1
|
Fonseca-Fonseca LA, Taño Portuondo LR, Ramírez-Sánchez J, Pavón Fuentes N, Mondelo Rodríguez A, Amaral da Silva VD, Lima Costa S, Núñez-Figueredo Y. JM-20 administration to animals with lesion of the nigrostriatal dopamine pathway induced by 6-hydroxydopamine, partially reverses motor damage and oxidative stress. Neurol Res 2025:1-10. [PMID: 40217565 DOI: 10.1080/01616412.2025.2490089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/31/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Previous studies have shown that JM-20, a new chemical hybrid molecule, protects against rotenone and 6-hydroxydopamine (6-OHDA) neurotoxicity. Also, we demonstrated that JM-20 inhibit the formation of toxic alpha-synuclein aggregated species and aminochrome cytotoxicity. OBJECTIVE The present study sought to determine the neuroprotective property of JM-20 in animals with a partial lesion of the nigrostriatal dopamine pathway induced by 6-OHDA. METHODS For in vivo studies, adult male Wistar rats were lesioned in the right substantia nigra pars compacta (SNpc) with a 6-OHDA administration. Fifteen days after surgery, the animal's asymmetry levels were assessed. Those with asymmetry values higher than 50% were divided into two groups: animals that did not receive any treatment and those that were administered with JM-20 (40 mg/kg, intragastric via gavage) for 27 days. Every 7 days, the asymmetry values of the animals were analyzed until day 42 after the surgery. At the end of the experiment, the animals were euthanized, and the SNpc and striatum were taken out for the analysis of oxidative stress. RESULTS Our results reveal a behavioral function progressively recovered in the JM-20-treated animals, diminishing the percentage of motor asymmetry. Also, it improves some oxidative stress markers in the SNpc and the striatum of these animals. CONCLUSION Our study provides the preclinical evidence to support the long-term neuroprotective potential of JM-20 in 6-OHDA hemiparkinson rat model, pointing out to its possible use as a disease-modifying agent in PD.
Collapse
Affiliation(s)
- Luis Arturo Fonseca-Fonseca
- Laboratory of Experimental Neuropharmacology, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), La Habana, Cuba
| | - Laura Reina Taño Portuondo
- Laboratory of Experimental Neuropharmacology, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), La Habana, Cuba
- Universidad Autónoma de Yucatán, Mérida, México
| | - Jeney Ramírez-Sánchez
- Laboratory of Experimental Neuropharmacology, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), La Habana, Cuba
| | | | - Abel Mondelo Rodríguez
- Laboratory of Experimental Neuropharmacology, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), La Habana, Cuba
| | - Víctor Diogenes Amaral da Silva
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador Bahia, Brazil
| | - Silvia Lima Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador Bahia, Brazil
| | - Yanier Núñez-Figueredo
- Laboratory of Experimental Neuropharmacology, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), La Habana, Cuba
| |
Collapse
|
2
|
Tieu K, Salehe SS, Brown HJ. Toxin-Induced Animal Models of Parkinson's Disease. Cold Spring Harb Perspect Med 2025; 15:a041643. [PMID: 38951030 PMCID: PMC11875089 DOI: 10.1101/cshperspect.a041643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The debilitating motor symptoms of Parkinson's disease (PD) result primarily from the degenerative nigrostriatal dopaminergic pathway. To elucidate pathogenic mechanisms and evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. Herein, we systematically review the literature over the past decade. Some models no longer serve the purpose of PD models. The primary objectives of this review are: First, to assist new investigators in navigating through available animal models and making appropriate selections based on the objective of the study. Emphasis will be placed on common toxin-induced murine models. And second, to provide an overview of basic technical requirements for assessing the nigrostriatal pathway's pathology, structure, and function.
Collapse
Affiliation(s)
- Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, Florida 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, USA
| | - Said S Salehe
- Department of Environmental Health Sciences, Florida International University, Miami, Florida 33199, USA
| | - Harry J Brown
- Department of Environmental Health Sciences, Florida International University, Miami, Florida 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
3
|
Salvadè M, DiLuca M, Gardoni F. An update on drug repurposing in Parkinson's disease: Preclinical and clinical considerations. Biomed Pharmacother 2025; 183:117862. [PMID: 39842271 DOI: 10.1016/j.biopha.2025.117862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025] Open
Abstract
The strategy of drug repositioning has historically played a significant role in the identification of new treatments for Parkinson's disease. Still today, numerous clinical and preclinical studies are investigating drug classes, already marketed for the treatment of metabolic disorders, for their potential use in Parkinson's disease patients. While drug repurposing offers a promising, fast, and cost-effective path to new treatments, these drugs still require thorough preclinical evaluation to assess their efficacy, addressing the specific neurodegenerative mechanisms of the disease. This review explores the state-of-the-art approaches to drug repurposing for Parkinson's disease, highlighting particularly relevant aspects. Preclinical studies still predominantly rely on traditional neurotoxin-based animal models, which fail to effectively replicate disease progression and are characterized by significant variability in model severity and timing of drug treatment. Importantly, for almost all the drugs analyzed here, there is insufficient data regarding the mechanism of action responsible for the therapeutic effect. Regarding drug efficacy, these factors may obviously render results less reliable or comparable. Accordingly, future preclinical drug repurposing studies in the Parkinson's disease field should be carried out using next-generation animal models like α-synuclein-based models that, unfortunately, have to date been used mostly for studies of disease pathogenesis and only rarely in pharmacological studies.
Collapse
Affiliation(s)
- Michela Salvadè
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy; School of Advanced Studies, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Zheng H, He R, Ming Y, He H, Wang W, Chen L, Gong F. Behavior Changes in Quinpirole Obsessive-Compulsive Disorder Rats Treated with 6-Hydroxydopamine and the Corresponding Dopaminergic Compulsive Loop Mechanism. J Integr Neurosci 2025; 24:25840. [PMID: 39862015 DOI: 10.31083/jin25840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule. METHODS A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.5 mg/kg, n = 46) twice weekly for 5 weeks. After each injection, the rats were placed on an open field to analyze aspects of their behaviour, including the number of home base visits (NOH), average time between each home base visit (ATBO), and total distance travelled (TDM). After model setup, 46 QNP rats were divided randomly into five groups: 6-OHDA anterior limb of internal capsule (AC) stereotactic injection group (QNP+AC group, n = 10), 6-OHDA mediodorsal thalamic nucleus (MD) stereotactic injection group (QNP+MD group, n = 10), 6-OHDA nucleus accumbens (NAC) stereotactic injection group (QNP+NAC group, n = 10), saline stereotactic injection group (QNP+NS-S group, n = 10), and non-surgical group (QNP+Non-S group, n = 6). In the NS group, rats simultaneously received a 6-OHDA stereotactic injection (NS+6-OHDA-S group, n = 6: AC2, MD2, NAC2). All QNP-treated rats were then continued to be given QNP twice a week for 4 weeks, and their behaviour was observed after each infusion. After 4 weeks, immunofluorescence staining was used to monitor the distribution of dopamine neurons and nerve fibers in different areas of the intervention nerve loops, and quantitative analysis was performed. RESULTS Compulsive behaviour declined gradually in the QNP+AC and QNP+NAC groups 3 and 4 weeks after surgery, with the QNP+AC group decreasing more rapidly. The QNP+MD group had decreased by 3 weeks after surgery but increased to almost the same level as pre-surgery at 4 weeks post-surgery. Postoperative fluorescence staining and quantitative analysis suggested the number of dopamine (DA) neurons or nerve fibers in the corresponding target area of the 6-OHDA injection were significantly reduced compared with the QNP+Non-S group. CONCLUSIONS 6-OHDA selectively damages the targets of dopaminergic neurons or nerve fibers within the OCD loop, which somewhat alleviates compulsive behaviours. The results suggest that the AC might be the best target for therapeutic interventions for OCD.
Collapse
Affiliation(s)
- Haowen Zheng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Rui He
- Department of Gerontology, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Haiping He
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 610000 Chengdu, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Feilong Gong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
5
|
Chen J, Volkmann J, Ip CW. A framework for translational therapy development in deep brain stimulation. NPJ Parkinsons Dis 2024; 10:216. [PMID: 39516465 PMCID: PMC11549317 DOI: 10.1038/s41531-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for motor disorders like Parkinson's disease, but its mechanisms and effects on neurons and networks are not fully understood, limiting research-driven progress. This review presents a framework that combines neurophysiological insights and translational research to enhance DBS therapy, emphasizing biomarkers, device technology, and symptom-specific neuromodulation. It also examines the role of animal research in improving DBS, while acknowledging challenges in clinical translation.
Collapse
Affiliation(s)
- Jiazhi Chen
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
6
|
Guimarães RP, de Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. Int J Mol Sci 2024; 25:8971. [PMID: 39201659 PMCID: PMC11354451 DOI: 10.3390/ijms25168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Current drugs only alleviate symptoms without halting disease progression, making rodent models essential for researching new therapies and understanding the disease better. However, selecting the right model is challenging due to the numerous models and protocols available. Key factors in model selection include construct, face, and predictive validity. Construct validity ensures the model replicates pathological changes seen in human PD, focusing on dopaminergic neurodegeneration and a-synuclein aggregation. Face validity ensures the model's symptoms mirror those in humans, primarily reproducing motor and non-motor symptoms. Predictive validity assesses if treatment responses in animals will reflect those in humans, typically involving classical pharmacotherapies and surgical procedures. This review highlights the primary characteristics of PD and how these characteristics are validated experimentally according to the three criteria. Additionally, it serves as a valuable tool for researchers in selecting the most appropriate animal model based on established validation criteria.
Collapse
Affiliation(s)
- Rayanne Poletti Guimarães
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Maria Clara Souza de Resende
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Mesquita Tavares
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Caio Belardinelli de Azevedo
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Cesar Merino Ruiz
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
- Neurological Rehabilitation Unit, Sarah Network of Rehabilitation Hospitals, Brasília 70335-901, Brazil
| | - Márcia Renata Mortari
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| |
Collapse
|
7
|
Kim MS, Kim H, Lee G. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Adv Healthc Mater 2024; 13:e2303041. [PMID: 38269602 DOI: 10.1002/adhm.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is one of the most devastating neurological diseases; however, there is no effective cure yet. The availability of human induced pluripotent stem cells (iPSCs) provides unprecedented opportunities to understand the pathogenic mechanism and identification of new therapy for PD. Here a new model system of PD, including 2D human iPSC-derived midbrain dopaminergic (mDA) neurons, 3D iPSC-derived midbrain organoids (MOs) with cellular complexity, and more advanced microphysiological systems (MPS) with 3D organoids, is introduced. It is believed that successful integrations and applications of iPSC, organoid, and MPS technologies can bring new insight on PD's pathogenesis that will lead to more effective treatments for this debilitating disease.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Javid H, Rahimian R, Salimi M, Haghani-Samani E, Farhadi M, Torkaman-Boutorabi A. Fumaria vaillantii extract protects PC12 cells against neurotoxicity induced by 6-OHDA. Mol Biol Rep 2024; 51:768. [PMID: 38884894 DOI: 10.1007/s11033-024-09673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Parkinson's disease is a neurological disorder caused by the loss of dopaminergic neurons in the midbrain. Various mechanisms are involved in the incidence of the disease including oxidative stress. Several herbs and natural products may interfere with the oxidative-stress pathway due to their antioxidant effects. OBJECTIVE Herein, we aimed to investigate the neuroprotective role of F. vaillantii extract on Parkinson's in vitro and in vivo model owing to the presence of the bioactive agents with antioxidant properties. METHODS In vitro experments showed that 6-hydroxydopamine could induce toxicity in PC12 cells. The impact of F. vaillantii extract on cell viability was measured by using MTT assay. Nuclear morphological changes were qualitatively evaluated employing Hoechst staining. The antioxidant activity of the extract was determined by ROS and lipid peroxidation assays. Tyrosine hydroxylase protein expression was measured by western blotting in PC12 cells. For in vivo study, movement parameters were evaluated. RESULTS The results indicated that 75 µΜ of 6-OHDA induced 50% toxicity in PC12 cells for 24 h. Following post-treatment with F. vaillantii extract (0.1 mg/ml) for 72 h, we observed that the extract effectively prevented cell toxicity induced by 6-OHDA and reduced the apoptotic cell population. Furthermore, the extract attenuated the ROS level, lipid peroxidation and increased protein expression of TH after 72 h of treatment. In addition, oral administration of 300 mg/kg of F. vaillantii extract for 14 days improved locomotor activity, catalepsy, bradykinesia, motor coordination and reduced the apomorphine-caused rotation in 6-OHDA- induced Parkinson's disease-like symptoms in male rats. CONCLUSION The present study suggests a protective role for the extract of F. vaillantii against oxidative stress-induced cell damage in the PC12 cells exposed to neurotoxin 6-OHDA which was verified in in vivo model by reducing the motor defects induced by 6-OHDA. This extract could be a promising therapeutic agent for the prevention of PD progression.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran
| | - Rana Rahimian
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Misha Salimi
- Department of Biology, Faculty of Converging Sciences and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Haghani-Samani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran
| | - Mona Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran.
- Research Center for Cognitive and Behavioral Studies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Benítez-Castañeda A, Anaya-Martínez V, Espadas-Alvarez ADJ, Gutierrez-Váldez AL, Razgado-Hernández LF, Reyna-Velazquez PE, Quintero-Macias L, Martínez-Fong D, Florán-Garduño B, Aceves J. Transfection of the BDNF Gene in the Surviving Dopamine Neurons in Conjunction with Continuous Administration of Pramipexole Restores Normal Motor Behavior in a Bilateral Rat Model of Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:3885451. [PMID: 38419644 PMCID: PMC10901579 DOI: 10.1155/2024/3885451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
In Parkinson's disease (PD), progressive degeneration of nigrostriatal innervation leads to atrophy and loss of dendritic spines of striatal medium spiny neurons (MSNs). The loss disrupts corticostriatal transmission, impairs motor behavior, and produces nonmotor symptoms. Nigral neurons express brain-derived neurotropic factor (BDNF) and dopamine D3 receptors, both protecting the dopamine neurons and the spines of MSNs. To restore motor and nonmotor symptoms to normality, we assessed a combined therapy in a bilateral rat Parkinson's model, with only 30% of surviving neurons. The preferential D3 agonist pramipexole (PPX) was infused for four ½ months via mini-osmotic pumps and one month after PPX initiation; the BDNF-gene was transfected into the surviving nigral cells using the nonviral transfection NTS-polyplex vector. Overexpression of the BDNF-gene associated with continuous PPX infusion restored motor coordination, balance, normal gait, and working memory. Recovery was also related to the restoration of the average number of dendritic spines of the striatal projection neurons and the number of TH-positive neurons of the substantia nigra and ventral tegmental area. These positive results could pave the way for further clinical research into this promising therapy.
Collapse
Affiliation(s)
- Alina Benítez-Castañeda
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | | | | | | | | | - Liz Quintero-Macias
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Daniel Martínez-Fong
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Benjamín Florán-Garduño
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jorge Aceves
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
10
|
Alsina-Llanes M, Olazábal DE. NMDA- and 6-OHDA-induced Lesions in the Nucleus Accumbens Differently Affect Maternal and Infanticidal Behavior in Pup-naïve Female and Male Mice. Neuroscience 2024; 539:35-50. [PMID: 38176609 DOI: 10.1016/j.neuroscience.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Virgin and pups-naïve female and male adult mice display two opposite responses when they are exposed to pups for the first time. While females generally take care of the pups, males attack them. Since the nucleus accumbens (NA), and its dopaminergic modulation, is critical in integrating information and processing reward and aversion, we investigated if NMDA- and 6-OHDA-induced lesions, damaging mostly NA output and dopaminergic inputs respectively, affected female maternal behavior (MB) or male infanticidal behavior (IB) in mice. Our results revealed minor or no effects of both smaller and larger NMDA-induced lesions in MB and IB. On the other hand, while 6-OHDA-induced lesions in females reduced the incidence of full MB (12.5% 6-OHDA vs. 85.7% SHAM) increasing the latency to retrieve the pups, those lesions did not affect IB in males. There were no differences in locomotor and exploratory activity between the lesioned- and SHAM- females. Despite those lesions did not induce any major effect on IB, NMDA-lesioned males spent less time in the central area of an open field, while dopaminergic-lesioned males showed reduced number of rearing and peripheral crosses. The current study shows that an intact NA is not necessary for the expression of MB and IB. However, dopaminergic inputs to NA play different role in MB and IB. While damaging dopaminergic terminals into the NA did not affect IB, it clearly delayed the more flexible and rewarding expression of parental behavior.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR. Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
11
|
McMillen A, Chew Y. Neural mechanisms of dopamine function in learning and memory in Caenorhabditis elegans. Neuronal Signal 2024; 8:NS20230057. [PMID: 38572143 PMCID: PMC10987485 DOI: 10.1042/ns20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 04/05/2024] Open
Abstract
Research into learning and memory over the past decades has revealed key neurotransmitters that regulate these processes, many of which are evolutionarily conserved across diverse species. The monoamine neurotransmitter dopamine is one example of this, with countless studies demonstrating its importance in regulating behavioural plasticity. However, dopaminergic neural networks in the mammalian brain consist of hundreds or thousands of neurons, and thus cannot be studied at the level of single neurons acting within defined neural circuits. The nematode Caenorhabditis elegans (C. elegans) has an experimentally tractable nervous system with a completely characterized synaptic connectome. This makes it an advantageous system to undertake mechanistic studies into how dopamine encodes lasting yet flexible behavioural plasticity in the nervous system. In this review, we synthesize the research to date exploring the importance of dopaminergic signalling in learning, memory formation, and forgetting, focusing on research in C. elegans. We also explore the potential for dopamine-specific fluorescent biosensors in C. elegans to visualize dopaminergic neural circuits during learning and memory formation in real-time. We propose that the use of these sensors in C. elegans, in combination with optogenetic and other light-based approaches, will further illuminate the detailed spatiotemporal requirements for encoding behavioural plasticity in an accessible experimental system. Understanding the key molecules and circuit mechanisms that regulate learning and forgetting in more compact invertebrate nervous systems may reveal new druggable targets for enhancing memory storage and delaying memory loss in bigger brains.
Collapse
Affiliation(s)
- Anna McMillen
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Yee Lian Chew
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
12
|
Chaudhary R, Singh R. Therapeutic Viewpoint on Rat Models of Locomotion Abnormalities and Neurobiological Indicators in Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:488-503. [PMID: 37202886 DOI: 10.2174/1871527322666230518111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Locomotion problems in Parkinson's syndrome are still a research and treatment difficulty. With the recent introduction of brain stimulation or neuromodulation equipment that is sufficient to monitor activity in the brain using electrodes placed on the scalp, new locomotion investigations in patients having the capacity to move freely have sprung up. OBJECTIVE This study aimed to find rat models and locomotion-connected neuronal indicators and use them all over a closed-loop system to enhance the future and present treatment options available for Parkinson's disease. METHODS Various publications on locomotor abnormalities, Parkinson's disease, animal models, and other topics have been searched using several search engines, such as Google Scholar, Web of Science, Research Gate, and PubMed. RESULTS Based on the literature, we can conclude that animal models are used for further investigating the locomotion connectivity deficiencies of many biological measuring devices and attempting to address unanswered concerns from clinical and non-clinical research. However, translational validity is required for rat models to contribute to the improvement of upcoming neurostimulation-based medicines. This review discusses the most successful methods for modelling Parkinson's locomotion in rats. CONCLUSION This review article has examined how scientific clinical experiments lead to localised central nervous system injuries in rats, as well as how the associated motor deficits and connection oscillations reflect this. This evolutionary process of therapeutic interventions may help to improve locomotion- based treatment and management of Parkinson's syndrome in the upcoming years.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
13
|
Narváez-Pérez LF, Paz-Bermúdez F, Avalos-Fuentes JA, Campos-Romo A, Florán-Garduño B, Segovia J. CRISPR/sgRNA-directed synergistic activation mediator (SAM) as a therapeutic tool for Parkinson´s disease. Gene Ther 2024; 31:31-44. [PMID: 37542151 PMCID: PMC10788271 DOI: 10.1038/s41434-023-00414-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Parkinson`s disease (PD) is the second most prevalent neurodegenerative disease, and different gene therapy strategies have been used as experimental treatments. As a proof-of-concept for the treatment of PD, we used SAM, a CRISPR gene activation system, to activate the endogenous tyrosine hydroxylase gene (th) of astrocytes to produce dopamine (DA) in the striatum of 6-OHDA-lesioned rats. Potential sgRNAs within the rat th promoter region were tested, and the expression of the Th protein was determined in the C6 glial cell line. Employing pseudo-lentivirus, the SAM complex and the selected sgRNA were transferred into cultures of rat astrocytes, and gene expression and Th protein synthesis were ascertained; furthermore, DA release into the culture medium was determined by HPLC. The DA-producing astrocytes were implanted into the striatum of 6-OHDA hemiparkinsonian rats. We observed motor behavior improvement in the lesioned rats that received DA-astrocytes compared to lesioned rats receiving astrocytes that did not produce DA. Our data indicate that the SAM-induced expression of the astrocyte´s endogenous th gene can generate DA-producing astrocytes that effectively reduce the motor asymmetry induced by the lesion.
Collapse
Affiliation(s)
- Luis Fernando Narváez-Pérez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias, Facultad de Medicina, Instituto Nacional de Neurología y Neurocirugía "MVS", Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Benjamín Florán-Garduño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| |
Collapse
|
14
|
Statz M, Schleuter F, Weber H, Kober M, Plocksties F, Timmermann D, Storch A, Fauser M. Subthalamic nucleus deep brain stimulation does not alter growth factor expression in a rat model of stable dopaminergic deficiency. Neurosci Lett 2023; 814:137459. [PMID: 37625613 DOI: 10.1016/j.neulet.2023.137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been a highly effective treatment option for mid-to-late-stage Parkinson's disease (PD) for decades. Besides direct effects on brain networks, neuroprotective effects of STN-DBS - potentially via alterations of growth factor expression levels - have been proposed as additional mechanisms of action. OBJECTIVE In the context of clarifying DBS mechanisms, we analyzed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels in the basal ganglia, motor and parietal cortices, and dentate gyrus in an animal model of stable, severe dopaminergic deficiency. METHODS We applied one week of continuous unilateral STN-DBS in a group of stable 6-hydroxydopamine (6-OHDA) hemiparkinsonian rats (6-OHDASTIM) in comparison to a 6-OHDA control group (6-OHDASHAM) as well as healthy controls (CTRLSTIM and CTRLSHAM). BDNF and GDNF levels were determined via ELISAs. RESULTS The 6-OHDA lesion did not result in a persistent alteration in either BDNF or GDNF levels in a model of severe dopaminergic deficiency after completion of the dopaminergic degeneration. STN-DBS modestly increased BDNF levels in the entopeduncular nucleus, but even impaired BDNF and GDNF expression in cortical areas. CONCLUSIONS STN-DBS does not increase growth factor expression when applied to a model of completed, severe dopaminergic deficiency in contrast to other studies in models of modest and ongoing dopaminergic degeneration. In healthy controls, STN-DBS does not influence BDNF or GDNF expression. We consider these findings relevant for clinical purposes since DBS in PD is usually applied late in the course of the disease.
Collapse
Affiliation(s)
- Meike Statz
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Frederike Schleuter
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Hanna Weber
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert-Einstein-Str. 26, 18119 Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert-Einstein-Str. 26, 18119 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| |
Collapse
|
15
|
Noel GD, Mugno LE, Andres DS. From signals to music: a bottom-up approach to the structure of neuronal activity. Front Syst Neurosci 2023; 17:1171984. [PMID: 37637704 PMCID: PMC10450627 DOI: 10.3389/fnsys.2023.1171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The search for the "neural code" has been a fundamental quest in neuroscience, concerned with the way neurons and neuronal systems process and transmit information. However, the term "code" has been mostly used as a metaphor, seldom acknowledging the formal definitions introduced by information theory, and the contributions of linguistics and semiotics not at all. The heuristic potential of the latter was suggested by structuralism, which turned the methods and findings of linguistics to other fields of knowledge. For the study of complex communication systems, such as human language and music, the necessity of an approach that considers multilayered, nested, structured organization of symbols becomes evident. We work under the hypothesis that the neural code might be as complex as these human-made codes. To test this, we propose a bottom-up approach, constructing a symbolic logic in order to translate neuronal signals into music scores. Methods We recorded single cells' activity from the rat's globus pallidus pars interna under conditions of full alertness, blindfoldedness and environmental silence. We analyzed the signals with statistical, spectral, and complex methods, including Fast Fourier Transform, Hurst exponent and recurrence plot analysis. Results The results indicated complex behavior and recurrence graphs consistent with fractality, and a Hurst exponent >0.5, evidencing temporal persistence. On the whole, these features point toward a complex behavior of the time series analyzed, also present in classical music, which upholds the hypothesis of structural similarities between music and neuronal activity. Furthermore, through our experiment we performed a comparison between music and raw neuronal activity. Our results point to the same conclusion, showing the structures of music and neuronal activity to be homologous. The scores were not only spontaneously tonal, but they exhibited structure and features normally present in human-made musical creations. Discussion The hypothesis of a structural homology between the neural code and the code of music holds, suggesting that some of the insights introduced by linguistic and semiotic theory might be a useful methodological resource to go beyond the limits set by metaphoric notions of "code."
Collapse
Affiliation(s)
- Gabriel D. Noel
- College of Interdisciplinary and Advanced Studies in the Social Sciences, National University of San Martin (UNSAM), San Martín, Argentina
- National Scientific and Research Council, National University of San Martin (UNSAM), Buenos Aires, Argentina
| | - Lionel E. Mugno
- School of Music of the Department of General San Martin “Alfredo Luis Schiuma”, San Martín, Argentina
| | - Daniela S. Andres
- Institute of Emergent Technologies and Applied Science, San Martín, Argentina
- Science and Technology School, National University of San Martin (UNSAM), San Martín, Argentina
| |
Collapse
|
16
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
17
|
Stahn L, Rasińska J, Dehne T, Schreyer S, Hakus A, Gossen M, Steiner B, Hemmati-Sadeghi S. Sleeping Beauty transposon system for GDNF overexpression of entrapped stem cells in fibrin hydrogel in a rat model of Parkinson's disease. Drug Deliv Transl Res 2023; 13:1745-1765. [PMID: 36853436 PMCID: PMC10125957 DOI: 10.1007/s13346-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
There is currently no causal treatment available for Parkinson's disease (PD). However, the use of glial cell line-derived neurotrophic factor (GDNF) to provide regenerative effects for neurons is promising. Such approaches require translational delivery systems that are functional in diseased tissue. To do so, we used a non-viral Sleeping Beauty (SB) transposon system to overexpress GDNF in adipose tissue-derived mesenchymal stromal cells (adMSCs). Entrapment of cells in fibrin hydrogel was used to boost potential neurorestorative effects. Functional GDNF-adMSCs were able to secrete 1066.8 ± 169.4 ng GDNF/120,000 cells in vitro. The GDNF-adMSCs were detectable for up to 1 month after transplantation in a mild 6-hydroxydopamine (6-OHDA) hemiparkinson male rat model. Entrapment of GDNF-adMSCs enabled GDNF secretion in surrounding tissue in a more concentrated manner, also tending to prolong GDNF secretion relatively. GDNF-adMSCs entrapped in hydrogel also led to positive immunomodulatory effects via an 83% reduction of regional IL-1β levels compared to the non-entrapped GDNF-adMSC group after 1 month. Furthermore, GDNF-adMSC-treated groups showed higher recovery of tyrosine hydroxylase (TH)-expressing cells, indicating a neuroprotective function, although this was not strong enough to show significant improvement in motor performance. Our findings establish a promising GDNF treatment system in a PD model. Entrapment of GDNF-adMSCs mediated positive immunomodulatory effects. Although the durability of the hydrogel needs to be extended to unlock its full potential for motor improvements, the neuroprotective effects of GDNF were evident and safe. Further motor behavioral tests and other disease models are necessary to evaluate this treatment option adequately.
Collapse
Affiliation(s)
- Laura Stahn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Justyna Rasińska
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Tilo Dehne
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Schreyer
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Aileen Hakus
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 21502 Teltow, Germany
| | - Barbara Steiner
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
18
|
Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. Int J Mol Sci 2023; 24:ijms24109088. [PMID: 37240432 DOI: 10.3390/ijms24109088] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Disease modeling in non-human subjects is an essential part of any clinical research. To gain proper understanding of the etiology and pathophysiology of any disease, experimental models are required to replicate the disease process. Due to the huge diversity in pathophysiology and prognosis in different diseases, animal modeling is customized and specific accordingly. As in other neurodegenerative diseases, Parkinson's disease is a progressive disorder coupled with varying forms of physical and mental disabilities. The pathological hallmarks of Parkinson's disease are associated with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient's motor activity. Extensive research has already been conducted regarding animal modeling of Parkinson's diseases. These include animal systems with induction of Parkinson's, either pharmacologically or via genetic manipulation. In this review, we will be summarizing and discussing some of the commonly employed Parkinson's disease animal model systems and their applications and limitations.
Collapse
Affiliation(s)
- Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
19
|
Ye P, Bi L, Yang M, Qiu Y, Huang G, Liu Y, Hou Y, Li Z, Tong HHY, Cui M, Jin H. Activated Microglia in the Early Stage of a Rat Model of Parkinson's Disease: Revealed by PET-MRI Imaging by [ 18F]DPA-714 Targeting TSPO. ACS Chem Neurosci 2023. [PMID: 37146429 DOI: 10.1021/acschemneuro.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) imaging to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of the striatal [18F]DPA-714 binding ratio elevated in 6-OHDA-treated rats during 1-3 weeks post-treatment, with the peak TSPO binding in the 1st week. No differences between bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.
Collapse
Affiliation(s)
- Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuyi Hou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR 999078, China
| | - Mengchao Cui
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
20
|
Ye P, Bi L, Yang M, Qiu Y, Huang G, Liu Y, Hou Y, Li Z, Yee Tong HH, Cui M, Jin H. Activated Microglia in the Early Stage of a Rat Model of Parkinson's Disease: Revealed by PET-MRI Imaging by [ 18F]DPA-714 Targeting TSPO. ACS Chem Neurosci 2023. [PMID: 37134001 DOI: 10.1021/acschemneuro.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic (DA) neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of striatal [18F]DPA-714 binding ratio was elevated in 6-OHDA-treated rats during 1-3 weeks post-treatments, with peak TSPO binding in the 1st week. No difference between the bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.
Collapse
Affiliation(s)
- Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yuyi Hou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR 999078, China
| | - Mengchao Cui
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| |
Collapse
|
21
|
Knezovic A, Piknjac M, Osmanovic Barilar J, Babic Perhoc A, Virag D, Homolak J, Salkovic-Petrisic M. Association of Cognitive Deficit with Glutamate and Insulin Signaling in a Rat Model of Parkinson's Disease. Biomedicines 2023; 11:683. [PMID: 36979662 PMCID: PMC10045263 DOI: 10.3390/biomedicines11030683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Cognitive deficit is a frequent non-motor symptom in Parkinson's disease (PD) with an unclear pathogenesis. Recent research indicates possible involvement of insulin resistance and glutamate excitotoxicity in PD development. We investigated cognitive performance and the brain glutamate and insulin signaling in a rat model of PD induced by bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). Cognitive functions were assessed with Passive Avoidance (PA) and Morris Water Maze (MWM) tests. The expression of tyrosine hydroxylase (TH) and proteins involved in insulin (insulin receptor - IR, phosphoinositide 3 kinase - pI3K, extracellular signal-regulated kinases-ERK) and glutamate receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptos-AMPAR, N-methyl-D-aspartate receptor - NMDAR) signaling was assessed in the hippocampus (HPC), hypothalamus (HPT) and striatum (S) by immunofluorescence, Western blot and enzyme-linked immunosorbent assay (ELISA). Three months after 6-OHDA treatment, cognitive deficit was accompanied by decreased AMPAR activity and TH levels (HPC, S), while levels of the proteins involved in insulin signaling remained largely unchanged. Spearman's rank correlation revealed a strong positive correlation for pAMPAR-PA (S), pNMDAR-pI3K (HPC) and pNMDAR-IR (all regions). Additionally, a positive correlation was found for TH-ERK and TH-pI3K, and a negative one for TH-MWM/errors and pI3K-MWM/time (S). These results suggest a possible association between brain glutamate (but not insulin) signaling dysfunction and cognitive deficit in a rat PD model, detected three months after 6-OHDA treatment.
Collapse
Affiliation(s)
- Ana Knezovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Piknjac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Kossack ME, Manz KE, Martin NR, Pennell KD, Plavicki J. Environmentally relevant uptake, elimination, and metabolic changes following early embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. CHEMOSPHERE 2023; 310:136723. [PMID: 36241106 PMCID: PMC9835613 DOI: 10.1016/j.chemosphere.2022.136723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
Dioxin and dioxin-like compounds are ubiquitous environmental contaminants that induce toxicity by binding to the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The zebrafish model has been used to define the developmental toxicity observed following exposure to exogenous AHR ligands such as the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin, TCDD). While the model has successfully identified cellular targets of TCDD and molecular mechanisms mediating TCDD-induced phenotypes, fundamental information such as the body burden produced by standard exposure models is still unknown. We performed targeted gas chromatography (GC) high-resolution mass spectrometry (HRMS) in tandem with non-targeted liquid chromatography (LC) HRMS to quantify TCDD uptake, model the elimination dynamics of TCDD, and determine how TCDD exposure affects the zebrafish metabolome. We found that 50 ppt, 10 ppb, and 1 ppb waterborne exposures to TCDD during early embryogenesis produced environmentally relevant body burdens: 38 ± 4.34, 26.6 ± 1.2, and 8.53 ± 0.341 pg/embryo, respectively, at 24 hours post fertilization. TCDD exposure was associated with the dysregulation of metabolic pathways that are associated with the AHR signaling pathway as well as pathways shown to be affected in mammals following TCDD exposure. In addition, we discovered that TCDD exposure affected several metabolic pathways that are critical for brain development and function including glutamate metabolism, chondroitin sulfate biosynthesis, and tyrosine metabolism. Together, these data demonstrate that existing exposure methods produce environmentally relevant body burdens of TCDD in zebrafish and provide insight into the biochemical pathways impacted by toxicant-induced AHR activation.
Collapse
Affiliation(s)
- Michelle E Kossack
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Katherine E Manz
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Jessica Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
23
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Sun X, Li X, Zhang L, Zhang Y, Qi X, Wang S, Qin C. Longitudinal assessment of motor function following the unilateral intrastriatal 6-hydroxydopamine lesion model in mice. Front Behav Neurosci 2022; 16:982218. [PMID: 36505729 PMCID: PMC9730519 DOI: 10.3389/fnbeh.2022.982218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Despite the widespread use of the unilateral striatal 6-hydroxydopamine (6-OHDA) lesion model in mice in recent years, the stability of behavioral deficits in the 6-OHDA striatal mouse model over time is not yet clear, raising concerns about using this model to evaluate a compound's long-term therapeutic effects. Materials and methods In the current study, mice were tested at regular intervals in the cylinder test and gait analysis beginning 3 days after 6-OHDA injection of 4 and 8 μg and lasting until 56 days post-lesion. Apomorphine-induced rotational test and rotarod test were also performed on Day 23 and 43 post-lesion, respectively. Immunohistochemistry for dopaminergic neurons stained by tyrosine hydroxylase (TH) was also performed. Results Our results showed that both the 4 and 8 μg 6-OHDA lesion groups exhibited forelimb use asymmetry with a preference for the ipsilateral (injection) side on Day 3 and until Day 21 post-lesion, but did not show forelimb asymmetry on Day 28 to 56 post-lesion. The 8 μg 6-OHDA lesion group still exhibited forelimb asymmetry on Day 28 and 42 post-lesion, but not on Day 56. The gait analysis showed that the contralateral front and hind step cycles increased from Day 3 to 42 post-lesion and recovered on Day 56 post-lesion. In addition, our results displayed a dose-dependent reduction in TH+ cells and TH+ fibers, as well as dose-dependent apomorphine-induced rotations. In the rotarod test, the 8 μg 6-OHDA lesion group, but not the 4 μg group, decreased the latency to fall on the rotarod on Day 43 post-lesion. Conclusion In summary, unilateral striatal 6-OHDA injections of 4 and 8 μg induced spontaneous motor impairment in mice, which partially recovered starting on Day 28 post-lesion. Forced motor deficits were observed in the 8 g 6-OHDA lesion group, which remained stable on Day 43 post-lesion. In addition, the rotarod test and apomorphine-induced rotational test can distinguish between lesions of different extents and are useful tools for the assessment of functional recovery in studies screening novel potential therapies.
Collapse
Affiliation(s)
- Xiuping Sun
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Xianglei Li
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Ling Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Yu Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Xiaolong Qi
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Siyuan Wang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Chuan Qin
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China,Changping National Laboratory (CPNL), Beijing, China,*Correspondence: Chuan Qin,
| |
Collapse
|
25
|
Su Q, Ng WL, Goh SY, Gulam MY, Wang LF, Tan EK, Ahn M, Chao YX. Targeting the inflammasome in Parkinson's disease. Front Aging Neurosci 2022; 14:957705. [PMID: 36313019 PMCID: PMC9596750 DOI: 10.3389/fnagi.2022.957705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 02/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in which neuroinflammation plays pivotal roles. An important mechanism of neuroinflammation is the NLRP3 inflammasome activation that has been implicated in PD pathogenesis. In this perspective, we will discuss the relationship of some key PD-associated proteins including α-synuclein and Parkin and their contribution to inflammasome activation. We will also review promising inhibitors of NLRP3 inflammasome pathway that have potential as novel PD therapeutics. Finally, we will provide a summary of current and potential in vitro and in vivo models that are available for therapeutic discovery and development.
Collapse
Affiliation(s)
- Qi Su
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Suh Yee Goh
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Muhammad Yaaseen Gulam
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Program, Duke–NUS Medical School, Singapore, Singapore
| |
Collapse
|
26
|
Beserra-Filho JIA, Maria-Macêdo A, Silva-Martins S, Custódio-Silva AC, Soares-Silva B, Silva SP, Lambertucci RH, de Souza Araújo AA, Lucchese AM, Quintans-Júnior LJ, Santos JR, Silva RH, Ribeiro AM. Lippia grata essential oil complexed with β-cyclodextrin ameliorates biochemical and behavioral deficits in an animal model of progressive parkinsonism. Metab Brain Dis 2022; 37:2331-2347. [PMID: 35779151 DOI: 10.1007/s11011-022-01032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is identified by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), and is correlated to aggregates of proteins such as α-synuclein, Lewy's bodies. Although the PD etiology remains poorly understood, evidence suggests a main role of oxidative stress on this process. Lippia grata Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro", "alecrim-da-chapada", is a native bush from tropical areas mainly distributed throughout the Central and South America. This plant species is commonly used in traditional medicine for relief of pain and inflammation conditions, and that has proven antioxidant effects. We evaluated the effects of essential oil of the L. grata after its complexed with β-cyclodextrin (LIP) on PD animal model induced by reserpine (RES). Behavioral assessments were performed across the treatment. Upon completion the treatment, the animals were euthanized, afterwards their brains were isolated and processed for immunohistochemical and oxidative stress analysis. The LIP treatment delayed the onset of the behavior of catalepsy, decreased the number of oral movements and prevented the memory impairment on the novel object recognition task. In addition, the treatment with LIP protected against dopaminergic depletion in the SNpc and dorsal striatum (STRd), and decreased the α-syn immunoreactivity in the SNpc and hippocampus (HIP). Moreover, there was reduction of the oxidative stability index. These findings demonstrated that the LIP treatment has neuroprotective effect in a progressive parkinsonism model, suggesting that LIP could be an important source for novel treatment approaches in PD.
Collapse
Affiliation(s)
- Jose Ivo A Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Suellen Silva-Martins
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Beatriz Soares-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | | | - Angélica Maria Lucchese
- Graduate Programm in Biotechnology, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Sergipe, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alessandra M Ribeiro
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
27
|
Huang YL, Zhang JN, Hou TZ, Gu L, Yang HM, Zhang H. Inhibition of Wnt/β-catenin signaling attenuates axonal degeneration in models of Parkinson's disease. Neurochem Int 2022; 159:105389. [PMID: 35809720 DOI: 10.1016/j.neuint.2022.105389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/27/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
There are currently no treatments to delay or prevent Parkinson's disease (PD), and protective treatments require early administration. Targeting axonal degeneration in early PD could have an important clinical effect; however, the underlying molecular mechanisms controlling axonal degeneration in PD are not fully understood. Here, we studied the role of Wnt/β-catenin signaling in axonal degeneration induced by 6-hydroxydopamine (6-OHDA) or overexpression of alpha-synuclein (α-Syn) in vitro and in vivo. We found that the levels of both β-catenin and p-S9-glycogen synthase kinase-3β (GSK-3β) increased and the levels of phosphorylated β-catenin (p-β-catenin) decreased during 6-OHDA-induced axonal degeneration and that the inhibitors of the Wnt/β-catenin pathway IWR-1 and Dickkopf-1 (DKK-1) attenuated the degenerative process in primary neurons in vitro. Furthermore, IWR-1 enhanced the increase of LC3-II levels and the decrease of p62 triggered by 6-OHDA treatment, whereas the autophagy inhibitor 3-Methyladenine (3-MA) alleviated the protective effect of IWR-1 on axons in vitro. Consistent with the in vitro findings, both β-catenin and p-S9-GSK-3β were upregulated in a 6-OHDA-induced rat PD model, and blocking the Wnt/β-catenin pathway with DKK-1 attenuated the degeneration of dopaminergic axons at an early time point in vivo. The protective effect of inhibition of Wnt/β-catenin signaling was further confirmed in an α-Syn overexpression-induced animal models of PD. Taken together, these data indicate that the Wnt/β-catenin pathway is involved axonal degeneration in PD, and suggest that Wnt/β-catenin pathway inhibitors have the therapeutic potential for the prevention of PD.
Collapse
Affiliation(s)
- Yan-Lin Huang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| | - Tian-Zhong Hou
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
28
|
Castro SL, Tapias V, Gathagan R, Emes A, Brandon TE, Smith AD. Blueberry juice augments exercise-induced neuroprotection in a Parkinson's disease model through modulation of GDNF levels. IBRO Neurosci Rep 2022; 12:217-227. [PMID: 35321527 PMCID: PMC8935512 DOI: 10.1016/j.ibneur.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Exercise and consumption of plant-based foods rich in polyphenols are attractive therapeutic approaches for the prevention and treatment of Parkinson's disease (PD). Few studies, however, have examined the neuroprotective efficacy of combining these treatment modalities against PD. Therefore we investigated whether combining voluntary running and consumption of blueberry juice (BBJ) was more efficacious against 6-hydroxydopamine (6-OHDA) toxicity than either treatment alone. Four weeks of running before and after intrastriatal 6-OHDA reduced amphetamine-induced rotational behavior and loss of substantia nigra dopamine (DA) neurons. BBJ consumption alone had no ameliorative effects, but when combined with exercise, behavioral deficits and nigrostriatal DA neurodegeneration were reduced to a greater extent than exercise alone. The neuroprotection observed with exercise alone was associated with an increase in striatal glial cell-lined derived neurotrophic factor (GDNF), whereas combining exercise and BBJ was associated with an increase in nigral GDNF. These results suggest that polyphenols may potentiate the protective effects of exercise and that differential regulation of GDNF expression underlies protection observed with exercise alone versus combined treatment with consumption of BBJ.
Collapse
Affiliation(s)
- Sandra L Castro
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Victor Tapias
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - Consejo Superior de Investigaciones Científicas, Valladolid 47003, Spain
| | - Ronald Gathagan
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Alexandra Emes
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | | | - Amanda D Smith
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
29
|
Zhuo W, Lundquist AJ, Donahue EK, Guo Y, Phillips D, Petzinger GM, Jakowec MW, Holschneider DP. A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100039. [DOI: 10.1016/j.crneur.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|
30
|
Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23094508. [PMID: 35562898 PMCID: PMC9102081 DOI: 10.3390/ijms23094508] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
The degeneration of nigral dopaminergic neurons is considered the hallmark of Parkinson’s disease (PD), and it is triggered by different factors, including mitochondrial dysfunction, Lewy body accumulation, neuroinflammation, excitotoxicity and metal accumulation. Despite the extensive literature devoted to unravelling the signalling pathways involved in neuronal degeneration, little is known about the functional impairments occurring in these cells during illness progression. Of course, it is not possible to obtain direct information on the properties of the dopaminergic cells in patients. However, several data are available in the literature reporting changes in the function of these cells in PD animal models. In the present manuscript, we focus on dopaminergic neuron functional properties and summarize shared or peculiar features of neuronal dysfunction in different PD animal models at different stages of the disease in an attempt to design a picture of the functional modifications occurring in nigral dopaminergic neurons during disease progression preceding their eventual death.
Collapse
Affiliation(s)
- Ezia Guatteo
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Nicola Berretta
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Vincenzo Monda
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
| | - Ada Ledonne
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Correspondence: (A.L.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00143 Rome, Italy
- Correspondence: (A.L.); (N.B.M.)
| |
Collapse
|
31
|
Kim J, Park I, Jang S, Choi M, Kim D, Sun W, Choe Y, Choi JW, Moon C, Park SH, Choe HK, Kim K. Pharmacological Rescue with SR8278, a Circadian Nuclear Receptor REV-ERBα Antagonist as a Therapy for Mood Disorders in Parkinson's Disease. Neurotherapeutics 2022; 19:592-607. [PMID: 35322351 PMCID: PMC9226214 DOI: 10.1007/s13311-022-01215-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by progressive dopaminergic neuronal loss. Motor deficits experienced by patients with Parkinson's disease are well documented, but non-motor symptoms, including mood disorders associated with circadian disturbances, are also frequent features. One common phenomenon is "sundowning syndrome," which is characterized by the occurrence of neuropsychiatric symptoms at a specific time (dusk), causing severe quality of life challenges. This study aimed to elucidate the underlying mechanisms of sundowning syndrome in Parkinson's disease and their molecular links with the circadian clock. We demonstrated that 6-hydroxydopamine (6-OHDA)-lesioned mice, as Parkinson's disease mouse model, exhibit increased depression- and anxiety-like behaviors only at dawn (the equivalent of dusk in human). Administration of REV-ERBα antagonist, SR8278, exerted antidepressant and anxiolytic effects in a circadian time-dependent manner in 6-OHDA-lesioned mice and restored the circadian rhythm of mood-related behaviors. 6-OHDA-lesion altered DAergic-specific Rev-erbα and Nurr1 transcription, and atypical binding activities of REV-ERBα and NURR1, which are upstream nuclear receptors for the discrete tyrosine hydroxylase promoter region. SR8278 treatment restored the binding activities of REV-ERBα and NURR1 to the tyrosine hydroxylase promoter and the induction of enrichment of the R/N motif, recognized by REV-ERBα and NURR1, as revealed by ATAC-sequencing; therefore, tyrosine hydroxylase expression was elevated in the ventral tegmental area of 6-OHDA-injected mice, especially at dawn. These results indicate that REV-ERBα is a potential therapeutic target, and its antagonist, SR8278, is a potential drug for mood disorders related to circadian disturbances, namely sundowning syndrome, in Parkinson's disease.
Collapse
Affiliation(s)
- Jeongah Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Inah Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Sangwon Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Mijung Choi
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Doyeon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | | | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, Korea
| | - Cheil Moon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Korea
| | - Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Korea.
| |
Collapse
|
32
|
Quijano A, Diaz-Ruiz C, Lopez-Lopez A, Villar-Cheda B, Muñoz A, Rodriguez-Perez AI, Labandeira-Garcia JL. Angiotensin Type-1 Receptor Inhibition Reduces NLRP3 Inflammasome Upregulation Induced by Aging and Neurodegeneration in the Substantia Nigra of Male Rodents and Primary Mesencephalic Cultures. Antioxidants (Basel) 2022; 11:antiox11020329. [PMID: 35204211 PMCID: PMC8868290 DOI: 10.3390/antiox11020329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/17/2022] Open
Abstract
The tissue renin–angiotensin system (RAS) has been shown to be involved in prooxidative and proinflammatory changes observed in aging and aging-related diseases such as dopaminergic degeneration in Parkinson’s disease (PD). We studied the activation of the NLRP3 inflammasome in the substantia nigra with aging and early stages of dopaminergic degeneration in PD models and, particularly, if the brain RAS, via its prooxidative proinflammatory angiotensin II (AngII) type 1 (AT1) receptors, mediates the inflammasome activation. Nigras from aged rats and mice and 6-hydroxydopamine PD models showed upregulation in transcription of inflammasome-related components (NLRP3, pro-IL1β and pro-IL18) and IL1β and IL18 protein levels, which was inhibited by the AT1 receptor antagonist candesartan. The role of the AngII/AT1 axis in inflammasome activation was further confirmed in rats intraventricularly injected with AngII, and in primary mesencephalic cultures treated with 6-hydroxydopamine, which showed inflammasome activation that was blocked by candesartan. Observations in the nigra of young and aged AT1 and AT2 knockout mice confirmed the major role of AT1 receptors in nigral inflammasome activation. In conclusion, the inflammasome is upregulated by aging and dopaminergic degeneration in the substantia nigra, possibly related with a decrease in dopamine levels, and it is mediated by the AngII/AT1 axis.
Collapse
Affiliation(s)
- Aloia Quijano
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.Q.); (C.D.-R.); (A.L.-L.); (B.V.-C.); (A.M.); (A.I.R.-P.)
| | - Carmen Diaz-Ruiz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.Q.); (C.D.-R.); (A.L.-L.); (B.V.-C.); (A.M.); (A.I.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CiberNed), 28031 Madrid, Spain
| | - Andrea Lopez-Lopez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.Q.); (C.D.-R.); (A.L.-L.); (B.V.-C.); (A.M.); (A.I.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CiberNed), 28031 Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.Q.); (C.D.-R.); (A.L.-L.); (B.V.-C.); (A.M.); (A.I.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CiberNed), 28031 Madrid, Spain
| | - Ana Muñoz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.Q.); (C.D.-R.); (A.L.-L.); (B.V.-C.); (A.M.); (A.I.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CiberNed), 28031 Madrid, Spain
| | - Ana I. Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.Q.); (C.D.-R.); (A.L.-L.); (B.V.-C.); (A.M.); (A.I.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CiberNed), 28031 Madrid, Spain
| | - Jose L. Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.Q.); (C.D.-R.); (A.L.-L.); (B.V.-C.); (A.M.); (A.I.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CiberNed), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-881-812223
| |
Collapse
|
33
|
Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 163:105599. [DOI: 10.1016/j.nbd.2021.105599] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
|
34
|
Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022; 13:504. [PMID: 35082287 PMCID: PMC8791953 DOI: 10.1038/s41467-022-28075-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
36
|
Iyer V, Venkiteswaran K, Savaliya S, Lieu CA, Handly E, Gilmour TP, Kunselman AR, Subramanian T. The cross-hemispheric nigrostriatal pathway prevents the expression of levodopa-induced dyskinesias. Neurobiol Dis 2021; 159:105491. [PMID: 34461264 PMCID: PMC8597404 DOI: 10.1016/j.nbd.2021.105491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder that is routinely treated with levodopa. Unfortunately, long-term dopamine replacement therapy using levodopa leads to levodopa-induced dyskinesias (LID), a significant and disabling side-effect. Clinical findings indicate that LID typically only occurs following the progression of PD motor symptoms from the unilateral (Hoehn and Yahr (HY) Stage I) to the bilateral stage (HY Stage II). This suggests the presence of some compensatory interhemispheric mechanisms that delay the occurrence of LID. We therefore investigated the role of interhemispheric connections of the nigrostriatal pathway on LID expression in a rat model of PD. The striatum of one hemisphere of rats was first injected with a retrograde tracer to label the ipsi- and cross-hemispheric nigrostriatal pathways. Rats were then split into groups and unilaterally lesioned in the striatum or medial forebrain bundle of the tracer-injected hemisphere to induce varying levels of hemiparkinsonism. Finally, rats were treated with levodopa and tested for the expression of LID. Distinct subsets emerged from rats that underwent the same lesioning paradigm based on LID. Strikingly, non-dyskinetic rats had significant sparing of their cross-hemispheric nigrostriatal pathway projecting from the unlesioned hemisphere. In contrast, dyskinetic rats only had a small proportion of this cross-hemispheric nigrostriatal pathway survive lesioning. Crucially, both non-dyskinetic and dyskinetic rats had nearly identical levels of ipsi-hemispheric nigrostriatal pathway survival and parkinsonian motor deficits. Our data suggest that the survival of the cross-hemispheric nigrostriatal pathway plays a crucial role in preventing the expression of LID and represents a potentially novel target to halt the progression of this devastating side-effect of a common anti-PD therapeutic.
Collapse
Affiliation(s)
- Vishakh Iyer
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Kala Venkiteswaran
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Sandip Savaliya
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Christopher A Lieu
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Erin Handly
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Timothy P Gilmour
- Department of Electrical Engineering, John Brown University, Siloam Springs, AR, United States of America
| | - Allen R Kunselman
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Thyagarajan Subramanian
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America.
| |
Collapse
|
37
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
38
|
Behl T, Kaur I, Kumar A, Mehta V, Zengin G, Arora S. Gene Therapy in the Management of Parkinson's Disease: Potential of GDNF as a Promising Therapeutic Strategy. Curr Gene Ther 2021; 20:207-222. [PMID: 32811394 DOI: 10.2174/1566523220999200817164051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The limitations of conventional treatment therapies in Parkinson's disorder, a common neurodegenerative disorder, lead to the development of an alternative gene therapy approach. Multiple treatment options targeting dopaminergic neuronal regeneration, production of enzymes linked with dopamine synthesis, subthalamic nucleus neurons, regulation of astrocytes and microglial cells and potentiating neurotrophic factors, were established. Viral vector-based dopamine delivery, prodrug approaches, fetal ventral mesencephalon tissue transplantation and dopamine synthesizing enzyme encoding gene delivery are significant therapies evidently supported by numerous trials. The review primarily elaborates on the significant role of glial cell-line derived neurotrophic factor in alleviating motor symptoms and the loss of dopaminergic neurons in Parkinson's disease. Neuroprotective and neuroregenerative effects of GDNF were established via preclinical and clinical study outcomes. The binding of GDNF family ligands with associated receptors leads to the formation of a receptor-ligand complex activating Ret receptor of tyrosine kinase family, which is only expressed in dopaminergic neurons, playing an important role in Parkinson's disease, via its association with the essential protein encoded genes. Furthermore, the review establishes delivery aspects, like ventricular delivery of recombinant GDNF, intraparenchymal and intraputaminal delivery using infusion catheters. The review highlights problems and challenges of GDNF delivery, and essential measures to overcome them, like gene therapy combinations, optimization of delivery vectors, newer targeting devices, motor symptoms curbing focused ultrasound techniques, modifications in patient selection criteria and development of novel delivery strategies based on liposomes and encapsulated cells, to promote safe and effective delivery of neurotrophic factor and establishment of routine treatment therapy for patients.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, Turkey
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
39
|
Ivashko-Pachima Y, Seroogy KB, Sharabi Y, Gozes I. Parkinson Disease-Modification Encompassing Rotenone and 6-Hydroxydopamine Neurotoxicity by the Microtubule-Protecting Drug Candidate SKIP. J Mol Neurosci 2021; 71:1515-1524. [PMID: 34286456 DOI: 10.1007/s12031-021-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Encompassing live cell imaging and morphometrics at the microscopical level, we showed here, for the first time, protection of neuronal-like cells by the novel drug candidate, SKIP, against the Parkinson's disease-related neurotoxin, rotenone. Mechanistically, rotenone disrupted microtubule dynamics, which SKIP partially repaired through microtubule end-binding proteins, coupled with increasing neurite branch length. Given the previous association of rotenone toxicity with increased dopaminergic cell death hallmarking Parkinson's disease, we chose an established rat model of 6-hydroxydopamine (6-OHDA) toxicity to initially evaluate SKIP in vivo. SKIP pretreatment showed protection against nigral dopaminergic cell degeneration and improved motor behavior in the forelimb asymmetry test. With Parkinson's disease being a major neurodegenerative disorder, afflicting millions of people globally, and with disease modification challenges, SKIP may hold promise for future therapeutic development.
Collapse
Affiliation(s)
- Yanina Ivashko-Pachima
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Kim B Seroogy
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yehonatan Sharabi
- Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
40
|
Krasko MN, Hoffmeister JD, Schaen-Heacock NE, Welsch JM, Kelm-Nelson CA, Ciucci MR. Rat Models of Vocal Deficits in Parkinson's Disease. Brain Sci 2021; 11:925. [PMID: 34356159 PMCID: PMC8303338 DOI: 10.3390/brainsci11070925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, degenerative disorder that affects 10 million people worldwide. More than 90% of individuals with PD develop hypokinetic dysarthria, a motor speech disorder that impairs vocal communication and quality of life. Despite the prevalence of vocal deficits in this population, very little is known about the pathological mechanisms underlying this aspect of disease. As such, effective treatment options are limited. Rat models have provided unique insights into the disease-specific mechanisms of vocal deficits in PD. This review summarizes recent studies investigating vocal deficits in 6-hydroxydopamine (6-OHDA), alpha-synuclein overexpression, DJ1-/-, and Pink1-/- rat models of PD. Model-specific changes to rat ultrasonic vocalization (USV), and the effects of exercise and pharmacologic interventions on USV production in these models are discussed.
Collapse
Affiliation(s)
- Maryann N. Krasko
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jesse D. Hoffmeister
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole E. Schaen-Heacock
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacob M. Welsch
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
| | - Michelle R. Ciucci
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; (M.N.K.); (J.D.H.); (N.E.S.-H.); (J.M.W.); (C.A.K.-N.)
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
41
|
Angelopoulou E, Paudel YN, Piperi C. Role of Liver Growth Factor (LGF) in Parkinson's Disease: Molecular Insights and Therapeutic Opportunities. Mol Neurobiol 2021; 58:3031-3042. [PMID: 33608826 DOI: 10.1007/s12035-021-02326-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder with unclear etiology and only symptomatic treatment to date. Toward the development of novel disease-modifying agents, neurotrophic factors represent a reasonable and promising therapeutic approach. However, despite the robust preclinical evidence, clinical trials using glial-derived neurotrophic factor (GDNF) and neurturin have been unsuccessful. In this direction, the therapeutic potential of other trophic factors in PD and the elucidation of the underlying molecular mechanisms are of paramount importance. The liver growth factor (LGF) is an albumin-bilirubin complex acting as a hepatic mitogen, which also exerts regenerative effects on several extrahepatic tissues including the brain. Accumulating evidence suggests that intracerebral and peripheral administration of LGF can enhance the outgrowth of nigrostriatal dopaminergic axonal terminals; promote the survival, migration, and differentiation of neuronal stem cells; and partially protect against dopaminergic neuronal loss in the substantia nigra of PD animal models. In most studies, these effects are accompanied by improved motor behavior of the animals. Potential underlying mechanisms involve transient microglial activation, TNF-α upregulation, and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and of the transcription factor cyclic AMP response-element binding protein (CREB), along with anti-inflammatory and antioxidant pathways. Herein, we summarize recent preclinical evidence on the potential role of LGF in PD pathogenesis, aiming to shed more light on the underlying molecular mechanisms and reveal novel therapeutic opportunities for this debilitating disease.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
42
|
Masini D, Plewnia C, Bertho M, Scalbert N, Caggiano V, Fisone G. A Guide to the Generation of a 6-Hydroxydopamine Mouse Model of Parkinson's Disease for the Study of Non-Motor Symptoms. Biomedicines 2021; 9:biomedicines9060598. [PMID: 34070345 PMCID: PMC8227396 DOI: 10.3390/biomedicines9060598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
In Parkinson’s disease (PD), a large number of symptoms affecting the peripheral and central nervous system precede, develop in parallel to, the cardinal motor symptoms of the disease. The study of these conditions, which are often refractory to and may even be exacerbated by standard dopamine replacement therapies, relies on the availability of appropriate animal models. Previous work in rodents showed that injection of the neurotoxin 6-hydroxydopamine (6-OHDA) in discrete brain regions reproduces several non-motor comorbidities commonly associated with PD, including cognitive deficits, depression, anxiety, as well as disruption of olfactory discrimination and circadian rhythm. However, the use of 6-OHDA is frequently associated with significant post-surgical mortality. Here, we describe the generation of a mouse model of PD based on bilateral injection of 6-OHDA in the dorsal striatum. We show that the survival rates of males and females subjected to this lesion differ significantly, with a much higher mortality among males, and provide a protocol of enhanced pre- and post-operative care, which nearly eliminates animal loss. We also briefly discuss the utility of this model for the study of non-motor comorbidities of PD.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Department of Neuroscience Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3B, 2200 Copenhagen, Denmark
| | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Maëlle Bertho
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Department of Neuroscience Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, 3B, 2200 Copenhagen, Denmark
| | - Nicolas Scalbert
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Vittorio Caggiano
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (D.M.); (C.P.); (M.B.); (N.S.); (V.C.)
- Correspondence:
| |
Collapse
|
43
|
Binda KH, Lillethorup TP, Real CC, Bærentzen SL, Nielsen MN, Orlowski D, Brooks DJ, Chacur M, Landau AM. Exercise protects synaptic density in a rat model of Parkinson's disease. Exp Neurol 2021; 342:113741. [PMID: 33965411 DOI: 10.1016/j.expneurol.2021.113741] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by Lewy body and neurite pathology associated with dopamine terminal dysfunction. Clinically, it is associated with motor slowing, rigidity, and tremor. Postural instability and pain are also features. Physical exercise benefits PD patients - possibly by promoting neuroplasticity including synaptic regeneration. OBJECTIVES In a parkinsonian rat model, we test the hypotheses that exercise: (a) increases synaptic density and reduces neuroinflammation and (b) lowers the nociceptive threshold by increasing μ-opioid receptor expression. METHODS Brain autoradiography was performed on rats unilaterally injected with either 6-hydroxydopamine (6-OHDA) or saline and subjected to treadmill exercise over 5 weeks. [3H]UCB-J was used to measure synaptic vesicle glycoprotein 2A (SV2A) density. Dopamine D2/3 receptor and μ-opioid receptor availability were assessed with [3H]Raclopride and [3H]DAMGO, respectively, while neuroinflammation was detected with the 18kDA translocator protein (TSPO) marker [3H]PK11195. The nociceptive threshold was determined prior to and throughout the exercise protocol. RESULTS We confirmed a dopaminegic deficit with increased striatal [3H]Raclopride D2/3 receptor availability and reduced nigral tyrosine hydroxylase immunoreactivity in the ipsilateral hemisphere of all 6-OHDA-injected rats. Sedentary rats lesioned with 6-OHDA showed significant reduction of ipsilateral striatal and substantia nigra [3H]UCB-J binding while [3H]PK11195 showed increased ipsilateral striatal neuroinflammation. Lesioned rats who exercised had higher levels of ipsilateral striatal [3H]UCB-J binding and lower levels of neuroinflammation compared to sedentary lesioned rats. Striatal 6-OHDA injections reduced thalamic μ-opioid receptor availability but subsequent exercise restored binding. Exercise also raised thalamic and hippocampal SV2A synaptic density in 6-OHDA lesioned rats, accompanied by a rise in nociceptive threshold. CONCLUSION These data suggest that treadmill exercise protects nigral and striatal synaptic integrity in a rat lesion model of PD - possibly by promoting compensatory mechanisms. Exercise was also associated with reduced neuroinflammation post lesioning and altered opioid transmission resulting in an increased nociceptive threshold.
Collapse
Affiliation(s)
- K H Binda
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - T P Lillethorup
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - C C Real
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Nuclear Medicine (LIM 43), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - S L Bærentzen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - M N Nielsen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark.
| | - D Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University and Department of Neurosurgery, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| | - D J Brooks
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - M Chacur
- Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - A M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| |
Collapse
|
44
|
Liang LP, Fulton R, Bradshaw-Pierce EL, Pearson-Smith J, Day BJ, Patel M. Optimization of Lipophilic Metalloporphyrins Modifies Disease Outcomes in a Rat Model of Parkinsonism. J Pharmacol Exp Ther 2021; 377:1-10. [PMID: 33500265 DOI: 10.1124/jpet.120.000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of Parkinson disease (PD), and one strategy for neuroprotective therapy for PD is to scavenge reactive species using a catalytic antioxidant. Previous studies in our laboratory revealed that pretreatment of lipophilic metalloporphyrins showed protective effects in a mouse PD model. In this study, we optimized the formulations of these metalloporphyrins to deliver them orally and tested their efficacy on disease outcomes in a second species after initiation of an insult (i.e., disease modification). In this study, a pharmaceutical formulation of two metalloporphyrin catalytic antioxidants, AEOL11207 and AEOL11114, was tested for oral drug delivery. Both compounds showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood-brain barrier after intravenous or oral delivery. AEOL11207 and AEOL11114 bioavailabilities were calculated to be 24% and 25%, respectively, at a dose of 10 mg/kg via the oral route. In addition, both compounds significantly attenuated 6-hydroxydopamine (6-OHDA)-induced neurotoxic damage, including dopamine depletion, cytokine production, and microglial activation in the striata; dopaminergic neuronal loss in the substantia nigra; oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain; and rotation behavioral abnormality in rats. These results indicate that AEOL11207 and AEOL11114 are orally active metalloporphyrins and protect against 6-OHDA neurotoxicity 1-3 days postlesioning, suggesting disease-modifying properties and translational potential for PD. SIGNIFICANCE STATEMENT: Two catalytic antioxidants showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood-brain barrier. Both compounds significantly attenuated dopamine depletion, cytokine production, microglial activation, dopaminergic neuronal loss, oxidative/nitrative stress indices, and behavioral abnormality in a Parkinson disease rat model. The results suggest that both metalloporphyrins possess disease-modifying properties that may be useful in treating Parkinson disease.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Ruth Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Jennifer Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| |
Collapse
|
45
|
Abstract
Stem cell transplantation has attracted great interest for treatment of neurodegenerative diseases to provide neuroprotection, repair the lesioned neuronal network and restore functionality. Parkinson's disease (PD), in particular, has been a preferred target because motor disability that constitutes a core pathology of the disease is associated with local loss of dopaminergic neurons in a specific brain area, the substantia nigra pars compacta. These cells project to the striatum where they deliver the neurotransmitter dopamine that is involved in control of many aspects of motor behavior. Therefore, cell transplantation approaches in PD aim to replenish dopamine deficiency in the striatum. A major challenge in developing cell therapy approaches is the ability to generate large numbers of transplantable cells in a reliable and reproducible manner. In recent years the technological breakthrough of induced pluripotent stem cells (iPSCs) has demonstrated that this is possible at a preclinical level, accelerating clinical translation. A second important issue is to efficiently differentiate iPSCs into dopaminergic neuronal progenitors with restricted proliferation potential in order to avoid cellular overgrowth in vivo and minimize the risk of tumorigenesis. Here we describe an effective protocol that includes human iPSC differentiation to the dopaminergic lineage and enrichment in neuronal precursor cells expressing the polysialylated form of the neural cell adhesion molecule PSA-NCAM, through magnetically activated cell sorting. The resulting cells are transplanted and shown to survive, differentiate, and integrate within a striatal lesion model generated by unilateral 6-hydroxydopamine administration in mice of the NOD/SCID strain that supports xenografts.
Collapse
|
46
|
Longitudinal PET Imaging of α7 Nicotinic Acetylcholine Receptors with [ 18F]ASEM in a Rat Model of Parkinson's Disease. Mol Imaging Biol 2021; 22:348-357. [PMID: 31286348 DOI: 10.1007/s11307-019-01400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The nicotinic acetylcholine alpha-7 receptors (α7R) are involved in a number of neuropsychiatric and neurodegenerative brain disorders such as Parkinson's disease (PD). However, their specific pathophysiologic roles are still unclear. In this context, we studied the evolution of these receptors in vivo by positron emission tomography (PET) imaging using the recently developed tracer 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-[18F]fluorodibenzo[b,d]thiophene-5,5-dioxide) in a rat model mimicking early stages of PD. PROCEDURES PET imaging of α7R was performed at 3, 7, and 14 days following a partial striatal unilateral lesion with 6-hydroxydopamine in adult rats. After the last imaging experiments, the status of nigro-striatal dopamine neurons as well as different markers of neuroinflammation was evaluated on brain sections by autoradiographic and immunofluorescent experiments. RESULTS We showed an early and transitory rise in α7R expression in the lesioned striatum and substantia nigra, followed by over-expression of several gliosis activation markers in these regions of interest. CONCLUSIONS These findings support a longitudinally follow-up of α7R in animal models of PD and highlight the requirement to use a potential neuroprotective approach through α7R ligands at the early stages of PD.
Collapse
|
47
|
Li H, Kim J, Tran HNK, Lee CH, Hur J, Kim MC, Yang HO. Extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan Reduces Behavioral Defect and Enhances Autophagy in Experimental Models of Parkinson's Disease. Neuromolecular Med 2021; 23:428-443. [PMID: 33432492 DOI: 10.1007/s12017-020-08643-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023]
Abstract
The 20% ethanol extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan (WIN-1001X) was derived from a modified version of Korean traditional herbal formula 'Chungsimyeolda-tang' which has been used for the treatment of cerebrovascular disorders. The Parkinson's disease presents with impaired motor functions and loss of dopaminergic neurons. However, the treatment for Parkinson's disease is not established until now. This study aims to elucidate the therapeutic advantages of WIN-1001X on animal models of Parkinson's disease. WIN-1001X administration successfully relieved the Parkinsonism symptoms in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mice tested by rota-rod and pole tests. The loss of tyrosine hydroxylase activities in substantia nigra and striatum was also attenuated by administration of WIN-1001X. In mice with sub-chronical MPTP injections, autophagy-related proteins, such as LC3, beclin-1, mTOR, and p62, were measured using the immunoblot assay. The results were favorable to induction of autophagy after the WIN-1001X administration. WIN-1001X treatment on 6-hydroxydopamine-injected rats also exhibited protective effects against striatal neuronal damage and loss of dopaminergic cells. Such protection is expected to be due to the positive regulation of autophagy by administration of WIN-1001X with confirmation both in vivo and in vitro. In addition, an active compound, onjisaponin B was isolated and identified from WIN-1001X. Onjisaponin B also showed significant autophagosome-inducing effect in human neuroblastoma cell line. Our study suggests that relief of Parkinsonism symptoms and rescue of tyrosine hydroxylase activity in dopaminergic neurons are affected by autophagy enhancing effect of WIN-1001X which the onjisaponin B is one of the major components of activity.
Collapse
Affiliation(s)
- Huan Li
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.,College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Joonki Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Huynh Nguyen Khanh Tran
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Chang Hwan Lee
- Central Research Institute, WhanIn Pharm. Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jonghyun Hur
- Central Research Institute, WhanIn Pharm. Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Min Cheol Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Hyun Ok Yang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea. .,College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
48
|
Beneficial Effect of Melatonin on Motor and Memory Disturbances in 6-OHDA-Lesioned Rats. J Mol Neurosci 2021; 71:702-712. [PMID: 33403591 DOI: 10.1007/s12031-020-01760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Previous evidence has shown a link between neurodegenerative diseases, including Parkinson's disease (PD), and melatonin. The data in the literature about the impact of the hormone under different experimental PD conditions are quite controversial, and its effect on memory impairment in the disease is very poorly explored. The current research was aimed at investigating the role of melatonin pretreatment on memory and motor behavior in healthy rats and those with the partial 6-hydroxydopamine (6-OHDA) model of PD. All rodents were pretreated with melatonin (20 mg/kg, intraperitoneally) for 5 days. At 24 h and 7 days after the first treatment for healthy rats, and at the second and third week post-lesion for those with PD, the animals were tested behaviorally (apomorphine-induced rotations, rotarod, and passive avoidance tests). The neurochemical levels of dopamine (DA), acetylcholine (ACh), noradrenaline (NA), and serotonin (Sero) in the brain were also determined. The results showed that in healthy animals, melatonin pretreatment had amnestic and motor-suppressive effects and did not change the levels of measured brain neurotransmitters. In animals with PD, melatonin pretreatment exerted a neuroprotective effect, manifested as a significantly decreased number of apomorphine-induced rotations, reduced number of falls in the rotarod test, and improved memory performance. The brain DA and ACh concentrations in the same animals were restored to the control levels, and those of NA and Sero did not change. Our results demonstrate a beneficial effect of melatonin on memory and motor disturbance in 6-OHDA-lesioned rats.
Collapse
|
49
|
Nomura M, Toyama H, Suzuki H, Yamada T, Hatano K, Wilson AA, Ito K, Sawada M. Peripheral benzodiazepine receptor/18 kDa translocator protein positron emission tomography imaging in a rat model of acute brain injury. Ann Nucl Med 2021; 35:8-16. [PMID: 32989663 DOI: 10.1007/s12149-020-01530-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/16/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The activation of microglia in various brain pathologies is accompanied by an increase in the expression of peripheral benzodiazepine receptor/18 kDa translocator protein (PBR/TSPO). However, whether activated microglia have a neuroprotective or neurotoxic effect on neurons in the brain is yet to be determined. In this study, we investigated the ability of the novel PBR/TSPO ligand FEPPA to detect activated microglia in an animal model of primary neurotoxic microglia activation. METHODS [18F] FEPPA positron emission tomography (PET) imaging was performed before and after intraperitoneal administration of lipopolysaccharide (LPS) (LPS group) or saline (control group) in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease. Images were compared between these groups. After imaging, the brains were collected, and the activated microglia at the disease sites were analyzed by the expression of inflammatory cytokines and immunohistochemistry staining. These results were then comparatively examined with those obtained by PET imaging. RESULTS In the unilateral 6-OHDA lesion rat model, the PBR/TSPO PET signal was significantly increased in the LPS group compared with the saline group. As the increased signal was observed 4 h after the injection, we considered it an acute response to brain injury. In the post-imaging pathological examination, activated microglia were found to be abundant at the site where strong signals were detected, and the expression of the inflammatory cytokines TNF-α and IL-1β was increased. Intraperitoneal LPS administration further increased the expression of inflammatory cytokines, and the PBR/TSPO PET signal increased concurrently. The increase in inflammatory cytokine expression correlated with enhanced signal intensity. CONCLUSIONS PET signal enhancement by PBR/TSPO at the site of brain injury correlated with the activation of microglia and production of inflammatory cytokines. Furthermore, because FEPPA enables the detection of neurotoxic microglia on PET images, we successfully constructed a novel PET detection system that can monitor neurodegenerative diseases.
Collapse
Affiliation(s)
- Masahiko Nomura
- Department of Radiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Takashi Yamada
- Department of Management Nutrition, Faculty of Human Life Science, Nagoya University of Economics, 6-11 Uchikubo, Inuyama, Aichi, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alan A Wilson
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Makoto Sawada
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
50
|
Wen S, Aki T, Unuma K, Uemura K. Chemically Induced Models of Parkinson's Disease: History and Perspectives for the Involvement of Ferroptosis. Front Cell Neurosci 2020; 14:581191. [PMID: 33424553 PMCID: PMC7786020 DOI: 10.3389/fncel.2020.581191] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is a newly discovered form of necrotic cell death characterized by its dependency on iron and lipid peroxidation. Ferroptosis has attracted much attention recently in the area of neurodegeneration since the involvement of ferroptosis in Parkinson’s disease (PD), a major neurodegenerative disease, has been indicated using animal models. Although PD is associated with both genetic and environmental factors, sporadic forms of PD account for more than 90% of total PD. Following the importance of environmental factors, various neurotoxins are used as chemical inducers of PD both in vivo and in vitro. In contrast to other neurodegenerative diseases such as Alzheimer’s and Huntington’s diseases (AD and HD), many of the characteristics of PD can be reproduced in vivo by the use of specific neurotoxins. Given the indication of ferroptosis in PD pathology, several studies have been conducted to examine whether ferroptosis plays role in the loss of dopaminergic neurons in PD. However, there are still few reports showing an authentic form of ferroptosis in neuronal cells during exposure to the neurotoxins used as PD inducers. In this review article, we summarize the history of the uses of chemicals to create PD models in vivo and in vitro. Besides, we also survey recent reports examining the possible involvement of ferroptosis in chemical models of PD.
Collapse
Affiliation(s)
- Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|