Han et al., 1993). They were processed for electron microscopy in order to reveal their synaptic organization and postsynaptic targets, and to test whether their terminals contained GABA. (1) The hilar cell, with axon terminals in the commissural and association pathway termination field (HICAP cell), formed Gray's type 2 (symmetrical) synapses with large proximal dendritic shafts (n = 18), two-thirds of which could be shown to emit spines, and with small dendritic branches (n = 6). Other boutons of the HICAP neuron were found to make either Gray's type 1 (asymmetrical) synapses (n = 4) or type 2 synapses (n = 6) with dendritic spines. Using a highly sensitive silver-intensified immunogold method for the postembedding visualization of GABA immunoreactivity, both the terminals and the dendrites of the HICAP cell were found to be immunopositive, whereas its postsynaptic targets were GABA-immunonegative. The dendritic shafts of the HICAP cell received synapses from both GABA-negative and GABA-positive boutons; the dendritic spines which densely covered the main apical dendrite in the medial one-third of the molecular layer received synapses from GABA-negative boutons. (2) The hilar cell, with axon terminals distributed in conjunction with the perforant path termination field (HIPP cell), established type 2 synapses with distal dendritic shafts (n = 17), most of which could be shown to emit spines, small-calibre dendritic profiles (n = 2) and dendritic spines (n = 6), all showing characteristics of granule cell dendrites. The sparsely spiny dendrites of the HIPP cell were covered with many synaptic boutons on both their shafts and their spines. (3) The cell with soma in the molecular layer had an axon associated with the perforant path termination field (MOPP cell). This GABA-immunoreactive cell made type 2 synapses exclusively on dendritic shafts (n = 20), 60% of which could be shown to emit spines. The smooth dendrites of the MOPP cell were also restricted to the outer two-thirds of the molecular layer, where they received both GABA-negative and GABA-positive synaptic inputs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Halasy
- Medical Research Council, Oxford University, UK
| | | |
Collapse
|
18
|
Derouiche A, Heimrich B, Frotscher M. Loss of layer-specific astrocytic glutamine synthetase immunoreactivity in slice cultures of hippocampus. Eur J Neurosci 1993; 5:122-7. [PMID: 7903184 DOI: 10.1111/j.1460-9568.1993.tb00477.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamine synthetase (GS) supposedly inactivates the excitatory neurotransmitter glutamate. By using immunocytochemistry for GS, we recently demonstrated a layer-specific, perisynaptic distribution of GS-immunoreactive astrocytes and their processes in perfusion-fixed rat hippocampi. Highest levels of immunoreactivity were found in well defined termination zones of glutamatergic hippocampal afferents. In the present study we analysed the developmental aspect of this neuron-glia interaction by using hippocampal slice cultures lacking all extrinsic afferents. Under these conditions, no layer-specific distribution of astrocytic GS immunoreactivity could be demonstrated. This suggests that the laminated distribution of GS immunoreactivity is formed in parallel with the segregated termination of hippocampal afferents. Thus, there is no predetermined pattern of GS-containing astrocytes playing a role in the segregation of extrinsic fibres. The ultrastructural localization of GS immunoreactivity in fine astrocytic processes around asymmetric, probably glutamatergic excitatory spine synapses confirms earlier in situ findings, which suggests that this arrangement is a global phenomenon of glutamatergic systems.
Collapse
Affiliation(s)
- A Derouiche
- Institute of Anatomy, University of Frankfurt am Main, Germany
| | | | | |
Collapse
|
19
|
Woodhams PL, Kawano H, Seeley PJ, Atkinson DJ, Field PM, Webb M. Monoclonal antibodies reveal molecular differences between terminal fields in the rat dentate gyrus. Neuroscience 1992; 46:57-69. [PMID: 1594106 DOI: 10.1016/0306-4522(92)90008-p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have derived a number of monoclonal antibodies which detect molecular differences correlating with the afferent inputs to the molecular layer of the adult rat hippocampal dentate gyrus. One group, dubbed OM-1 to OM-4, strongly stain the outer zone of the molecular layer, which receives its major innervation from the ipsilateral entorhinal cortex. A second group, IM-1 and IM-2, show a complementary pattern and preferentially stain the inner molecular layer, which receives inputs from the ipsilateral and contralateral hippocampus. These antigens are not, however, restricted to these layers, being found outside the hippocampus in several other areas of neuropil in the adult brain. In the developing brain the IM-1 antigen appears ubiquitously from the earliest age studied, embryonic day 12. Within the dentate gyrus, its restriction to the inner terminal field of the molecular layer only occurs during the second postnatal week. In contrast, OM staining appears only sparsely and late in the prenatal brain, appearing in developing cortical white matter between embryonic days 18 and 20. The outer dentate molecular layer becomes OM-positive from birth onwards, corresponding to the time of arrival of entorhinal axons during the first postnatal week. These two groups of monoclonal antibodies recognize a number of different glycoproteins. Ultrastructural immunohistochemistry shows they are cell surface molecules, and as such may be involved in the recognition events required for the establishment of specific patterns of neuronal connectivity.
Collapse
Affiliation(s)
- P L Woodhams
- Norman and Sadie Lee Research Centre, National Institute for Medical Research, London, U.K
| | | | | | | | | | | |
Collapse
|