1
|
Wakabayashi-Nakao K, Maruyama K, Ishii H, Muramatsu K, Hatakeyama K, Ohshima K, Ogura SI, Nakajima T, Yamaguchi K, Mochizuki T. Investigation of proNT/NMN secretion from small cell lung carcinoma cells using a mouse xenograft model. Oncol Rep 2012; 28:1181-6. [PMID: 22825476 DOI: 10.3892/or.2012.1926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/04/2012] [Indexed: 11/05/2022] Open
Abstract
Proneurotensin/neuromedin N (proNT/NMN), the precursor of neurotensin (NT) and neuromedin N (NMN), is produced by cancer tissues derived from the pancreas and colon. NT stimulates tumor growth and proliferation through its receptors; however, little is known about the precursor molecule in cancer tissues. We previously demonstrated that proNT/NMN is secreted from small cell lung carcinoma (SCLC) cell lines in serum-free conditioned medium, but not from non-small cell lung carcinoma (NSCLC) cell lines. It was suggested that this precursor may serve as a tumor marker for SCLC. In this study, we established in vivo xenograft models to evaluate the possibility of proNT/NMN as a specific tumor marker. SBC3 cells, derived from human SCLC, were inoculated into mice, and the proNT/NMN levels in plasma and tumor tissues were detected using specific antibodies. In contrast to control mouse plasma, the proNT/NMN levels in tumor-bearing mice increased as the tumors grew, and the elevated plasma proNT/NMN levels were decreased by tumor resection. Moreover, proNT/NMN was expressed in SBC3 tumors, suggesting that proNT/NMN was secreted into blood from the tumor, and this secretion may be specific to SCLC.
Collapse
Affiliation(s)
- Kanako Wakabayashi-Nakao
- Medical Genetics Division, Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Neurotensin and neuromedin N are differentially processed from a common precursor by prohormone convertases in tissues and cell lines. Results Probl Cell Differ 2010. [PMID: 19862492 DOI: 10.1007/400_2009_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six amino acid NT-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys-Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by specialized endoproteases that belong to the family of proprotein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys-Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Processing gives rise mainly to NT and NN in the brain, NT and a large peptide with a C-terminal NN moiety (large NN) in the gut, and NT, large NN, and a large peptide with a C-terminal NT moiety (large NT) in the adrenals. Recent evidence indicates that PC1, PC2, and PC5-A are the prohormone convertases responsible for the processing patterns observed in the gut, brain, and adrenals, respectively. As NT, NN, large NT, and large NN are all endowed with biological activity, the evidence reviewed here supports the idea that posttranslational processing of pro-NT/NN in tissues may generate biological diversity of pathophysiological relevance.
Collapse
|
3
|
Kitabgi P. Differential processing of pro-neurotensin/neuromedin N and relationship to pro-hormone convertases. Peptides 2006; 27:2508-14. [PMID: 16904237 DOI: 10.1016/j.peptides.2006.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 03/09/2006] [Indexed: 12/29/2022]
Abstract
Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six amino acid neurotensin-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys-Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by endoproteases that belong to the recently identified family of pro-protein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys-Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Pro-NT/NN processing gives rise mainly to NT and NN in the brain, to NT and a large peptide ending with the NN sequence at its C-terminus (large NN) in the gut and to NT, large NN and a large peptide ending with the NT sequence (large NT) in the adrenals. Recent evidence indicates that PC1, PC2 and PC5-A are the pro-hormone convertases responsible for the processing patterns observed in the gut, brain and adrenals, respectively. As NT, NN, large NT and large NN are all endowed with biological activity, the evidence reviewed here supports the idea that post-translational processing of pro-NT/NN in tissues may generate biological diversity.
Collapse
Affiliation(s)
- Patrick Kitabgi
- INSERM U732, Université Pierre et Marie Curie, Hopital St. Antoine, 184 rue du Faubourg St. Antoine, 75571 Paris Cedex 12, France.
| |
Collapse
|
4
|
Ernst A, Hellmich S, Bergmann A. Proneurotensin 1-117, a stable neurotensin precursor fragment identified in human circulation. Peptides 2006; 27:1787-93. [PMID: 16519961 DOI: 10.1016/j.peptides.2006.01.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/30/2022]
Abstract
Proneurotensin/neuromedin N (pro NT/NMN) is the common precursor of two biologically active peptides, neurotensin (NT) and neuromedin N (NMN). We have established antibodies against peptide sequences of the NT/NMN precursor and developed a sandwich immunoassay for the detection of pro NT/NMN immunoreactivity in human circulation. Endogenous pro NT/NMN immunoreactivity was enriched by affinity chromatography using antibodies against two different pro NT/NMN epitopes, and further purified by reversed phase HPLC. Mass spectrometry analysis revealed pro NT/NMN 1-117 as major pro NT/NMN immunoreactivity in human circulation. Pro NT/NMN 1-117 is detectable in serum from healthy individuals (n = 124; median 338.9 pmol/L). As known for NT, the release of pro NT/NMN 1-117 from the intestine into the circulation is stimulated by ingestion of an ordinary meal. Investigation of the pro NT/NMN 1-117 in vitro stability in human serum and plasma revealed that this molecule is stable for at least 48 h at room temperature. Since pro NT/NMN 1-117 is theoretically produced during precursor processing in stoichiometric amounts relative to NT and NMN, it could be a surrogate marker for the release of these bioactive peptides.
Collapse
Affiliation(s)
- A Ernst
- SphingoTec GmbH, Tulpenweg 6, D-16556 Borgsdorf, Germany.
| | | | | |
Collapse
|
5
|
Kitabgi P. Prohormone convertases differentially process pro-neurotensin/neuromedin N in tissues and cell lines. J Mol Med (Berl) 2006; 84:628-34. [PMID: 16688434 DOI: 10.1007/s00109-006-0044-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 12/22/2005] [Accepted: 01/04/2006] [Indexed: 11/29/2022]
Abstract
Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six-amino acid neurotensin-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys-Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by specialized endoproteases that belong to the family of proprotein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys-Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Processing gives rise mainly to NT and NN in the brain, to NT and a large peptide with a C-terminal NN moiety (large NN) in the gut, and to NT, large NN, and a large peptide with a C-terminal NT moiety (large NT) in the adrenals. Recent evidence indicates that PC1, PC2, and PC5-A are the prohormone convertases responsible for the processing patterns observed in the gut, brain, and adrenals, respectively. As NT, NN, large NT, and large NN are all endowed with biological activity, the evidence reviewed in this paper supports the idea that posttranslational processing of pro-NT/NN in tissues may generate biological diversity of pathophysiological relevance.
Collapse
Affiliation(s)
- Patrick Kitabgi
- INSERM U732, Hopital St-Antoine, 184 rue du Faubourg St-Antoine, 75571 PARIS CEDEX 12, France.
| |
Collapse
|
6
|
Villeneuve P, Feliciangeli S, Croissandeau G, Seidah NG, Mbikay M, Kitabgi P, Beaudet A. Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study. J Neurochem 2002; 82:783-93. [PMID: 12358783 DOI: 10.1046/j.1471-4159.2002.00988.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotensin (NT) and neuromedin N (NN) are generated by endoproteolytic cleavage of a common precursor molecule, pro-NT/NN. To gain insight into the role of prohormone convertases PC1, PC2, and PC7 in this process, we investigated the maturation of pro-NT/NN in the brain of PC7 (PC7-/-), PC2 (PC2-/-), and/or PC1 (PC1+/- and PC2-/-; PC1+/-) knock down mice. Inactivation of the PC7 gene was without effect, suggesting that this convertase is not involved in the processing of pro-NT/NN. By contrast, there was a 15% decrease in NT and a 50% decrease in NN levels, as measured by radioimmunoassay, in whole brain extracts from PC2 null as compared with wild type mice. Using immunohistochemistry, we found that this decrease in pro-NT/NN maturation products was uneven and that it was most pronounced in the medial preoptic area, lateral hypothalamus, and paraventricular hypothalamic nuclei. These results suggest that PC2 plays a critical role in the processing of pro-NT/NN in mouse brain and that its deficiency may be compensated to a regionally variable extent by other convertases. Previous data have suggested that PC1 might be subserving this role. However, there was no change in the maturation of pro-NT/NN in the brain of mice in which the PC1 gene had been partially inactivated, implying that complete PC1 knock down may be required for loss of function.
Collapse
Affiliation(s)
- Pierre Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Chapter VI Neurotensin receptors in the central nervous system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Feliciangeli S, Kitabgi P, Bidard JN. The role of dibasic residues in prohormone sorting to the regulated secretory pathway. A study with proneurotensin. J Biol Chem 2001; 276:6140-50. [PMID: 11104773 DOI: 10.1074/jbc.m009613200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which prohormone precursors are sorted to the regulated secretory pathway in neuroendocrine cells remain poorly understood. Here, we investigated the presence of sorting signal(s) in proneurotensin/neuromedin N. The precursor sequence starts with a long N-terminal domain followed by a Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin)-Lys-Arg- sequence and a short C-terminal tail. An additional Arg-Arg dibasic is contained within the neurotensin sequence. Mutated precursors were expressed in endocrine insulinoma cells and analyzed for their regulated secretion. Deletion mutants revealed that the N-terminal domain and the Lys-Arg-(C-terminal tail) sequence were not critical for precursor sorting to secretory granules. In contrast, the Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin) sequence contained essential sorting information. Point mutation of all three dibasic sites within this sequence abolished regulated secretion. However, keeping intact any one of the three dibasic sequences was sufficient to maintain regulated secretion. Finally, fusing the dibasic-containing C-terminal domain of the precursor to the C terminus of beta-lactamase, a bacterial enzyme that is constitutively secreted when expressed in neuroendocrine cells, resulted in efficient sorting of the fusion protein to secretory granules in insulinoma cells. We conclude that dibasic motifs within the neuropeptide domain of proneurotensin/neuromedin N constitute a necessary and sufficient signal for sorting proteins to the regulated secretory pathway.
Collapse
Affiliation(s)
- S Feliciangeli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UPR 411, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | |
Collapse
|
9
|
Villeneuve P, Lafortune L, Seidah NG, Kitabgi P, Beaudet A. Immunohistochemical evidence for the involvement of protein convertases 5A and 2 in the processing of pro-neurotensin in rat brain. J Comp Neurol 2000; 424:461-75. [PMID: 10906713 DOI: 10.1002/1096-9861(20000828)424:3<461::aid-cne5>3.0.co;2-j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neuropeptides/neurotransmitters neurotensin (NT) and neuromedin (NN) are synthesized by endoproteolytic cleavage of a common inactive precursor, pro-NT/NN. In vitro studies have suggested that the prohormone convertases PC5A and PC2 might both be involved in this process. In the present study, we used dual immunohistochemical techniques to determine whether either one or both of these two convertases were co-localized with pro-NT/NN maturation products and could therefore be involved in the physiological processing of this propeptide in rat brain. PC2-immunoreactive neurons were present in all regions immunopositive for NT. All but three regions expressing NT were also immunopositive for PC5A. Dual localization of NT with either convertase revealed that NT was extensively co-localized with both PC5A and PC2, albeit with regional differences. These results strongly suggest that PC5A and PC2 may play a key role in the maturation of pro-NT/NN in mammalian brain. The regional variability in NT/PC co-localization patterns may account for the region-specific maturation profiles previously reported for pro-NT/NN. The high degree of overlap between PC5A and PC2 in most NT-rich areas further suggests that these two convertases may act jointly to process pro-NT/NN. At the subcellular level, PC5A was largely co-localized with the mid-cisternae Golgi marker MG-160. By contrast, PC2 was almost completely excluded from MG-160-immunoreactive compartments. These results suggest that PC5A, which is particularly efficient at cleaving the two C-terminal-most dibasics of pro-NT/NN, may be acting as early as in the Golgi apparatus to release NT, whereas PC2, which is considerably more active than PC5A in cleaving the third C-terminal doublet, may be predominantly involved further distally along the secretory pathway to release NN.
Collapse
Affiliation(s)
- P Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
10
|
Barbero P, Rovère C, De Bie I, Seidah N, Beaudet A, Kitabgi P. PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells. J Biol Chem 1998; 273:25339-46. [PMID: 9738000 DOI: 10.1074/jbc.273.39.25339] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the members of the proprotein convertase (PC) family, PC1 and PC2 have well established roles as prohormone convertases. Another good candidate for this role is PC5-A that has been shown to be present in the regulated secretory pathway of certain neuroendocrine tissues, but evidence that it can process prohormones is lacking. To determine whether PC5-A could function as a prohormone convertase and to compare its cleavage specificity with that of PC1 and PC2, we stably transfected the rat pheochromocytoma PC12 cell line with PC5-A and analyzed the biosynthesis and subcellular localization of the enzyme, as well as its ability to process pro-neurotensin/neuromedin N (pro-NT/NN) into active peptides. Our data showed that in transfected PC12 cells, PC5-A was converted from its 126-kDa precursor form into a 117-kDa mature form and, to a lesser extent, into a C-terminally truncated 65-kDa form of the 117-kDa product. Metabolic and immunochemical studies showed that PC5-A was sorted to early compartments of the regulated secretory pathway where it colocalized with immunoreactive NT. Furthermore, pro-NT/NN was processed in these compartments according to a pattern that differed from that previously described in PC1- and PC2-transfected PC12 cells. This pattern resembled that previously reported for pro-NT/NN processing in the adrenal medulla, a tissue known to express high levels of PC5-A. Altogether, these data demonstrate for the first time the ability of PC5-A to function as a prohormone convertase in the regulated secretory pathway and suggest a role for this enzyme in the physiological processing of pro-NT/NN.
Collapse
Affiliation(s)
- P Barbero
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Université de Nice-Sophia Antipolis, Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
More than two decades of research indicate that the peptide neurotensin (NT) and its cognate receptors participate to a remarkable extent in the regulation of mammalian neuroendocrine systems, potentially at multiple levels in a given system. NT-synthesizing neurons appear to exert a direct or indirect stimulatory influence on neurosecretory cells that synthesize gonadotropin-releasing hormone, dopamine (DA), somatostatin, and corticotropin-releasing hormone (CRH). In addition, context-specific synthesis of NT occurs in hypothalamic neurosecretory cells located in the arcuate nucleus and parvocellular paraventricular nucleus, including distinct subsets of cells which release DA, CRH, or growth hormone-releasing hormone into the hypophysial portal circulation. At the level of the anterior pituitary, NT stimulates secretion of prolactin and occurs in subsets of gonadotropes and thyrotropes. Moreover, circulating hormones influence NT synthesis in the hypothalamus and anterior pituitary, raising the possibility that NT mediates certain feedback effects of the hormones on neuroendocrine cells. Gonadal steroids alter NT levels in the preoptic area, arcuate nucleus, and anterior pituitary; adrenal steroids alter NT levels in the hypothalamic periventricular nucleus and arcuate nucleus; and thyroid hormones alter NT levels in the hypothalamus and anterior pituitary. Finally, clarification of the specific neuroendocrine roles subserved by NT should be greatly facilitated by the use of newly developed agonists and antagonists of the peptide.
Collapse
Affiliation(s)
- W H Rostène
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | |
Collapse
|
12
|
Brog JS, Zahm DS. Morphologically distinct subpopulations of neurotensin-immunoreactive striatal neurons observed in rat following dopamine depletions and D2 receptor blockade project to the globus pallidus. Neuroscience 1996; 74:805-12. [PMID: 8884776 DOI: 10.1016/0306-4522(96)00166-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been reported in previous studies that perikaryal neurotensin immunoreactivity is largely absent in the rat striatum except following striatal dopamine depletion or blockade of dopamine D2 receptors, after which, however, neurotensin immunoreactivity is elicited in at least two distinct subpopulations of striatal neurons [Zahm D.S. (1992) Neuroscience 46, 335-350]. One subpopulation of such cells (type I), prominent following D2 receptor blockade, is located mainly in the matrix compartment in the rostral, dorsomedial and ventrolateral parts of the striatum, and comprises neurons at the large end of the medium-sized spectrum that exhibit intense neurotensin immunoreactivity in perikarya and proximal dendrites, but rarely display Fos immunoreactivity [Senger B. et al. (1993) Neuroscience 57, 649-660]. A second subpopulation (type II) resides predominantly in the patch (striosome) and matrix compartments in the dorsolateral quadrant of the striatum, and is prominent following administration of reserpine. These neurons are at the small end of the medium size range and exhibit very light neurotensin immunoreactivity, with little staining of dendrites. Fos immunoreactivity is frequently co-localized in striatal neurons that exhibit a type II striatal neurotensin response [Brog J.S. and Zahm D.S. (1995) Neuroscience 65, 71-86]. In the current study, neurotensin immunoreactivity was elicited in striatal neurons by ventral mesencephalic 6-hydroxydopamine lesions or administration of reserpine or haloperidol. Irrespective of which drug was given, retrogradely transported Fluoro-Gold was prominently co-localized with neurotensin-like immunofluorescence in the perikarya of striatal neurons following injections of the retrograde tracer into the globus pallidus. Few double-labeled neurons were observed following administration of any of these drugs and injections of Fluoro-Gold into the substantia nigra. It is concluded that two subpopulations of neurotensin-immunoreactive striatal neurons project predominantly to the globus pallidus and minimally to the substantia nigra.
Collapse
Affiliation(s)
- J S Brog
- Department of Anatomy and Neurobiology, St Louis University School of Medicine, MO 63104, USA
| | | |
Collapse
|
13
|
Kilts CD, Knight DL, Nemeroff CB. The simultaneous determination of neurotensin and its major fragments by on-line trace enrichment HPLC with electrochemical detection. Life Sci 1996; 59:911-20. [PMID: 8795702 DOI: 10.1016/0024-3205(96)00389-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An HPLC assay using on-line cation exchange trace enrichment and acetonitrile gradient elution, ion pair reverse phase separation with electrochemical detection (EC) is described for the simultaneous determination of the tridecapeptide neurotensin (NT) and six of its fragments. Cyclic voltammetric analysis indicated that the oxidative electrochemical properties of NT and its fragments is not merely a function of the sum of its electroactive amino acids (i.e. tyrosine) but reflects the presence and association of other amino acids (e.g. the arginine-arginine pair at position 8-9). Using the described method, NT1-6, NT1-8, NT1-10, NT1-11, NT8-13, NT9-13 and NT1-13 were baseline resolved within 20 min with a limit of detection varying from 1 to 5 ng peptide/injection. Other structurally similar or quantitatively significant neuropeptides (e.g. substance P, somatostatin, bombesin) did not interfere. Initial application of this on-line trace enrichment HPLC-EC assay to the question of the molecular nature of NT in unprocessed human CSF indicated the predominance of NT1-13 with an apparent formation of NT1-8 and NT9-13 resulting from more vigorous sample preparation techniques. The improvements in assay specificity, signal-to-noise ratios, biomatrix compatibility and assayable sample volume compared to non-enrichment HPLC-EC are discussed.
Collapse
Affiliation(s)
- C D Kilts
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
14
|
Rovère C, Barbero P, Kitabgi P. Evidence that PC2 is the endogenous pro-neurotensin convertase in rMTC 6-23 cells and that PC1- and PC2-transfected PC12 cells differentially process pro-neurotensin. J Biol Chem 1996; 271:11368-75. [PMID: 8626691 DOI: 10.1074/jbc.271.19.11368] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The neuropeptide precursor proneurotensin/neuromedin N (pro-NT/NN) is mainly expressed and differentially processed in the brain and in the small intestine. We showed previously that rMTC 6-23 cells process pro-NT/NN with a pattern similar to brain tissue and increase pro-NT/NN expression in response to dexamethasone, and that PC12 cells also produce pro-NT/NN but are virtually unable to process it. In addition, PC12 cells were reported to be devoid of the prohormone convertases PC1 and PC2. The present study was designed to identify the proprotein convertase(s) (PC) involved in pro-NT/NN processing in rMTC 6-23 cells and to compare PC1- and PC2-transfected PC12 cells for their ability to process pro-NT/NN. rMTC 6-23 cells were devoid of PC1, PC4, and PC5 but expressed furin and PC2. Stable expression of antisense PC2 RNA in rMTC 6-23 cells led to a 90% decrease in PC2 protein levels that correlated with a > 80% reduction of pro-NT/NN processing. PC2 expression was stimulated by dexamethasone in a time- and concentration-dependent manner. Stable PC12/PC2 transfectants processed pro-NT/NN with a pattern similar to that observed in the brain and in rMTC 6-23 cells. In contrast, stable PC12/PC1 transfectants reproduced the pro-NT/NN processing pattern seen in the gut. We conclude that (i) PC2 is the major pro-NT/NN convertase in rMTC 6-23 cells; (ii) its expression is coregulated with that of pro-NT/NN in this cell line; and (iii) PC2 and PC1 differentially process pro-NT/NN with brain and intestinal phenotype, respectively.
Collapse
Affiliation(s)
- C Rovère
- Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Université de Nice-Sophia Antipolis, Valbonne, France
| | | | | |
Collapse
|
15
|
Camby I, Salmon I, Bourdel E, Nagy N, Danguy A, Brotchi J, Pasteels JL, Martinez J, Kiss R. Neurotensin-mediated effects on astrocytic tumor cell proliferation. Neuropeptides 1996; 30:133-9. [PMID: 8771555 DOI: 10.1016/s0143-4179(96)90080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotensin (NT) and neurotensin receptors (NTRs) are widely found in the brain, NT may be considered as a mitogen factor in some tissues. However, no NT-mediated effects on glioma cell proliferation have been reported so far. In our present study we investigated the influence of NT on the proliferation of astrocytic tumor cell lines. To this end we used a synthetic NT agonist (JMV-449), a protease inhibitor which blocks the natural degradation of NT (JMV-531), and NT. The in vitro biological models used in the present study included the low grade SW1088, and the high grade U87, U373 and A172 astrocytic tumor cell lines. The peptide-induced influence on astrocytic tumor cell proliferation was investigated by means of the colorimetric MTT assay. Our results show that the NT and the NT agonist significantly stimulated the proliferation in 2/4 and 3/4 of the astrocytic cell lines respectively. Similarly, compound JMV-531 also induced an increase in the proliferation of 2/4 of the astrocytic cell lines. This marked influence of the NT and NT agonists, or the enzyme-endogenous prevention of its degradation on the regulation of astrocytic tumor growth therefore suggests that NT antagonists might be used to treat certain patients with high grade astrocytic tumors that do not respond to chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- I Camby
- Laboratoire d'Histologie, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nicot A, Bidard JN, Kitabgi P, Lhiaubet AM, Masuo Y, Palkovits M, Rostène W, Bérod A. Neurotensin and neuromedin N brain levels after fornix transection: evidence for an efficient neurotensin precursor processing in subicular neurons. Brain Res 1995; 702:279-83. [PMID: 8846090 DOI: 10.1016/0006-8993(95)01083-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High levels of neurotensin/neuromedin N precursor mRNA, but few if any NT-positive perikarya have been detected in the dorsal subiculum of the adult rat or human hippocampus. This apparent discrepancy was tentatively ascribed to a lack of precursor mRNA translation or to a poor precursor posttranslational processing in neurons of the hippocampus. Another hypothesis is that in long neuronal pathways, maturation of neuropeptide precursors and derived peptides occurs during axonal transport to terminals, a process which accounts for the lack of peptide detection in cell bodies. In order to test this hypothesis, we performed surgical transection of the fornix to interrupt axonal transport of putative NT/NN products arising from the dorsal hippocampus and measured NT and NN levels in different brain regions. In the mamillary bodies, the main projection area of the dorsal subiculum, NN and NT levels were highly reduced 4 or 14 days after the septo-hippocampal transection which was correlated with a slight increase in NN and NT levels in the dorsal hippocampus and the retrosplenial cortex of 4 days lesioned animals. An increase in hypothalamic NN levels was also detected 14 days after the lesion. These data suggest that the peptide precursor processing can take place during the axonal transport, as shown here for neurotensin and neuromedin N from subicular neurons to their efferent brain areas such as the mamillary bodies.
Collapse
Affiliation(s)
- A Nicot
- INSERM U339, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Woulfe J, Lafortune L, de Nadai F, Kitabgi P, Beaudet A. Post-translational processing of the neurotensin/neuromedin N precursor in the central nervous system of the rat--II. Immunohistochemical localization of maturation products. Neuroscience 1994; 60:167-81. [PMID: 8052410 DOI: 10.1016/0306-4522(94)90212-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neurotensin/neuromedin N precursor molecule possesses four lysine-arginine dibasic residues which represent potential sites of cleavage by proteolytic maturation enzymes. As shown in the preceding paper, all of these dibasic residues are cleaved to a variable extent in rat brain. The aim of the present study was to localize immunohistochemically the resulting maturation products using site-specific antibodies directed against neurotensin, as well as against the exposed KLPLVL (K6L) and EKEEVI (E6I) sequences of the precursor. In a first set of experiments, each antigen was singly labelled in serial adjacent sections through the rat brain using a peroxidase-antiperoxidase technique. In a second series of experiments, neurotensin and either E61 or K6L antigens were double labelled in pairs using indirect immunofluorescence and visualized by confocal microscopy. In both types of preparations, immunoreactivity for all three antigens was detected in nerve cell bodies and axon terminals. In the absence of colchicine pretreatment, labelled nerve cell bodies were sparse in both neurotensin- and E6I-immunostained material and virtually undetectable in K6L-immunoreacted sections. By contrast, terminal immunostaining was intense and comparable in distribution for both neurotensin and E6I in most regions examined. K6L axonal labelling showed the same topographic pattern as that of E6I and neurotensin but was consistently weaker, except in the globus pallidus, where both E6I- and K6L-immunoreactive arbors were more widespread than those of neurotensin. These results suggest that the cleavage of the dibasic sites adjacent to the E6I and K6L sequences is more extensive in certain brain regions than in others. Colchicine pretreatment markedly increased the number of neurotensin- and, to a lesser extent. E6I-immunoreactive perikarya throughout the rat brain. However, it only marginally augmented the number of K6L-immunoreactive cell bodies, which remained sparse throughout. These results suggest that the maturation cleavages exposing the E6I and K6L sequences occur further distal to the cell body than the one giving rise to neurotensin. Both E6I- and K6L-immunoreactive perikarya were essentially confined to areas displaying neurotensin immunoreactivity. Furthermore, E6I and K6L antigens were shown in double labeling experiments to be present in the same cells as neurotensin, indicating that even if it is quantitatively different among brain regions, the basic pattern of neurotensin/neuromedin N precursor processing remains qualitatively similar throughout the brain.
Collapse
Affiliation(s)
- J Woulfe
- Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | | | |
Collapse
|