1
|
Heffernan ÁB, Steinruecke M, Dempsey G, Chandran S, Selvaraj BT, Jiwaji Z, Stavrou M. Role of glia in delirium: proposed mechanisms and translational implications. Mol Psychiatry 2024:10.1038/s41380-024-02801-4. [PMID: 39463449 DOI: 10.1038/s41380-024-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Delirium is a common acute onset neurological syndrome characterised by transient fluctuations in cognition. It affects over 20% of medical inpatients and 50% of those critically ill. Delirium is associated with morbidity and mortality, causes distress to patients and carers, and has significant socioeconomic costs in ageing populations. Despite its clinical significance, the pathophysiology of delirium is understudied, and many underlying cellular mechanisms remain unknown. There are currently no effective pharmacological treatments which directly target underlying disease processes. Although many studies focus on neuronal dysfunction in delirium, glial cells, primarily astrocytes, microglia, and oligodendrocytes, and their associated systems, are increasingly implicated in delirium pathophysiology. In this review, we discuss current evidence which implicates glial cells in delirium, including biomarker studies, post-mortem tissue analyses and pre-clinical models. In particular, we focus on how astrocyte pathology, including aberrant brain energy metabolism and glymphatic dysfunction, reactive microglia, blood-brain barrier impairment, and white matter changes may contribute to the pathogenesis of delirium. We also outline limitations in this body of work and the unique challenges faced in identifying causative mechanisms in delirium. Finally, we discuss how established neuroimaging and single-cell techniques may provide further mechanistic insight at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Áine Bríd Heffernan
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Georgia Dempsey
- School of Medicine, University of St Andrews, St Andrews, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Zoeb Jiwaji
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Noorbakhsh S, Gomez L, Joung Y, Meyer C, Hanos DS, Freedberg M, Klingensmith N, Grant AA, Koganti D, Nguyen J, Smith RN, Sciarretta JD. Hepatic Arterioportal Fistula Following Liver Trauma: Case Series and Review of the Literature. Vasc Endovascular Surg 2023; 57:749-755. [PMID: 36940466 PMCID: PMC10724846 DOI: 10.1177/15385744231165155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
PURPOSE Hepatic arterioportal fistula (HAPF) is an uncommon complication of hepatic trauma, which can manifest with abdominal pain and the sequelae of portal hypertension months to years after injury. The purpose of this study is to present cases of HAPF from our busy urban trauma center and make recommendations for management. METHODS One hundred and twenty-seven patients with high-grade penetrating liver injuries (American Association for the Surgery of Trauma [AAST] - Grades IV-V) between January 2019 and October 2022 were retrospectively reviewed. Five patients were identified with an acute hepatic arterioportal fistula following abdominal trauma from our ACS-verified adult Level 1 trauma center. Institutional experience with overall surgical management is described and reviewed with the current literature. RESULTS Four of our patients presented in hemorrhagic shock requiring emergent operative intervention. The first patient had postoperative angiography and coil embolization of the HAPF. Patients 2 through 4 underwent damage control laparotomy with temporary abdominal closure followed by postoperative transarterial embolization with gelatin sponge particles (Gelfoam) or combined Gelfoam/n-butyl cyanoacrylate. The final patient went directly for angiography and Gelfoam embolization after identification of the HAPF. All 5 patients had resolution of HAPF on follow-up imaging with continued post management for traumatic injuries. CONCLUSION Hepatic arterioportal fistula can present as a complication of hepatic injury and manifest with significant hemodynamic aberrations. Although surgical intervention was required to achieve hemorrhage control in almost all cases, management of HAPF in the setting of high-grade liver injuries was achieved successfully with modern endovascular techniques. A multidisciplinary approach to such injuries is necessary to optimize care in the acute setting following traumatic injury.
Collapse
Affiliation(s)
- Soroosh Noorbakhsh
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - Lissette Gomez
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - Yoo Joung
- Grady Memorial Hospital, Atlanta, GA, USA
- Morehouse School of Medicine, Atlanta, GA, USA
| | - Courtney Meyer
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - Dustin S. Hanos
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - Mari Freedberg
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - Nathan Klingensmith
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - April A. Grant
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - Deepika Koganti
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
| | - Jonathan Nguyen
- Grady Memorial Hospital, Atlanta, GA, USA
- Morehouse School of Medicine, Atlanta, GA, USA
| | - Randi N. Smith
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
- Morehouse School of Medicine, Atlanta, GA, USA
| | - Jason D. Sciarretta
- Emory University School of Medicine, Atlanta, GA, USA
- Grady Memorial Hospital, Atlanta, GA, USA
- Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2023; 48:1100-1128. [PMID: 36322369 DOI: 10.1007/s11064-022-03771-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Glutamine is an essential cerebral metabolite. Several critical brain processes are directly linked to glutamine, including ammonia homeostasis, energy metabolism and neurotransmitter recycling. Astrocytes synthesize and release large quantities of glutamine, which is taken up by neurons to replenish the glutamate and GABA neurotransmitter pools. Astrocyte glutamine hereby sustains the glutamate/GABA-glutamine cycle, synaptic transmission and general brain function. Cerebral glutamine homeostasis is linked to the metabolic coupling of neurons and astrocytes, and relies on multiple cellular processes, including TCA cycle function, synaptic transmission and neurotransmitter uptake. Dysregulations of processes related to glutamine homeostasis are associated with several neurological diseases and may mediate excitotoxicity and neurodegeneration. In particular, diminished astrocyte glutamine synthesis is a common neuropathological component, depriving neurons of an essential metabolic substrate and precursor for neurotransmitter synthesis, hereby leading to synaptic dysfunction. While astrocyte glutamine synthesis is quantitatively dominant in the brain, oligodendrocyte-derived glutamine may serve important functions in white matter structures. In this review, the crucial roles of glial glutamine homeostasis in the healthy and diseased brain are discussed. First, we provide an overview of cellular recycling, transport, synthesis and metabolism of glutamine in the brain. These cellular aspects are subsequently discussed in relation to pathological glutamine homeostasis of hepatic encephalopathy, epilepsy, Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. Further studies on the multifaceted roles of cerebral glutamine will not only increase our understanding of the metabolic collaboration between brain cells, but may also aid to reveal much needed therapeutic targets of several neurological pathologies.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
5
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
6
|
Zhao L, Li Y, Wang Y, Ge Z, Zhu H, Zhou X, Li Y. Non-hepatic Hyperammonemia: A Potential Therapeutic Target for Sepsis-associated Encephalopathy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:738-751. [PMID: 34939553 DOI: 10.2174/1871527321666211221161534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Sepsis-Associated Encephalopathy (SAE) is a common complication in the acute phase of sepsis, and patients who develop SAE have a higher mortality rate, longer hospital stay, and worse quality of life than other sepsis patients. Although the incidence of SAE is as high as 70% in sepsis patients, no effective treatment is available for this condition. To develop an effective treatment for SAE, it is vital to explore its pathogenesis. It is known that hyperammonemia is a possible factor in the pathogenesis of hepatic encephalopathy as ammonia is a potent neurotoxin. Furthermore, our previous studies indicate that non-hepatic hyperammonemia seems to occur more often in sepsis patients; it was also found that >50% of sepsis patients with non-hepatic hyperammonemia exhibited encephalopathy and delirium. Substatistical analyses indicate that non-hepatic hyperammonemia is an independent risk factor for SAE. This study updates the definition, clinical manifestations, and diagnosis of SAE; it also investigates the possible treatment options available for non-hepatic hyperammonemia in patients with sepsis and the mechanisms by which non-hepatic hyperammonemia causes encephalopathy.
Collapse
Affiliation(s)
- Lina Zhao
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun Li
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
| | - Yunying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
| | - Zengzheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiuhua Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
8
|
Hoshino Y, Kodaira M, Matsuno A, Kaneko T, Fukuyama T, Takano K, Yazaki M, Sekijima Y. Reversible Leukoencephalopathy in a Man with Childhood-onset Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome. Intern Med 2022; 61:553-557. [PMID: 34433721 PMCID: PMC8907781 DOI: 10.2169/internalmedicine.7843-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 49-year-old Japanese man had shown developmental delay, learning difficulties, epilepsy, and slowly progressive gait disturbance in elementary school. At 46 years old, he experienced repeated drowsiness with or without generalized convulsions, and hyperammonemia was detected. Brain magnetic resonance imaging detected multiple cerebral white matter lesions. An electroencephalogram showed diffuse slow basic activities with 2- to 3-Hz δ waves. Genetic tests confirmed a diagnosis of hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Leukoencephalopathy was resolved following the administration of L-arginine and lactulose with a decrease in plasma ammonia levels and glutamine-glutamate peak on magnetic resonance spectroscopy. Leukoencephalopathy in HHH syndrome may be reversible with the resolution of hyperammonemia-induced glutamine toxicity.
Collapse
Affiliation(s)
- Yumi Hoshino
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Minori Kodaira
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Atsuhiro Matsuno
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Tomoki Kaneko
- Department of Radiology, Shinshu University School of Medicine, Japan
| | | | - Kyoko Takano
- Center for Medical Genetics, Shinshu University Hospital, Japan
| | - Masahide Yazaki
- Institute for Biomedical Sciences, Shinshu University, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
- Institute for Biomedical Sciences, Shinshu University, Japan
| |
Collapse
|
9
|
Sen K, Whitehead M, Castillo Pinto C, Caldovic L, Gropman A. Fifteen years of urea cycle disorders brain research: Looking back, looking forward. Anal Biochem 2022; 636:114343. [PMID: 34637785 PMCID: PMC8671367 DOI: 10.1016/j.ab.2021.114343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Urea cycle disorders (UCD) are inherited diseases resulting from deficiency in one of six enzymes or two carriers that are required to remove ammonia from the body. UCD may be associated with neurological damage encompassing a spectrum from asymptomatic/mild to severe encephalopathy, which results in most cases from Hyperammonemia (HA) and elevation of other neurotoxic intermediates of metabolism. Electroencephalography (EEG), Magnetic resonance imaging (MRI) and Proton Magnetic resonance spectroscopy (MRS) are noninvasive measures of brain function and structure that can be used during HA to guide management and provide prognostic information, in addition to being research tools to understand the pathophysiology of UCD associated brain injury. The Urea Cycle Rare disorders Consortium (UCDC) has been invested in research to understand the immediate and downstream effects of hyperammonemia (HA) on brain using electroencephalogram (EEG) and multimodal brain MRI to establish early patterns of brain injury and to track recovery and prognosis. This review highlights the evolving knowledge about the impact of UCD and HA in particular on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery. It recognizes the work of others and discusses the UCDC's prior work and future research priorities.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States
| | - Matthew Whitehead
- Division of Radiology, Children's National Hospital, Washington D.C., United States
| | | | - Ljubica Caldovic
- Childrens' Research Institute, Children's National Hospital, Washington D.C., United States
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States.
| |
Collapse
|
10
|
Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2021; 42:2593-2610. [PMID: 34665389 DOI: 10.1007/s10571-021-01156-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Franciele Fátima Lopes
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
11
|
Zimmermann M, Reichert AS. Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia - a novel perspective on hepatic encephalopathy. Biol Chem 2021; 402:1103-1113. [PMID: 34331848 DOI: 10.1515/hsz-2021-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
Hepatic encephalopathy (HE) is a well-studied, neurological syndrome caused by liver dysfunctions. Ammonia, the major toxin during HE pathogenesis, impairs many cellular processes within astrocytes. Yet, the molecular mechanisms causing HE are not fully understood. Here we will recapitulate possible underlying mechanisms with a clear focus on studies revealing a link between altered energy metabolism and HE in cellular models and in vivo. The role of the mitochondrial glutamate dehydrogenase and its role in metabolic rewiring of the TCA cycle will be discussed. We propose an updated model of ammonia-induced toxicity that may also be exploited for therapeutic strategies in the future.
Collapse
Affiliation(s)
- Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Häussinger D, Butz M, Schnitzler A, Görg B. Pathomechanisms in hepatic encephalopathy. Biol Chem 2021; 402:1087-1102. [PMID: 34049427 DOI: 10.1515/hsz-2021-0168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Markus Butz
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Hamdani EH, Popek M, Frontczak-Baniewicz M, Utheim TP, Albrecht J, Zielińska M, Chaudhry FA. Perturbation of astroglial Slc38 glutamine transporters by NH 4 + contributes to neurophysiologic manifestations in acute liver failure. FASEB J 2021; 35:e21588. [PMID: 34169573 DOI: 10.1096/fj.202001712rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Ammonia is considered the main pathogenic toxin in hepatic encephalopathy (HE). However, the molecular mechanisms involved have been disputed. As altered glutamatergic and GABAergic neurotransmission has been reported in HE, we investigated whether four members of the solute carrier 38 (Slc38) family of amino acid transporters-involved in the replenishment of glutamate and GABA-contribute to ammonia neurotoxicity in HE. We show that ammonium ion exerts multiple actions on the Slc38 transporters: It competes with glutamine for the binding to the system N transporters Slc38a3 and Slc38a5, consequently inhibiting bidirectional astroglial glutamine transport. It also competes with H+ , Na+ , and K+ for uncoupled permeation through the same transporters, which may perturb astroglial intracellular pH, membrane potential, and K+ -buffering. Knockdown of Slc38a3 in mice results in cerebral cortical edema and disrupted neurotransmitter synthesis mimicking events contributing to HE development. Finally, in a mouse model of acute liver failure (ALF), we demonstrate the downregulation of Slc38a3 protein, impeded astroglial glutamine release, and cytotoxic edema. Altogether, we demonstrate contribution of Slc38 transporters to the ammonia-induced impairment of glutamine recycling between astrocytes and neurons, a phenomenon underlying acute ammonia neurotoxicity in the setting of ALF.
Collapse
Affiliation(s)
- El Hassan Hamdani
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Institute of Behavioural Science, Oslo Metropolitan University, Oslo, Norway
| | - Mariusz Popek
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Jan Albrecht
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Magdalena Zielińska
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Sen K, Anderson AA, Whitehead MT, Gropman AL. Review of Multi-Modal Imaging in Urea Cycle Disorders: The Old, the New, the Borrowed, and the Blue. Front Neurol 2021; 12:632307. [PMID: 33995244 PMCID: PMC8113618 DOI: 10.3389/fneur.2021.632307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The urea cycle disorders (UCD) are rare genetic disorder due to a deficiency of one of six enzymes or two transport proteins that act to remove waste nitrogen in form of ammonia from the body. In this review, we focus on neuroimaging studies in OTCD and Arginase deficiency, two of the UCD we have extensively studied. Ornithine transcarbamylase deficiency (OTCD) is the most common of these, and X-linked. Hyperammonemia (HA) in OTCD is due to deficient protein handling. Cognitive impairments and neurobehavioral disorders have emerged as the major sequelae in Arginase deficiency and OTCD, especially in relation to executive function and working memory, impacting pre-frontal cortex (PFC). Clinical management focuses on neuroprotection from HA, as well as neurotoxicity from other known and yet unclassified metabolites. Prevention and mitigation of neurological injury is a major challenge and research focus. Given the impact of HA on neurocognitive function of UCD, neuroimaging modalities, especially multi-modality imaging platforms, can bring a wealth of information to understand the neurocognitive function and biomarkers. Such information can further improve clinical decision making, and result in better therapeutic interventions. In vivo investigations of the affected brain using multimodal neuroimaging combined with clinical and behavioral phenotyping hold promise. MR Spectroscopy has already proven as a tool to study biochemical aberrations such as elevated glutamine surrounding HA as well as to diagnose partial UCD. Functional Near Infrared Spectroscopy (fNIRS), which assesses local changes in cerebral hemodynamic levels of cortical regions, is emerging as a non-invasive technique and will serve as a surrogate to fMRI with better portability. Here we review two decades of our research using non-invasive imaging and how it has contributed to an understanding of the cognitive effects of this group of genetic conditions.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Afrouz A Anderson
- Department of Research, Focus Foundation, Crofton, MD, United States
| | - Matthew T Whitehead
- Department of Radiology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
15
|
Sen K, Whitehead MT, Gropman AL. Multimodal imaging in urea cycle-related neurological disease - What can imaging after hyperammonemia teach us? ACTA ACUST UNITED AC 2020; 5:87-95. [PMID: 33344172 PMCID: PMC7739971 DOI: 10.3233/trd-200048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Urea cycle-related brain disease may take on variable neuroimaging manifestations, ranging from normal to abnormal with or without a signature appearance. In the past, we have described the usefulness of multimodal imaging in identifying biomarkers of neuronal injury in UCD patients. In this study, we report unique findings in an adolescent male with neonatal-onset OTC deficiency after an episode of hyperammonemia. MATERIALS AND METHODS Multiplanar, multisequence MR imaging (T1WI, T2WI, T2 FLAIR, diffusion weighted images and gradient echo) of the brain was performed on seven separate occasions over the course following the acute illness; first five exams were performed within 28 days of admission and the final two exams were performed approximately 3 and 5 months later. RESULTS 1.The initial MR revealed increased signal on T2WI in the basal ganglia, claustrum and frontoparietal white matter; which remained stable over time. By the 5th exam, signal changes had developed in frontal cortex; reflecting permanent injury. 2. DTI tractography of the corticospinal tracts displayed revealed diminution of the number of projectional and commissural fibers over time. 3. Blood flow measurements demonstrated hypoperfusion on the fifth exams followed by hyperperfusion on the final two studies. 4. MR spectroscopy demonstrated that glutamine was elevated during hyperammonemia with myoinositol reduction, reflecting osmotic buffering. CONCLUSION This particular multimodal magnetic resonance neuroimaging showed novel, temporally specific manifestations over the disease course in OTC deficiency. This prospective imaging study expands our understanding of the effect of hyperammonemia on the structure and biochemistry of the nervous system.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Developmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA
| | - Matthew T Whitehead
- Department of Radiology, Children's National Hospital, Washington, DC, USA.,George Washington University of Medicine and Health Sciences, Washington, DC, USA
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA.,George Washington University of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
16
|
Kerbert AJC, Jalan R. Recent advances in understanding and managing hepatic encephalopathy in chronic liver disease. F1000Res 2020; 9. [PMID: 32399191 PMCID: PMC7194462 DOI: 10.12688/f1000research.22183.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a common, severe complication of advanced chronic liver disease (CLD) and has a devastating impact on the patient’s quality of life and prognosis. The neurotoxin ammonia and the presence of systemic and neurological inflammation are considered the key drivers of this neuropsychiatric syndrome. Treatment options available in routine clinical practice are limited, and the development of novel therapies is hampered owing to the complexity and heterogeneity of HE. This review article aims to outline the current understanding of the pathomechanisms of HE and the recent advances in the identification and development of novel therapeutic targets.
Collapse
Affiliation(s)
- Annarein J C Kerbert
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
17
|
Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis 2020; 35:559-578. [PMID: 32146658 DOI: 10.1007/s11011-020-00549-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Gholamreza Namvar
- Department of Neuroscience and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roger Williams
- The Institute of Hepatology London and Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
18
|
Liotta EM, Kimberly WT. Cerebral edema and liver disease: Classic perspectives and contemporary hypotheses on mechanism. Neurosci Lett 2020; 721:134818. [PMID: 32035166 DOI: 10.1016/j.neulet.2020.134818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Liver disease is a growing public health concern. Hepatic encephalopathy, the syndrome of brain dysfunction secondary to liver disease, is a frequent complication of both acute and chronic liver disease and cerebral edema (CE) is a key feature. While altered ammonia metabolism is a key contributor to hepatic encephalopathy and CE in liver disease, there is a growing appreciation that additional mechanisms contribute to CE. In this review we will begin by presenting three classic perspectives that form a foundation for a discussion of CE in liver disease: 1) CE is unique to acute liver failure, 2) CE in liver disease is only cytotoxic, and 3) CE in liver disease is primarily an osmotically mediated consequence of ammonia and glutamine metabolism. We will present each classic perspective along with more recent observations that call in to question that classic perspective. After highlighting these areas of debate, we will explore the leading contemporary mechanisms hypothesized to contribute to CE during liver disease.
Collapse
Affiliation(s)
- Eric M Liotta
- Northwestern University-Feinberg School of Medicine, Department of Neurology, United States; Northwestern University-Feinberg School of Medicine, Department of Surgery, Division of Organ Transplantation, United States; Northwestern University Transplant Outcomes Research Collaboration, United States.
| | | |
Collapse
|
19
|
Heidari R. Brain mitochondria as potential therapeutic targets for managing hepatic encephalopathy. Life Sci 2019; 218:65-80. [PMID: 30578865 DOI: 10.1016/j.lfs.2018.12.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
|
20
|
Obara-Michlewska M, Ding F, Popek M, Verkhratsky A, Nedergaard M, Zielinska M, Albrecht J. Interstitial ion homeostasis and acid-base balance are maintained in oedematous brain of mice with acute toxic liver failure. Neurochem Int 2018; 118:286-291. [PMID: 29772253 DOI: 10.1016/j.neuint.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 01/25/2023]
Abstract
Acute toxic liver failure (ATLF) rapidly leads to brain oedema and neurological decline. We evaluated the ability of ATLF-affected brain to control the ionic composition and acid-base balance of the interstitial fluid. ATLF was induced in 10-12 weeks old male C57Bl mice by single intraperitoneal (i.p.) injection of 100 μg/g azoxymethane (AOM). Analyses were carried out in cerebral cortex of precomatous mice 20-24 h after AOM administration. Brain fluid status was evaluated by measuring apparent diffusion coefficient [ADC] using NMR spectroscopy, Evans Blue extravasation, and accumulation of an intracisternally-injected fluorescent tracer. Extracellular pH ([pH]e) and ([K+]e) were measured in situ with ion-sensitive microelectrodes. Cerebral cortical microdialysates were subjected to photometric analysis of extracellular potassium ([K+]e), sodium ([Na+]e) and luminometric assay of extracellular lactate ([Lac]e). Potassium transport in cerebral cortical slices was measured ex vivo as 86Rb uptake. Cerebral cortex of AOM-treated mice presented decreased ADC supporting the view that ATLF-induced brain oedema is primarily cytotoxic in nature. In addition, increased Evans blue extravasation indicated blood brain barrier leakage, and increased fluorescent tracer accumulation suggested impaired interstitial fluid passage. However, [K+]e, [Na+]e, [Lac]e, [pH]e and potassium transport in brain of AOM-treated mice was not different from control mice. We conclude that in spite of cytotoxic oedema and deregulated interstitial fluid passage, brain of mice with ATLF retains the ability to maintain interstitial ion homeostasis and acid-base balance. Tentatively, uncompromised brain ion homeostasis and acid-base balance may contribute to the relatively frequent brain function recovery and spontaneous survival rate in human patients with ATLF.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Magdalena Zielinska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| |
Collapse
|
21
|
Fried DE, Watson RE, Robson SC, Gulbransen BD. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling. Am J Physiol Gastrointest Liver Physiol 2017; 313:G570-G580. [PMID: 28838986 PMCID: PMC5814673 DOI: 10.1152/ajpgi.00154.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/31/2023]
Abstract
Impaired gut motility may contribute, at least in part, to the development of systemic hyperammonemia and systemic neurological disorders in inherited metabolic disorders, or in severe liver and renal disease. It is not known whether enteric neurotransmission regulates intestinal luminal and hence systemic ammonia levels by induced changes in motility. Here, we propose and test the hypothesis that ammonia acts through specific enteric circuits to influence gut motility. We tested our hypothesis by recording the effects of ammonia on neuromuscular transmission in tissue samples from mice, pigs, and humans and investigated specific mechanisms using novel mutant mice, selective drugs, cellular imaging, and enzyme-linked immunosorbent assays. Exogenous ammonia increased neurogenic contractions and decreased neurogenic relaxations in segments of mouse, pig, and human intestine. Enteric glial cells responded to ammonia with intracellular Ca2+ responses. Inhibition of glutamine synthetase and the deletion of glial connexin-43 channels in hGFAP::CreERT2+/-/connexin43f/f mice potentiated the effects of ammonia on neuromuscular transmission. The effects of ammonia on neuromuscular transmission were blocked by GABAA receptor antagonists, and ammonia drove substantive GABA release as did the selective pharmacological activation of enteric glia in GFAP::hM3Dq transgenic mice. We propose a novel mechanism whereby local ammonia is operational through GABAergic glial signaling to influence enteric neuromuscular circuits that regulate intestinal motility. Therapeutic manipulation of these mechanisms may benefit a number of neurological, hepatic, and renal disorders manifesting hyperammonemia.NEW & NOTEWORTHY We propose that local circuits in the enteric nervous system sense and regulate intestinal ammonia. We show that ammonia modifies enteric neuromuscular transmission to increase motility in human, pig, and mouse intestine model systems. The mechanisms underlying the effects of ammonia on enteric neurotransmission include GABAergic pathways that are regulated by enteric glial cells. Our new data suggest that myenteric glial cells sense local ammonia and directly modify neurotransmission by releasing GABA.
Collapse
Affiliation(s)
- David E. Fried
- 1Neuroscience Program and Department of Physiology,
Michigan State University, East Lansing,
Michigan;
| | - Ralph E. Watson
- 2Department of Medicine, Michigan State
University, East Lansing, Michigan; and
| | - Simon C. Robson
- 3Divisions of Gastroenterology and Transplantation, Department
of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts
| | - Brian D. Gulbransen
- 1Neuroscience Program and Department of Physiology,
Michigan State University, East Lansing,
Michigan;
| |
Collapse
|
22
|
Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, Rose CF. Ammonia toxicity: from head to toe? Metab Brain Dis 2017; 32:529-538. [PMID: 28012068 PMCID: PMC8839071 DOI: 10.1007/s11011-016-9938-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.
Collapse
Affiliation(s)
- Srinivasan Dasarathy
- Department of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| | - Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vinita Rangroo Thrane
- Department of Ophthalmology, Haukeland University Hospital, 5021, Bergen, Norway
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Pondicherry, India
| | - Peter Ott
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus, Denmark
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
23
|
Brusilow WSA, Peters TJ. Therapeutic effects of methionine sulfoximine in multiple diseases include and extend beyond inhibition of glutamine synthetase. Expert Opin Ther Targets 2017; 21:461-469. [PMID: 28292200 DOI: 10.1080/14728222.2017.1303484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Methionine sulfoximine (MSO), a well-characterized inhibitor of glutamine synthetase, displays significant therapeutic benefits in animal models for several human diseases. This amino acid might therefore be a viable candidate for drug development to treat diseases for which there are few effective therapies. Areas covered: We describe the effects of MSO on brain swelling occurring in overt hepatic encephalopathy resulting from liver failure, the effects of MSO on excitotoxic damage involved in amyotrophic lateral sclerosis (ALS) or resulting from stroke, and the effects of MSO on a model for an inflammatory immune response involved in a range of diseases. We conclude that these results imply the existence of another therapeutic target for MSO in addition to glutamine synthetase. Expert opinion: We summarize the various diseases for which MSO treatment might be a candidate for drug development. We discuss why MSO has limited enthusiasm in the scientific and medical communities for use in humans, with a rebuttal to those negative opinions. And we conclude that MSO should be considered a candidate drug to treat brain swelling involved in overt hepatic encephalopathy and diseases involving an inflammatory immune response.
Collapse
Affiliation(s)
- William S A Brusilow
- a Department of Biochemistry and Molecular Biology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Tyler J Peters
- a Department of Biochemistry and Molecular Biology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
24
|
Tsai CY, Su CH, Chan JYH, Chan SHH. Nitrosative Stress-Induced Disruption of Baroreflex Neural Circuits in a Rat Model of Hepatic Encephalopathy: A DTI Study. Sci Rep 2017; 7:40111. [PMID: 28079146 PMCID: PMC5228038 DOI: 10.1038/srep40111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
The onset of hepatic encephalopathy (HE) in liver failure is associated with high mortality; the underlying mechanism is undecided. Here we report that in an acute liver failure model employing intraperitoneal administration of thioacetamide in Sprague-Dawley rats, diffusion weighted imaging revealed a progressive reduction in apparent diffusion coefficient in the brain stem. Diffusion tensor imaging further showed that the connectivity between nucleus tractus solitarii (NTS), the terminal site of baroreceptor afferents in brain stem and rostral ventrolateral medulla (RVLM), the origin of sympathetic innervation of blood vessels, was progressively disrupted until its disappearance, coincidental with the irreversible cessation of baroreflex-mediated sympathetic vasomotor tone signifying clinically the occurrence of brain death. In addition, superoxide, nitric oxide, peroxynitrite and ammonia levels in the NTS or RVLM were elevated, alongside swelling of astroctytes. A scavenger of peroxynitrite, but not an antioxidant, delivered intracisternally reversed all these events. We conclude that nitrosative stress because of augmented peroxynitrite related to accumulation of ammonia and swelling of astrocytes in the NTS or RVLM, leading to cytotoxic edema in the brain stem and severance of the NTS-RVLM connectivity, underpins the defunct baroreflex-mediated sympathetic vasomotor tone that accounts for the high mortality associated with HE.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
25
|
Mishra S, Mishra R. Tolerance of hyperammonemia in brain of Heteropneustes fossilis is supported by glutamate-glutamine cycle. J Chem Neuroanat 2016; 80:11-18. [PMID: 27913184 DOI: 10.1016/j.jchemneu.2016.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/27/2016] [Accepted: 11/27/2016] [Indexed: 11/30/2022]
Abstract
This report presents analysis of molecular switches associated with tolerance to hyperammonemia in Heteropneustes fossilis because it tolerates about 100-fold more ammonia than mammals. Brains of Heteropneustes fossilis exposed to 100mM ammonium chloride were dissected after Zero hour as control, 16h and 20h exposure. The status of neuron and glia were analysed by Golgi staining, Luxol Fast Blue, and Nissl's staining. The expression patterns of genes associated to homeostasis of neuron and glia, management of oxidative stress and inflammation, ammonia metabolism and brain derived neurotrophic factor were analysed through reverse-transcriptase-polymerase chain reaction. After 20h of hyperammonemia glia were more degenerated than neurons. The expression of mRNA of lactate dehydrogenase (Ldh), super oxide dismutase (Sod), catalase (Catalase), arginase-I (Arg I), inducible nitric oxide (iNos), glutaminase (GA), and brain derived neurotrophic factor (Bdnf) was up-regulated than the control. The levels of mRNA of Arg II, glutamate dehydrogenase (Gdh), glutamine synthetase (GS), glial fibrillary acidic protein (Gfap), proliferating cell nuclear antigen (Pcna) and S100β were down-regulated than control due to hyperammonemia. It appears first observation on impact of hyperammonemia on the status of neurons, myelination and glial cells in brain of Heteropneustes fossilis by Golgi staining, Nissl's and Luxol Fast Blue staining. The distribution of ammonia and glutamate metabolising enzymes in brain supports multi-centric mechanism (s) of regulation. The expression of Arg I and Arg II gets inversely regulated and glutamate-glutamine cycle also operates in Heteropneustes fossilis against hyperammonemia in brain.
Collapse
Affiliation(s)
- Suman Mishra
- Biochemistry and Molecular Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
26
|
Althobaiti YS, Almalki AH, Das SC, Alshehri FS, Sari Y. Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine. Neurosci Lett 2016; 634:25-31. [PMID: 27702628 DOI: 10.1016/j.neulet.2016.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023]
Abstract
Repeated exposure to high doses of methamphetamine (METH) is known to alter several neurotransmitters in certain brain regions. Little is known about the effects of ceftriaxone (CEF), a β-lactam antibiotic, known to upregulate glutamate transporter subtype 1, post-treatment on METH-induced depletion of dopamine and serotonin (5-HT) tissue content in brain reward regions. Moreover, the effects of METH and CEF post-treatment on glutamate and glutamine tissue content are not well understood. In this study, Wistar rats were used to investigate the effects of METH and CEF post-treatment on tissue content of dopamine/5-HT and glutamate/glutamine in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Rats received either saline or METH (10mg/kg, i.p. every 2h×4) followed by either saline or CEF (200mg/kg, i.p, every day×3) post-treatment. METH induced a significant depletion of dopamine and 5-HT in the NAc and PFC. Importantly, dopamine tissue content was completely restored in the NAc following CEF post-treatment. Additionally, METH caused a significant decrease in glutamate and glutamine tissue content in PFC, and this effect was attenuated by CEF post-treatment. These findings demonstrate for the first time the attenuating effects of CEF post-treatment on METH induced alterations in the tissue contents of dopamine, glutamate, and glutamine.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States
| | - Atiah H Almalki
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States; University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Medicinal and Biological Chemistry, Toledo, OH, United States
| | - Sujan C Das
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States; University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Medicinal and Biological Chemistry, Toledo, OH, United States
| | - Fahad S Alshehri
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States; University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Medicinal and Biological Chemistry, Toledo, OH, United States.
| |
Collapse
|
27
|
Renuka M, Vijayakumar N, Ramakrishnan A. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study. Biomed Pharmacother 2016; 82:345-54. [DOI: 10.1016/j.biopha.2016.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 01/12/2023] Open
|
28
|
Thompson WA, Rodela TM, Richards JG. Hardness does not affect the physiological responses of wild and domestic strains of diploid and triploid rainbow trout Oncorhynchus mykiss to short-term exposure to pH 9.5. JOURNAL OF FISH BIOLOGY 2016; 89:1345-1358. [PMID: 27325291 DOI: 10.1111/jfb.13045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
This study examined the effects of water hardness on the physiological responses associated with high pH exposure in multiple strains of diploid and triploid rainbow trout Oncorhynchus mykiss. To accomplish this, three wild strains and one domesticated strain of diploid and triploid O. mykiss were abruptly transferred from control soft water (City of Vancouver dechlorinated tap water; pH 6·7; [CaCO3 ] < 17·9 mg l(-1) ) to control soft water (handling control), high pH soft water (pH 9·5; [CaCO3 ] < 17·9 mg l(-1) ), or high pH hard water (pH 9·5; [CaCO3 ] = 320 mg l(-1) ) followed by sampling at 24 h for physiological measurements. There was a significant effect of ploidy on loss of equilibrium (LOE) over the 24 h exposure, with only triploid O. mykiss losing equilibrium at high pH in both soft and hard water. Furthermore, exposure to pH 9·5 resulted in significant decreases in plasma sodium and chloride, and increases in plasma and brain ammonia with no differences between soft and hard water. There was no significant effect of strain on LOE, but there were significant differences between strains in brain ammonia and plasma cortisol. Overall, there were no clear protective effects of hardness on high pH exposure in these strains of O. mykiss.
Collapse
Affiliation(s)
- W A Thompson
- The University of Calgary, 507 Campus Drive NW, Calgary, AB, T2N 4V8, Canada
| | - T M Rodela
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| | - J G Richards
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| |
Collapse
|
29
|
Differential regional responsiveness of astroglia in mild hepatic encephalopathy: An Immunohistochemical approach in bile duct ligated rat. Acta Histochem 2016; 118:338-46. [PMID: 26995310 DOI: 10.1016/j.acthis.2016.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/08/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs in both acute and chronic liver failure. However, the pathomechanisms of the disease remains obscure. Neuropathological studies have demonstrated a primary gliopathy in humans as well as in animal models of chronic and acute liver failure. Here, we have investigated in an animal model of mild HE: the bile duct ligated rat (BDL) at the cirrhotic stage (4 weeks after surgery), the expression of the key marker of mature astrocytes; the glial fibrillary acidic protein (GFAP) in different brain areas such as: Substantia nigra pars compacta (SNc), Ventral tegmental area (VTA), hippocampus, dorsal striatum and brain cortex by means of immunohistochemistry. The immunohistochemical study showed, in BDL compared to the operated controls (shams), a diminished astrocyte reactivity corresponding to a loss of GFAP expression within SNc, VTA, hippocampus and dorsal striatum (p<0.05),whereas in the brain cortex astrocytes appeared strongly immunoreactive with increased GFAP expression (p<0.05) as compared to shams. Our finding demonstrated differential astroglial responses which depend to the specificity of the area investigated and its particular neuronal neighboring environment, and could have possible outcomes on the diverse neuronal functions especially those observed during the different episodes of hepatic encephalopathy.
Collapse
|
30
|
Acute Hyperammonemia Induces NMDA-Mediated Hypophosphorylation of Intermediate Filaments Through PP1 and PP2B in Cerebral Cortex of Young Rats. Neurotox Res 2016; 30:138-49. [PMID: 26936604 DOI: 10.1007/s12640-016-9607-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
In the present work, we studied the effects of toxic ammonia levels on the cytoskeleton of neural cells, with emphasis in the homeostasis of the phosphorylating system associated with the intermediate filaments (IFs). We used in vivo and in vitro models of acute hyperammonemia in 10- and 21-day-old rats. In the in vivo model, animals were intraperitoneally injected with ammonium acetate (7 mmol/Kg), and the phosphorylation level of the cytoskeletal proteins was analyzed in the cerebral cortex and hippocampus 30 and 60 min after injection. The injected ammonia altered the IF phosphorylation of astrocytes (GFAP and vimentin) and neurons (neurofilament subunits of low, middle, and high molecular weight, respectively: NFL, NFM, and NFH) from cerebral cortex of 21-day-old rats. This was a transitory effect observed 30 min after injection, recovering 30 min afterward. Phosphorylation was not altered in the cerebral cortex of 10-day-old pups. The homeostasis of hippocampal IFs was preserved at the studied ages and times. In the in vitro model, cortical slices of 10- and 21-day-old rats were incubated with 0.5, 1, or 5 mM NH4Cl, and the phosphorylation level of the IF proteins was analyzed after 30 min. The IF phosphorylation was not altered in cortical slices of 10-day-old rats; however, in cortical slices of 21-day-old pups, 5 mM NH4Cl induced hypophosphorylation of GFAP and vimentin, preserving neurofilament phosphorylation levels. Hypophosphorylation was mediated by the protein phosphatases 1 (PP1) and 2B (PP2B), and this event was associated with Ca(2+) influx via N-methyl-D-aspartate (NMDA) glutamate receptors. The aim of this study is to show that acute ammonia toxicity targets the phosphorylating system of IFs in the cerebral cortex of rats in a developmentally regulated manner, and NMDA-mediated Ca(2+) signaling plays a central role in this mechanism. We propose that the disruption of cytoskeletal homeostasis could be an endpoint of the acute hyperammonemia in the developing brain. We believe that these results contribute for better understanding the molecular basis of the ammonia toxicity in brain.
Collapse
|
31
|
Jayakumar AR, Norenberg MD. Glutamine Synthetase: Role in Neurological Disorders. ADVANCES IN NEUROBIOLOGY 2016; 13:327-350. [PMID: 27885636 DOI: 10.1007/978-3-319-45096-4_13] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.
Collapse
Affiliation(s)
| | - Michael D Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA.
- Departments of Pathology, University of Miami School of Medicine, 016960, Miami, FL, 33101, USA.
- Departments of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
32
|
|
33
|
Jeong TO, Yoon JC, Lee JB, Jin YH, Hwang SB. Reversible Splenial Lesion Syndrome (RESLES) Following Glufosinate Ammonium Poisoning. J Neuroimaging 2015; 25:1050-2. [PMID: 25682793 DOI: 10.1111/jon.12216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 11/30/2022] Open
Abstract
Isolated and reversible lesion restricted to the splenium of the corpus callosum, known as reversible splenial lesion syndrome, have been reported in patients with infection, high-altitude cerebral edema, seizures, antiepileptic drug withdrawal, or metabolic disturbances. Here, we report a 39-year-old female patient with glufosinate ammonium (GLA) poisoning who presented with confusion and amnesia. Diffusion-weighted magnetic resonance imaging of the brain revealed cytotoxic edema of the splenium of the corpus callosum. The lesion was not present on follow-up MR imaging performed 9 months later. We postulate that a GLA-induced excitotoxic mechanism was the cause of this reversible splenial lesion.
Collapse
Affiliation(s)
- Tae Oh Jeong
- Research Institute of Clinical Medicine of Chonbuk National University, Emergency Medicine, Jeonju-si, Republic of Korea
| | - Jae Chol Yoon
- Research Institute of Clinical Medicine of Chonbuk National University, Emergency Medicine, Jeonju-si, Republic of Korea
| | - Jae Baek Lee
- Research Institute of Clinical Medicine of Chonbuk National University, Emergency Medicine, Jeonju-si, Republic of Korea
| | - Young Ho Jin
- Research Institute of Clinical Medicine of Chonbuk National University, Emergency Medicine, Jeonju-si, Republic of Korea
| | - Seung Bae Hwang
- Chonbuk National University Medical School and Hospital, Radiology, Jeonju-si, Republic of Korea
| |
Collapse
|
34
|
Wilkie MP, Stecyk JAW, Couturier CS, Sidhu S, Sandvik GK, Nilsson GE. Reversible brain swelling in crucian carp (Carassius carassius) and goldfish (Carassius auratus) in response to high external ammonia and anoxia. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:65-75. [PMID: 25582543 DOI: 10.1016/j.cbpa.2014.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/15/2023]
Abstract
Increased internal ammonia (hyperammonemia) and ischemic/anoxic insults are known to result in a cascade of deleterious events that can culminate in potentially fatal brain swelling in mammals. It is less clear, however, if the brains of fishes respond to ammonia in a similar manner. The present study demonstrated that the crucian carp (Carassius carassius) was not only able to endure high environmental ammonia exposure (HEA; 2 to 22 mmol L(-1)) but that they experienced 30% increases in brain water content at the highest ammonia concentrations. This swelling was accompanied by 4-fold increases in plasma total ammonia (TAmm) concentration, but both plasma TAmm and brain water content were restored to pre-exposure levels following depuration in ammonia-free water. The closely related, ammonia-tolerant goldfish (Carassius auratus) responded similarly to HEA (up to 3.6 mmol L(-1)), which was accompanied by 4-fold increases in brain glutamine. Subsequent administration of the glutamine synthetase inhibitor, methionine sulfoximine (MSO), reduced brain glutamine accumulation by 80% during HEA. However, MSO failed to prevent ammonia-induced increases in brain water content suggesting that glutamine may not be directly involved in initiating ammonia-induced brain swelling in fishes. Although the mechanisms of brain swelling are likely different, exposure to anoxia for 96 h caused similar, but lesser (10%) increases in brain water content in crucian carp. We conclude that brain swelling in some fishes may be a common response to increased internal ammonia or lower oxygen but further research is needed to deduce the underlying mechanisms behind such responses.
Collapse
Affiliation(s)
- Michael P Wilkie
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jonathan A W Stecyk
- Department of Biosciences, University of Oslo, Oslo, Norway; Department of Biological Sciences, University of Alaska Anchorage, Anchorage, USA
| | | | - Sanya Sidhu
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Guro K Sandvik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
35
|
Ding S, Yang J, Liu L, Ye Y, Wang X, Hu J, Chen B, Zhuge Q. Elevated dopamine induces minimal hepatic encephalopathy by activation of astrocytic NADPH oxidase and astrocytic protein tyrosine nitration. Int J Biochem Cell Biol 2014; 55:252-63. [DOI: 10.1016/j.biocel.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/14/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
|
36
|
Feldman B, Tuchman M, Caldovic L. A zebrafish model of hyperammonemia. Mol Genet Metab 2014; 113:142-7. [PMID: 25069822 PMCID: PMC4191821 DOI: 10.1016/j.ymgme.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Hyperammonemia is the principal consequence of urea cycle defects and liver failure, and the exposure of the brain to elevated ammonia concentrations leads to a wide range of neuro-cognitive deficits, intellectual disabilities, coma and death. Current treatments focus almost exclusively on either reducing ammonia levels through the activation of alternative pathways for ammonia disposal or on liver transplantation. Ammonia is toxic to most fish and its pathophysiology appears to be similar to that in mammals. Since hyperammonemia can be induced in fish simply by immersing them in water with elevated concentration of ammonia, we sought to develop a zebrafish (Danio rerio) model of hyperammonemia. When exposed to 3mM ammonium acetate (NH4Ac), 50% of 4-day old (dpf) fish died within 3hours and 4mM NH4Ac was 100% lethal. We used 4dpf zebrafish exposed to 4mM NH4Ac to test whether the glutamine synthetase inhibitor methionine sulfoximine (MSO) and/or NMDA receptor antagonists MK-801, memantine and ketamine, which are known to protect the mammalian brain from hyperammonemia, prolong survival of hyperammonemic fish. MSO, MK-801, memantine and ketamine all prolonged the lives of the ammonia-treated fish. Treatment with the combination of MSO and an NMDA receptor antagonist was more effective than either drug alone. These results suggest that zebrafish can be used to screen for ammonia-neuroprotective agents. If successful, drugs that are discovered in this screen could complement current treatment approaches to improve the outcome of patients with hyperammonemia.
Collapse
Affiliation(s)
- B Feldman
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - M Tuchman
- Children's National Medical Center, Washington DC, USA
| | - L Caldovic
- Children's National Medical Center, Washington DC, USA.
| |
Collapse
|
37
|
Haack N, Dublin P, Rose CR. Dysbalance of astrocyte calcium under hyperammonemic conditions. PLoS One 2014; 9:e105832. [PMID: 25153709 PMCID: PMC4143319 DOI: 10.1371/journal.pone.0105832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022] Open
Abstract
Increased brain ammonium (NH4+/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4+/NH3, developed within 10–20 minutes and was maintained as long as the NH4+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE.
Collapse
Affiliation(s)
- Nicole Haack
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Pavel Dublin
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
38
|
Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats. J Cereb Blood Flow Metab 2014; 34:460-6. [PMID: 24346692 PMCID: PMC3948122 DOI: 10.1038/jcbfm.2013.218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/03/2023]
Abstract
Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.
Collapse
|
39
|
Morphological changes of cortical pyramidal neurons in hepatic encephalopathy. BMC Neurosci 2014; 15:15. [PMID: 24433342 PMCID: PMC3898242 DOI: 10.1186/1471-2202-15-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
Background Hepatic encephalopathy (HE) is a reversible neuropsychiatric syndrome associated with acute and chronic liver diseases. It includes a number of neuropsychiatric disturbances including impaired motor activity and coordination, intellectual and cognitive function. Results In the present study, we used a chronic rat HE model by ligation of the bile duct (BDL) for 4 weeks. These rats showed increased plasma ammonia level, bile duct hyperplasia and impaired spatial learning memory and motor coordination when tested with Rota-rod and Morris water maze tests, respectively. By immunohistochemistry, the cerebral cortex showed swelling of astrocytes and microglia activation. To gain a better understanding of the effect of HE on the brain, the dendritic arbors of layer V cortical pyramidal neurons and hippocampal CA1 pyramidal neurons were revealed by an intracellular dye injection combined with a 3-dimensional reconstruction. Although the dendritic arbors remained unaltered, the dendritic spine density on these neurons was significantly reduced. It was suggested that the reduction of dendritic spines may be the underlying cause for increased motor evoked potential threshold and prolonged central motor conduction time in clinical finding in cirrhosis. Conclusions We found that HE perturbs CNS functions by altering the dendritic morphology of cortical and hippocampal pyramidal neurons, which may be the underlying cause for the motor and intellectual impairments associated with HE patients.
Collapse
|
40
|
Scott TR, Kronsten VT, Hughes RD, Shawcross DL. Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol 2013; 19:9240-9255. [PMID: 24409052 PMCID: PMC3882398 DOI: 10.3748/wjg.v19.i48.9240] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/28/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Cerebral oedema is a devastating consequence of acute liver failure (ALF) and may be associated with the development of intracranial hypertension and death. In ALF, some patients may develop cerebral oedema and increased intracranial pressure but progression to life-threatening intracranial hypertension is less frequent than previously described, complicating less than one third of cases who have proceeded to coma since the advent of improved clinical care. The rapid onset of encephalopathy may be dramatic with the development of asterixis, delirium, seizures and coma. Cytotoxic and vasogenic oedema mechanisms have been implicated with a preponderance of experimental data favouring a cytotoxic mechanism. Astrocyte swelling is the most consistent neuropathological finding in humans with ALF and ammonia plays a definitive role in the development of cytotoxic brain oedema. The mechanism(s) by which ammonia induces astrocyte swelling remains unclear but glutamine accumulation within astrocytes has led to the osmolyte hypothesis. Current evidence also supports an alternate ‘Trojan horse’ hypothesis, with glutamine as a carrier of ammonia into mitochondria, where its accumulation results in oxidative stress, energy failure and ultimately astrocyte swelling. Although a complete breakdown of the blood-brain barrier is not evident in human ALF, increased permeation to water and other small molecules such as ammonia has been demonstrated resulting from subtle alterations in the protein composition of paracellular tight junctions. At present, there is no fully efficacious therapy for cerebral oedema other than liver transplantation and this reflects our incomplete knowledge of the precise mechanisms underlying this process which remain largely unknown.
Collapse
|
41
|
Ishihara T, Ito M, Niimi Y, Tsujimoto M, Senda J, Kawai Y, Watanabe H, Ishigami M, Ito T, Kamei H, Onishi Y, Nakamura T, Goto H, Naganawa S, Kiuchi T, Sobue G. Clinical and radiological impact of liver transplantation for brain in cirrhosis patients without hepatic encephalopathy. Clin Neurol Neurosurg 2013; 115:2341-7. [DOI: 10.1016/j.clineuro.2013.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/14/2022]
|
42
|
Jarius S, Wildemann B. Aquaporin-4 antibodies, CNS acidosis and neuromyelitis optica: a potential link. Med Hypotheses 2013; 81:1090-5. [PMID: 24182872 DOI: 10.1016/j.mehy.2013.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuromyelitis optica (NMO, Devic's syndrome) is a severely disabling disorder of the central nervous system characterized by optic neuritis and longitudinally extensive myelitis. In around 80% of cases, NMO is caused by autoantibodies to astrocytic aquaporin-4 (AQP4), the most abundant water channel in the CNS. Acute NMO attacks are frequently accompanied by elevated levels of lactate in the cerebrospinal fluid (CSF). As a strongly dissociated anion (pK'=3.7) directly changing the strong ion difference, lactate causes a reduction in the dependent anion [HCO3-] and a rise in [H+], resulting in "metabolic" acidosis in the CSF. CSF acidosis also develops during respiratory failure due to brainstem or high cervical spinal cord lesions, the most common cause of death in NMO. However, lactic acid and more generally, a decrease in pH, has been shown to increase the membrane expression of AQP4 in astrocytes. An increase in AQP4 membrane expression during acute NMO attacks could potentially enhance the complement-mediated humoral immune reaction against AQP4-expressing astrocytes characteristic for NMO and, thus, result in more severe astrocytic damage. Moreover, lactate and acidosis have been shown to cause astrocytic swelling and to affect astrocytic viability, potentially rendering astrocytes more susceptible to AQP4-Ab-mediated damage. Finally, increased AQP4 expression could be an independent risk factor in NMO and other forms of CNS inflammation, as indicated by the finding of grossly attenuated experimental autoimmune encephalomyelitis in AQP4-null mice. Therefore, we hypothesize that CSF acidosis might play a role in the pathophysiology of AQP4-Ab-positive NMO and that alterations in CSF pH might possibly influence the outcome of acute attacks in this condition. In addition, we discuss potential clinical implications and make proposals on how to test the hypothesis. Finally, other factors that influence astrocytic AQP4 membrane expression and might play a role in NMO are discussed.
Collapse
Affiliation(s)
- S Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Germany.
| | | |
Collapse
|
43
|
Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: an emerging concept. Neurochem Res 2013; 39:599-604. [PMID: 24072671 PMCID: PMC3926979 DOI: 10.1007/s11064-013-1141-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022]
Abstract
Excessive glutamine (Gln) synthesis in ammonia-overloaded astrocytes contributes to astrocytic swelling and brain edema, the major complication of hepatic encephalopathy (HE). Much of the newly formed Gln is believed to enter mitochondria, where it is recycled to ammonia, which causes mitochondrial dysfunction (a “Trojan horse” mode of action). A portion of Gln may increase osmotic pressure in astrocytes and the interstitial space, directly and independently contributing to brain tissue swelling. Here we discuss the possibility that altered functioning of Gln transport proteins located in the cellular or mitochondrial membranes, modulates the effects of increased Gln synthesis. Accumulation of excess Gln in mitochondria involves a carrier-mediated transport which is activated by ammonia. Studies on the expression of the cell membrane N-system transporters SN1 (SNAT3) and SN2 (SNAT5), which mediate Gln efflux from astrocytes rendered HE model-dependent effects. HE lowered the expression of SN1 at the RNA and protein level in the cerebral cortex (cc) in the thioacetamide (TAA) model of HE and the effect paralleled induction of cerebral cortical edema. Neither SN1 nor SN2 expression was affected by simple hyperammonemia, which produces no cc edema. TAA-induced HE is also associated with decreased expression of mRNA coding for the system A carriers SAT1 and SAT2, which stimulate Gln influx to neurons. Taken together, changes in the expression of Gln transporters during HE appear to favor retention of Gln in astrocytes and/or the interstitial space of the brain. HE may also affect arginine (Arg)/Gln exchange across the astrocytic cell membrane due to changes in the expression of the hybrid Arg/Gln transporter y+LAT2. Gln export from brain across the blood–brain barrier may be stimulated by HE via its increased exchange with peripheral tryptophan.
Collapse
|
44
|
Jayakumar AR, Ruiz-Cordero R, Tong XY, Norenberg MD. Brain edema in acute liver failure: role of neurosteroids. Arch Biochem Biophys 2013; 536:171-5. [PMID: 23567839 PMCID: PMC4737089 DOI: 10.1016/j.abb.2013.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022]
Abstract
Brain edema is a major neurological complication of acute liver failure (ALF) and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in this condition. Elevated brain ammonia level has been strongly implicated as an important factor in the mechanism of astrocyte swelling/brain edema in ALF. Recent studies, however, have suggested the possibility of a vasogenic component in the mechanism in ALF. We therefore examined the effect of ammonia on blood-brain barrier (BBB) integrity in an in vitro co-culture model of the BBB (consisting of primary cultures of rat brain endothelial cells and astrocytes). We found a minor degree of endothelial permeability to dextran fluorescein (16.2%) when the co-culture BBB model was exposed to a pathophysiological concentration of ammonia (5mM). By contrast, lipopolysaccharide (LPS), a molecule well-known to disrupt the BBB, resulted in an 87% increase in permeability. Since increased neurosteroid biosynthesis has been reported to occur in brain in ALF, and since neurosteroids are known to protect against BBB breakdown, we examined whether neurosteroids exerted any protective effect on the slight permeability of the BBB after exposure to ammonia. We found that a nanomolar concentration (10nM) of the neurosteroids allopregnanolone (THP) and tetrahydrodeoxycorticosterone (THDOC) significantly reduced the ammonia-induced increase in BBB permeability (69.13 and 58.64%, respectively). On the other hand, we found a marked disruption of the BBB when the co-culture model was exposed to the hepatotoxin azoxymethane (218.4%), but not with other liver toxins commonly used as models of ALF (thioacetamide and galactosamine, showed a 29.3 and 30.67% increase in permeability, respectively). Additionally, THP and THDOC reduced the effect of TAA and galactosamine on BBB permeability, while no BBB protective effect was observed following treatment with azoxymethane. These findings suggest that ammonia does not cause a significant BBB disruption, and that the BBB is intact in the TAA or galactosamine-induced animal models of ALF, likely due to the protective effect of neurosteroids that are synthesized in brain in the setting of ALF. However, caution should be exercised when using azoxymethane as an experimental model of ALF as it caused a severe breakdown of the BBB, and neurosteriods failed to protect against this breakdown.
Collapse
|
45
|
Dadsetan S, Kukolj E, Bak LK, Sørensen M, Ott P, Vilstrup H, Schousboe A, Keiding S, Waagepetersen HS. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab 2013; 33:1235-41. [PMID: 23673435 PMCID: PMC3734774 DOI: 10.1038/jcbfm.2013.73] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 01/29/2023]
Abstract
Hyperammonemia is a major etiological toxic factor in the development of hepatic encephalopathy. Brain ammonia detoxification occurs primarily in astrocytes by glutamine synthetase (GS), and it has been proposed that elevated glutamine levels during hyperammonemia lead to astrocyte swelling and cerebral edema. However, ammonia may also be detoxified by the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT) leading to trapping of ammonia in alanine, which in vivo likely leaves the brain. Our aim was to investigate whether the GS inhibitor methionine sulfoximine (MSO) enhances incorporation of (15)NH4(+) in alanine during acute hyperammonemia. We observed a fourfold increased amount of (15)NH4 incorporation in brain alanine in rats treated with MSO. Furthermore, co-cultures of neurons and astrocytes exposed to (15)NH4Cl in the absence or presence of MSO demonstrated a dose-dependent incorporation of (15)NH4 into alanine together with increased (15)N incorporation in glutamate. These findings provide evidence that ammonia is detoxified by the concerted action of GDH and ALAT both in vivo and in vitro, a mechanism that is accelerated in the presence of MSO thereby reducing the glutamine level in brain. Thus, GS could be a potential drug target in the treatment of hyperammonemia in patients with hepatic encephalopathy.
Collapse
Affiliation(s)
- Sherry Dadsetan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
47
|
Brain metabolism in patients with hepatic encephalopathy studied by PET and MR. Arch Biochem Biophys 2013; 536:131-42. [PMID: 23726863 DOI: 10.1016/j.abb.2013.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 01/15/2023]
Abstract
We review PET- and MR studies on hepatic encephalopathy (HE) metabolism in human subjects from the point of views of methods, methodological assumptions and use in studies of cirrhotic patients with clinically overt HE, cirrhotic patients with minimal HE, cirrhotic patients with no history of HE and healthy subjects. Key results are: (1) Cerebral oxygen uptake and blood flow are reduced to 2/3 in cirrhotic patients with clinically overt HE but not in cirrhotic patients with minimal HE or no HE compared to healthy subjects. (2) Cerebral ammonia metabolism is enhanced due to increased blood ammonia in cirrhotic patients but the kinetics of cerebral ammonia uptake and metabolism is not affected by hyperammonemia. (3) Recent advantages in MR demonstrate low-grade cerebral oedema not only in astrocytes but also in the white matter in cirrhotic patients with HE.
Collapse
|
48
|
Görg B, Schliess F, Häussinger D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch Biochem Biophys 2013; 536:158-63. [PMID: 23567841 DOI: 10.1016/j.abb.2013.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute or chronic liver failure. Currently, HE in cirrhotic patients is seen as a clinical manifestation of a low grade cerebral edema which exacerbates in response to a variety of precipitating factors after an ammonia-induced exhaustion of the volume-regulatory capacity of the astrocyte. Astrocyte swelling triggers a complex signaling cascade which relies on NMDA receptor activation, elevation of intracellular Ca(2+) concentration and prostanoid-driven glutamate exocytosis, which result in increased formation of reactive nitrogen and oxygen species (RNOS) through activation of NADPH oxidase and nitric oxide synthase. Since RNOS in turn promote astrocyte swelling, a self-amplifying signaling loop between osmotic- and oxidative stress ensues, which triggers a variety of downstream consequences. These include protein tyrosine nitration (PTN), oxidation of RNA, mobilization of zinc, alterations in intra- and intercellular signaling and multiple effects on gene transcription. Whereas PTN can affect the function of a variety of proteins, such as glutamine synthetase, oxidized RNA may affect local protein synthesis at synapses, thereby potentially interfering with protein synthesis-dependent memory formation. PTN and RNA oxidation are also found in post mortem human cerebral cortex of cirrhotic patients with HE but not in those without HE, thereby confirming a role for oxidative stress in the pathophysiology of HE. Evidence derived from animal experiments and human post mortem brain tissue also indicates an up-regulation of microglia activation markers in the absence of increased synthesis of pro-inflammatory cytokines. However, the role of activated microglia in the pathophysiology of HE needs to be worked out in more detail. Most recent observations made in whole genome micro-array analyses of post mortem human brain tissue point to a hitherto unrecognized activation of multiple anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Boris Görg
- Heinrich-Heine-University Düsseldorf, Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Germany
| | | | | |
Collapse
|
49
|
Bosoi CR, Rose CF. Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int 2013; 62:446-57. [PMID: 23376027 DOI: 10.1016/j.neuint.2013.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that typically develops as a result of acute liver failure or chronic liver disease. Brain edema is a common feature associated with HE. In acute liver failure, brain edema contributes to an increase in intracranial pressure, which can fatally lead to brain stem herniation. In chronic liver disease, intracranial hypertension is rarely observed, even though brain edema may be present. This discrepancy in the development of intracranial hypertension in acute liver failure versus chronic liver disease suggests that brain edema plays a different role in relation to the onset of HE. Furthermore, the pathophysiological mechanisms involved in the development of brain edema in acute liver failure and chronic liver disease are dissimilar. This review explores the types of brain edema, the cells, and pathogenic factors involved in its development, while emphasizing the differences in acute liver failure versus chronic liver disease. The implications of brain edema developing as a neuropathological consequence of HE, or as a cause of HE, are also discussed.
Collapse
Affiliation(s)
- Cristina R Bosoi
- Neuroscience Research Unit, Hôpital Saint-Luc (CRCHUM), Université de Montréal, Québec, Canada
| | | |
Collapse
|
50
|
Rama Rao KV, Norenberg MD. Glutamine in the pathogenesis of hepatic encephalopathy: the trojan horse hypothesis revisited. Neurochem Res 2013; 39:593-8. [PMID: 23277414 DOI: 10.1007/s11064-012-0955-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/19/2012] [Indexed: 01/16/2023]
Abstract
Hepatic encephalopathy (HE) is major neuropsychiatric disorder occurring in patients with severe liver disease and ammonia is generally considered to represent the major toxin responsible for this condition. Ammonia in brain is chiefly metabolized ("detoxified") to glutamine in astrocytes due to predominant localization of glutamine synthetase in these cells. While glutamine has long been considered innocuous, a deleterious role more recently has been attributed to this amino acid. This article reviews the mechanisms by which glutamine contributes to the pathogenesis of HE, how glutamine is transported into mitochondria and subsequently hydrolyzed leading to high levels of ammonia, the latter triggering oxidative and nitrative stress, the mitochondrial permeability transition and mitochondrial injury, a sequence of events we have collectively termed as the Trojan horse hypothesis of hepatic encephalopathy.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami Miller School of Medicine, P.O. BOX 016960, Miami, FL, 33101, USA
| | | |
Collapse
|