1
|
Sheng K, Cao M, Godley A, Lin MH, Henze L, Hammond L, Delombaerde L, Hierholz K, Kouptsidis J. Quantification of Dosimetry Improvement With or Without Patient Surface Guidance. Adv Radiat Oncol 2024; 9:101570. [PMID: 39188998 PMCID: PMC11345286 DOI: 10.1016/j.adro.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/21/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose Noncoplanar beams and arcs are routinely used to improve dosimetry for intracranial cases, but their application for extracranial cases has been hampered by the risk of collision. This has led to conservative beam selection whose impact on plan dosimetry has not been previously studied. Methods and Materials A full-body 3-dimensional patient surface was acquired using optical cameras for a single lung patient at the time of computed tomography simulation. Eight stereotactic body radiation therapy (SBRT) plans were created for the patient, with varying degrees of noncoplanarity and deliverability. The plans included volumetric modulated arc therapy and intensity modulated radiation therapy (IMRT) plans ranging from simple, coplanar arcs to multiple noncoplanar arcs and IMRT beams. A total of 70 fields were created across the 8 plans, of which 21 fields were undeliverable with a 5-cm buffer. Organs-at-risk (OARs) metrics including R50, Dmax 2 cm from the PTV, lung V20, and chest wall V30 were evaluated. Five expert SBRT dosimetrists from 5 institutions evaluated field deliverability, with or without the guidance of the clearance map. Results In the dosimetry evaluation, a clear trend in increasing dosimetric compactness and OAR sparing is observed with increasing plan noncoplanarity. R50, Dmax 2 cm, lung V20, and chest wall V30 decreased 41%, 39%, 43%, and 57%, respectively, from plan 1 (2 coplanar partial arcs) to plan 8 (19 noncoplanar IMRT beams). In the observer tests, the expert dosimetrists' ability to accurately discern beam deliverability because of collision significantly increases with the clearance map. The errors in predicting colliding fields were eliminated using the whole-body surface and clearance map, and the user was able to select fields based on plan quality and patient comfort instead of being overly conservative. Conclusion The study shows that incorporating a personalized, whole-body clearance map in the treatment planning workflow can facilitate the adoption of noncoplanar beams or arcs that benefit the SBRT plan dosimetry.
Collapse
Affiliation(s)
- Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Andrew Godley
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mu-Han Lin
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lukas Henze
- Cancer Center Berlin-Neukölln, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Laura Hammond
- Radiotherapy Department, Raigmore Hospital, Inverness, United Kingdom
| | | | - Kirsten Hierholz
- Klinikum Darmstadt GmbH, Institut für Radionkologie und Strahlentherapie, Darmstadt, Germany
| | - Jana Kouptsidis
- Klinikum Darmstadt GmbH, Institut für Radionkologie und Strahlentherapie, Darmstadt, Germany
| |
Collapse
|
2
|
Tham BZ, Aleman D, Nordström H, Nygren N, Coolens C. Plan Assessment Metrics for Dose Painting in Stereotactic Radiosurgery. Adv Radiat Oncol 2023; 8:101281. [PMID: 37415903 PMCID: PMC10320410 DOI: 10.1016/j.adro.2023.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose As radiation therapy treatment precision increases with advancements in imaging and radiation delivery, dose painting treatment becomes increasingly feasible, where targets receive a nonuniform radiation dose. The high precision of stereotactic radiosurgery (SRS) makes it a good candidate for dose painting treatments, but no suitable metrics to assess dose painting SRS plans exist. Existing dose painting assessment metrics weigh target overdose and underdose equally but are unsuited for SRS plans, which typically avoid target underdose more. Current SRS metrics also prioritize reducing healthy tissue dose through selectivity and dose fall-off, and these metrics assume single prescriptions. We propose a set of metrics for dose painting SRS that would meet clinical needs and are calculated with nonuniform dose painting prescriptions. Methods and Materials Sample dose painting SRS prescriptions are first created from Gamma Knife SRS cases, apparent diffusion coefficient magnetic resonance images, and various image-to-prescription functions. Treatment plans are found through semi-infinite linear programming optimization and using clinically determined isocenters, then assessed with existing and proposed metrics. Modified versions of SRS metrics are proposed, including coverage, selectivity, conformity, efficiency, and gradient indices. Quality factor, a current dose painting metric, is applied both without changes and with modifications. A new metric, integral dose ratio, is proposed as a measure of target overdose. Results The merits of existing and modified metrics are demonstrated and discussed. A modified conformity index using mean or minimum prescription dose would be suitable for dose painting SRS with integral or maximum boost methods, respectively. Either modified efficiency index is a suitable replacement for the existing gradient index. Conclusions The proposed modified SRS metrics are appropriate measures of plan quality for dose painting SRS plans and have the advantage of giving equal values as the original SRS metrics when applied to single-prescription plans.
Collapse
Affiliation(s)
- Benjamin Z. Tham
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dionne Aleman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Klinge T, Talbot H, Paddick I, Ourselin S, McClelland JR, Modat M. Toward semi-automatic biologically effective dose treatment plan optimisation for Gamma Knife radiosurgery. Phys Med Biol 2022; 67:215001. [PMID: 35961305 PMCID: PMC10518700 DOI: 10.1088/1361-6560/ac8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022]
Abstract
Objective.Dose-rate effects in Gamma Knife radiosurgery treatments can lead to varying biologically effective dose (BED) levels for the same physical dose. The non-convex BED model depends on the delivery sequence and creates a non-trivial treatment planning problem. We investigate the feasibility of employing inverse planning methods to generate treatment plans exhibiting desirable BED characteristics using the per iso-centre beam-on times and delivery sequence.Approach.We implement two dedicated optimisation algorithms. One approach relies on mixed-integer linear programming (MILP) using a purposely developed convex underestimator for the BED to mitigate local minima issues at the cost of computational complexity. The second approach (local optimisation) is faster and potentially usable in a clinical setting but more prone to local minima issues. It sequentially executes the beam-on time (quasi-Newton method) and sequence optimisation (local search algorithm). We investigate the trade-off between time to convergence and solution quality by evaluating the resulting treatment plans' objective function values and clinical parameters. We also study the treatment time dependence of the initial and optimised plans using BED95(BED delivered to 95% of the target volume) values.Main results.When optimising the beam-on times and delivery sequence, the local optimisation approach converges several orders of magnitude faster than the MILP approach (minutes versus hours-days) while typically reaching within 1.2% (0.02-2.08%) of the final objective function value. The quality parameters of the resulting treatment plans show no meaningful difference between the local and MILP optimisation approaches. The presented optimisation approaches remove the treatment time dependence observed in the original treatment plans, and the chosen objectives successfully promote more conformal treatments.Significance.We demonstrate the feasibility of using an inverse planning approach within a reasonable time frame to ensure BED-based objectives are achieved across varying treatment times and highlight the prospect of further improvements in treatment plan quality.
Collapse
Affiliation(s)
- Thomas Klinge
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Dept. Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Centre for Medical Image Computing, Dept. Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Hugues Talbot
- CentraleSupélec, Université Paris-Saclay, Inria, Gif-sur-Yvette, France
| | - Ian Paddick
- Queen Square Gamma Knife Centre, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sébastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| | - Jamie R McClelland
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Dept. Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Centre for Medical Image Computing, Dept. Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
de Camargo AV, Cao M, da Silva DDCSA, de Araújo RLC. Evaluation of the correlation between dosimetric, geometric, and technical parameters of radiosurgery planning for multiple brain metastases. J Appl Clin Med Phys 2021; 22:83-92. [PMID: 34212482 PMCID: PMC8364278 DOI: 10.1002/acm2.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose To evaluate the correlation between dosimetric, geometric, and technical parameters for radiosurgery planning of multiple brain metastasis treatments treated with a linear accelerator with volumetric modulated arc therapy (VMAT) technique. Materials and methods Data were collected retrospectively from 55 patients who underwent radiosurgery in a single institution from August 2017 to February 2020. Patients presented 4–21 brain metastases were treated with a single fraction with doses between 18 and 20 Gy. Dosimetric variables were collected including V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, conformity index (CI), heterogeneity index (HI), maximum dose (Dmax), and the CI_R50. Geometric variables including the number of lesions, target volumes, the smallest target volume, the largest target volume, and the distance between the isocenter and the most distant lesion (DIL) and technical variables such as the numbers of total arcs, noncoplanar arcs, and isocenters were collected for analysis. Results The number of lesions had a moderate positive correlation with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, HI, Dmax, and with the number of total arcs. The target volumes had a positive medium–high correlation with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, and moderate positive correlation with HI, Dmax, number of arcs and noncoplanar arcs. The CI and CI_R50 had a negative correlation with all volumes related to the target: the target volumes, the smallest, and the largest lesion. A positive correlation was observed between the distance of the isocenter and the most DIL with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, HI, Dmax, and the number of isocenters. Conclusion It was found that the number of lesions and the target volumes are good predictors of dosimetric indexes of plan evaluation and that the distance between the isocenter and the most DIL harms them.
Collapse
Affiliation(s)
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | | | - Raphael Leonardo Cunha de Araújo
- Barretos Cancer Hospital, Barretos, Brazil.,Universidade Federal de São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
5
|
Woods K, Chin RK, Cook KA, Sheng K, Kishan AU, Hegde JV, Tenn S, Steinberg ML, Cao M. Automated Non-Coplanar VMAT for Dose Escalation in Recurrent Head and Neck Cancer Patients. Cancers (Basel) 2021; 13:cancers13081910. [PMID: 33921062 PMCID: PMC8071369 DOI: 10.3390/cancers13081910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The ability to escalate the radiation dose to head and neck tumors has been shown to offer improved local control, and consequently, survival for recurrent head and neck cancer (rHNC) patients. This study evaluates the HyperArc automated non-coplanar planning technique (originally developed for intracranial treatment) for 20 rHNC patients, and compares this technique to conventional planning methods. HyperArc enables significant tumor dose escalation, with average increases in mean target dose of over 11.5 Gy (26%), while maintaining clinically-equivalent doses to nearby organs. Our results show that the average probability of tumor control is 23% higher for HyperArc than conventional techniques. Abstract This study evaluates the potential for tumor dose escalation in recurrent head and neck cancer (rHNC) patients with automated non-coplanar volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) planning (HyperArc). Twenty rHNC patients are planned with conventional VMAT SBRT to 40 Gy while minimizing organ-at-risk (OAR) doses. They are then re-planned with the HyperArc technique to match these minimal OAR doses while escalating the target dose as high as possible. Then, we compare the dosimetry, tumor control probability (TCP), and normal tissue complication probability (NTCP) for the two plan types. Our results show that the HyperArc technique significantly increases the mean planning target volume (PTV) and gross tumor volume (GTV) doses by 10.8 ± 4.4 Gy (25%) and 11.5 ± 5.1 Gy (26%) on average, respectively. There are no clinically significant differences in OAR doses, with maximum dose differences of <2 Gy on average. The average TCP is 23% (± 21%) higher for HyperArc than conventional plans, with no significant differences in NTCP for the brainstem, cord, mandible, or larynx. HyperArc can achieve significant tumor dose escalation while maintaining minimal OAR doses in the head and neck—potentially enabling improved local control for rHNC SBRT patients without increased risk of treatment-related toxicities.
Collapse
Affiliation(s)
- Kaley Woods
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Robert K. Chin
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Kiri A. Cook
- Department of Radiation Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - John V. Hegde
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Stephen Tenn
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Michael L. Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common malignant primary brain tumor, and the available treatment options are limited. This article reviews the recent preclinical and clinical investigations that seek to expand the repertoire of effective medical and radiotherapy options for GBM. RECENT FINDINGS Recent phase III trials evaluating checkpoint inhibition did not result in significant survival benefit. Select vaccine strategies have yielded promising results in early phase clinical studies and warrant further validation. Various targeted therapies are being explored but have yet to see breakthrough results. In addition, novel radiotherapy approaches are in development to maximize safe dose delivery. A multitude of preclinical and clinical studies in GBM explore promising immunotherapies, targeted agents, and novel radiation modalities. Recent phase III trial failures have once more highlighted the profound tumor heterogeneity and diverse resistance mechanisms of glioblastoma. This calls for the development of biomarker-driven and personalized treatment approaches.
Collapse
Affiliation(s)
- Elisa K Liu
- New York University Grossman School of Medicine, New York, NY, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10019, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvia C Kurz
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10019, USA. .,Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Influence of the Integral Quality Monitor transmission detector on high energy photon beams: A multi-centre study. Z Med Phys 2017; 27:232-242. [DOI: 10.1016/j.zemedi.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 11/23/2022]
|
8
|
Woods K, Nguyen D, Tran A, Yu VY, Cao M, Niu T, Lee P, Sheng K. Viability of Non-Coplanar VMAT for Liver SBRT as Compared to Coplanar VMAT and Beam Orientation Optimized 4π IMRT. Adv Radiat Oncol 2016; 1:67-75. [PMID: 27104216 PMCID: PMC4834900 DOI: 10.1016/j.adro.2015.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose The 4π static noncoplanar radiation therapy delivery technique has demonstrated better normal tissue sparing and dose conformity than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The dosimetry and the limits of normal tissue toxicity constrained dose escalation of coplanar VMAT, noncoplanar VMAT and 4π radiation therapy are quantified in this study. Methods and materials Clinical stereotactic body radiation therapy plans for 20 liver patients receiving 30 to 60 Gy using coplanar VMAT (cVMAT) were replanned using 3 to 4 partial noncoplanar arcs (nVMAT) and 4π with 20 intensity modulated noncoplanar fields. The conformity number, homogeneity index, 50% dose spillage volume, normal liver volume receiving >15 Gy, dose to organs at risk (OARs), and tumor control probability were compared for all 3 treatment plans. The maximum tolerable dose yielding a normal liver normal tissue control probability <1%, 5%, and 10% was calculated with the Lyman-Kutcher-Burman model for each plan as well as the resulting survival fractions at 1, 2, 3, and 4 years. Results Compared with cVMAT, the nVMAT and 4π plans reduced liver volume receiving >15 Gy by an average of 5 cm3 and 80 cm3, respectively. 4π reduced the 50% dose spillage volume by ∼23% compared with both VMAT plans, and either significantly decreased or maintained OAR doses. The 4π maximum tolerable doses and survival fractions were significantly higher than both cVMAT and nVMAT (P < .05) for all normal liver normal tissue control probability limits used in this study. Conclusions The 4π technique provides significantly better OAR sparing than both cVMAT and nVMAT and enables more clinically relevant dose escalation for tumor local control. Therefore, despite the current accessibility of nVMAT, it is not a viable alternative to 4π for liver SBRT.
Collapse
Affiliation(s)
- Kaley Woods
- Department of Radiation Oncology, University of California, Los Angeles
| | - Dan Nguyen
- Department of Radiation Oncology, University of California, Los Angeles
| | - Angelia Tran
- Department of Radiation Oncology, University of California, Los Angeles
| | - Victoria Y Yu
- Department of Radiation Oncology, University of California, Los Angeles
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles
| | - Tianye Niu
- Translational Medicine Institute, Zhejiang University
| | - Percy Lee
- Department of Radiation Oncology, University of California, Los Angeles
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles
| |
Collapse
|
9
|
Abstract
ABSTRACT:The term radiosurgery has been used to describe a variety of radiotherapy techniques which deliver high doses of radiation to small, stereotactically defined intracranial targets in such a way that the dose fall-off outside the targeted volume is very sharp. Proton, charged particle, gamma unit, and linear accelerator-based techniques appear to be equivalent from the standpoint of accuracy, dose distributions, and clinical results. However, capital and operating costs associated with the use of linear accelerators in general clinical use are much lower. Radiosurgery has an established role in the treatment of arteriovenous malformations and acoustic neurinomas. Interest in these techniques is increasing in neurosurgical and radiation oncological communities, as radiosurgery is rapidly assuming a place in the management of several other conditions, including craniopharyngiomas, meningiomas, and selected malignant lesions.
Collapse
|
10
|
Sheng K, Shepard DM, Orton CG. Point/Counterpoint. Noncoplanar beams improve dosimetry quality for extracranial intensity modulated radiotherapy and should be used more extensively. Med Phys 2015; 42:531-3. [PMID: 25652473 DOI: 10.1118/1.4895981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ke Sheng
- Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 (Tel: 310-983-3146; E-mail: )
| | - David M Shepard
- Medical Physics, Swedish Cancer Institute, Seattle, Washington 98104 (Tel: 206-215-3306; E-mail: )
| | | |
Collapse
|
11
|
|
12
|
Salkeld AL, Unicomb K, Hayden AJ, Van Tilburg K, Yau S, Tiver K. Dosimetric comparison of volumetric modulated arc therapy and linear accelerator-based radiosurgery for the treatment of one to four brain metastases. J Med Imaging Radiat Oncol 2014; 58:722-8. [PMID: 24913419 DOI: 10.1111/1754-9485.12188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/20/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The purpose of this study is to compare and evaluate volumetric modulated arc therapy (VMAT) and linear accelerator-based radiosurgery (Linac RS) for the treatment of one to four brain metastases. METHODS Radiotherapy plans for 10 patients with 1 to 4 brain metastases that were planned and treated using conventional Linac RS were replanned using a mono-isocentric VMAT technique using two to four arcs. The same doses, target volumes and organs at risk (OAR) were used in both plans. The plans were evaluated for target volume coverage, dose conformity, homogeneity and dose to OAR. RESULTS For VMAT plans, 18/19 brain metastases met acceptable Radiation Therapy Oncology Group (RTOG) radiosurgery dose coverage, homogeneity and conformity criteria. There was no observed difference between the mean homogeneity indices for VMAT and Linac RS plans. VMAT plans had a lower mean RTOG conformity index compared with the Linac RS plans (1.10 ± 0.06 versus 2.06 ± 1.02). For the OAR, there was no difference in maximal doses to the brain stem, optic chiasm or optic nerves. The volume of normal brain receiving 12 Gy was lower in the VMAT plans (13.3 cm(3) versus 23.1 cm(3) ) compared with the Linac RS plans. The mean total number of monitor units (MUs) was 31.3% less in the VMAT plans (5231.2 MU versus 3593.5 MU). CONCLUSIONS Mono-isocentric VMAT plans using two to four arcs meet RTOG radiosurgery quality criteria in patients with one to four brain metastases, with an improvement in conformity and 12-Gy normal brain volume when compared with patients treated with Linac RS at our institution.
Collapse
Affiliation(s)
- Alison L Salkeld
- Nepean Cancer Care Centre, Nepean Hospital, Sydney, New South Wales, Australia; Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Almaghrabi MY, Supiot S, Paris F, Mahé MA, Rio E. Stereotactic body radiation therapy for abdominal oligometastases: a biological and clinical review. Radiat Oncol 2012; 7:126. [PMID: 22852764 PMCID: PMC3485144 DOI: 10.1186/1748-717x-7-126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/02/2012] [Indexed: 12/31/2022] Open
Abstract
Advances in imaging and biological targeting have led to the development of stereotactic body radiation therapy (SBRT) as an alternative treatment of extracranial oligometastases. New radiobiological concepts, such as ceramide-induced endothelial apoptosis after hypofractionated high-dose SBRT, and the identification of patients with oligometastatic disease by microRNA expression may yet lead to further developments. Key factors in SBRT are delivery of a high dose per fraction, proper patient positioning, target localisation, and management of breathing-related motion. Our review addresses the radiation doses and schedules used to treat liver, abdominal lymph node (LN) and adrenal gland oligometastases and treatment outcomes. Reported local control (LC) rates for liver and abdominal LN oligometastases are high (median 2-year actuarial LC: 61 -100% for liver oligometastases; 4-year actuarial LC: 68% in a study of abdominal LN oligometastases). Early toxicity is low-to-moderate; late adverse effects are rare. SBRT of adrenal gland oligometastases shows promising results in the case of isolated lesions. In conclusion, properly conducted SBRT procedures are a safe and effective treatment option for abdominal oligometastases.
Collapse
Affiliation(s)
- Mohammed Yahia Almaghrabi
- Department of Radiation Oncology, Integrated Oncology Centre, BD du Professeur Jacques MONOD, 44805, Saint-Herblain, France
| | - Stéphane Supiot
- Department of Radiation Oncology, Integrated Oncology Centre, BD du Professeur Jacques MONOD, 44805, Saint-Herblain, France
- INSERM UMR, Nantes-Angers Oncology Research Centre, 8 Quai Moncousu, BP 70721, 44007, Nantes cédex 1, France
| | - Francois Paris
- INSERM UMR, Nantes-Angers Oncology Research Centre, 8 Quai Moncousu, BP 70721, 44007, Nantes cédex 1, France
| | - Marc-André Mahé
- Department of Radiation Oncology, Integrated Oncology Centre, BD du Professeur Jacques MONOD, 44805, Saint-Herblain, France
| | - Emmanuel Rio
- Department of Radiation Oncology, Integrated Oncology Centre, BD du Professeur Jacques MONOD, 44805, Saint-Herblain, France
| |
Collapse
|
14
|
A phase II multi-institutional study assessing simultaneous in-field boost helical tomotherapy for 1-3 brain metastases. Radiat Oncol 2012; 7:42. [PMID: 22436144 PMCID: PMC3341183 DOI: 10.1186/1748-717x-7-42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/21/2012] [Indexed: 11/26/2022] Open
Abstract
Background Our research group has previously published a dosimetric planning study that demonstrated that a 60 Gy/10 fractions intralesional boost with whole-brain radiotherapy (WBRT) to 30 Gy/10 fractions was biologically equivalent with a stereotactic radiosurgery (SRS) boost of 18 Gy/1 fraction with 30 Gy/10 fractions WBRT. Helical tomotherapy (HT) was found to be dosimetrically equivalent to SRS in terms of target coverage and superior to SRS in terms of normal tissue tolerance. A phase I trial has been now completed at our institution with a total of 60 enrolled patients and 48 evaluable patients. The phase II dose has been determined to be the final phase I cohort dose of 60 Gy/10 fractions. Methods/Design The objective of this clinical trial is to subject the final phase I cohort dose to a phase II assessment of the endpoints of overall survival, intracranial control (ICC) and intralesional control (ILC). We hypothesize HT would be considered unsuitable for further study if the median OS for patients treated with the HT SIB technique is degraded by 2 months, or the intracranial progression-free rates (ICC and ILC) are inferior by 10% or greater compared to the expected results with treatment by whole brain plus SRS as defined by the RTOG randomized trial. A sample size of 93 patients was calculated based on these parameters as well as the statistical assumptions of alpha = 0.025 and beta = 0.1 due to multiple statistical testing. Secondary assessments of toxicity, health-related quality-of-life, cognitive changes, and tumor response are also integrated into this research protocol. Discussion To summarize, the purpose of this phase II trial is to assess this non-invasive alternative to SRS in terms of central nervous system (CNS) control when compared to SRS historical controls. A follow-up phase III trial may be required depending on the results of this trial in order to definitively assess non-inferiority/superiority of this approach. Ultimately, the purpose of this line of research is to provide patients with metastatic disease to the brain a shorter course, dose intense, non-invasive radiation treatment with equivalent or improved CNS control/survival and health-related quality-of-life/toxicity profile when compared to SRS radiotherapy. Trial registration Clinicaltrials.gov - NCT01543542.
Collapse
|
15
|
Rowshanfarzad P, Sabet M, O'Connor DJ, Greer PB. Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques. J Appl Clin Med Phys 2011; 12:3645. [PMID: 22089022 PMCID: PMC5718736 DOI: 10.1120/jacmp.v12i4.3645] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
There have been several manual, semi-automatic and fully-automatic methods proposed for verification of the position of mechanical isocenter as part of comprehensive quality assurance programs required for linear accelerator-based stereotactic radiosurgery/radiotherapy (SRS/SRT) treatments. In this paper, a systematic review has been carried out to discuss the present methods for isocenter verification and compare their characteristics, to help physicists in making a decision on selection of their quality assurance routine.
Collapse
Affiliation(s)
- Pejman Rowshanfarzad
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia.
| | | | | | | |
Collapse
|
16
|
de Castro DG, Salvajoli JV, Canteras MM, Cecílio SAJ. [Radiosurgery for pituitary adenomas]. ACTA ACUST UNITED AC 2008; 50:996-1004. [PMID: 17221104 DOI: 10.1590/s0004-27302006000600004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 06/08/2006] [Indexed: 11/22/2022]
Abstract
Pituitary adenomas represent nearly 15% of all intracranial tumors. Multimodal treatment includes microsurgery, medical management and radiotherapy. Microsurgery is the primary recommendation for nonfunctioning and most of functioning adenomas, except for prolactinomas that are usually managed with dopamine agonist drugs. However, about 30% of patients require additional treatment after microsurgery for recurrent or residual tumors. In these cases, fractionated radiation therapy has been the traditional treatment. More recently, radiosurgery has been established as a treatment option. Radiosurgery allows the delivery of prescribed dose with high precision strictly to the target and spares the surrounding tissues. Therefore, the risks of hypopituitarism, visual damage and vasculopathy are significantly lower. Furthermore, the latency of the radiation response after radiosurgery is substantially shorter than that of fractionated radiotherapy. The goal of this review is to define the efficacy, safety and role of radiosurgery for treatment of pituitary adenomas and to present the preliminary results of our institution.
Collapse
|
17
|
Affiliation(s)
- Hyun-Tai Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Korea. ,
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Korea. ,
| |
Collapse
|
18
|
Keller BM, Beachey DJ, Pignol JP. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1MV) and small radiosurgery field sizes. Med Phys 2007; 34:3996-4002. [DOI: 10.1118/1.2775666] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Bauman G, Yartsev S, Fisher B, Kron T, Laperriere N, Heydarian M, VanDyk J. Simultaneous infield boost with helical tomotherapy for patients with 1 to 3 brain metastases. Am J Clin Oncol 2007; 30:38-44. [PMID: 17278893 DOI: 10.1097/01.coc.0000245473.41035.c4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We sought to model the feasibility of a simultaneous in field boost (SIB) to individual brain metastases during a course of whole brain radiotherapy (WBXRT) using helical tomotherapy (HT) intensity-modulated radiation therapy. PATIENTS AND METHODS Planning computed tomography data from 14 patients with 1 to 3 brain metastases were used to model an intralesional SIB delivery that yielded a total intralesional dose of 60 Gy with a surrounding whole brain dose of 30 Gy (designed to be isoeffective to WBXRT of 30 Gy with an 18 Gy in 1 fraction radiosurgery boost). Accuracy of treatment of a phantom on the HT unit was measured. Comparisons of HT delivery versus a conventional stereotactic radiotherapy technique for a particularly challenging simulated anatomy were made. RESULTS In all cases, SIB to 60 Gy with WBXRT to 30 Gy was possible while maintaining critical structures below assigned dose limits. Estimated radiation delivery time for the SIB treatment was approximately 10 minutes per fraction. Planning and treatment of the head phantom was associated with an overall accuracy of 2 mm. Comparison to conventional noncoplanar arc fractionated stereotactic radiotherapy plan demonstrated similar target coverage and improved critical tissue sparing even for a challenging anatomy with multiple lesions in the same plane as the optic apparatus. CONCLUSIONS Based on this study, use of an image guided SIB using HT seemed feasible and a phase I trial initiated at our institution is described. Potential advantages of this approach include frameless stereotaxis through daily megavoltage computed tomography localization, more efficient use of resources and exploitation of radiobiologic advantages of fractionation.
Collapse
Affiliation(s)
- Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, University of Western Ontario and London Regional Cancer Program, London Health Sciences Centre, London, Ontario.
| | | | | | | | | | | | | |
Collapse
|
20
|
Viola A, Major T, Julow J. Comparison of (125)I stereotactic brachytherapy and LINAC radiosurgery modalities based on physical dose distribution and radiobiological efficacy. Radiat Res 2006; 165:695-702. [PMID: 16802870 DOI: 10.1667/rr3529.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of this study was to make a comparison between stereotactic brachytherapy implants and linear accelerator-based radiosurgery of brain tumors with respect to physical dose distributions and radiobiological efficacy. Twenty-four treatment plans made for irradiation of brain tumors with low-dose-rate (125)I brachytherapy and multiple-arc LINAC-based radiosurgery were analyzed. Using the dose-volume histograms and the linear-quadratic model, the brachytherapy doses were compared to the brachytherapy-equivalent LINAC radiosurgery doses with respect to the predicted late effects of radiation on normal brain tissue. To characterize the conformity and homogeneity of dose distributions, the conformal index, external volume index, and relative homogeneity index were calculated for each dose plan and the mean values were compared. The average tumor volume was 5.6 cm(3) (range: 0.1-19.3 cm(3)). At low doses, the calculated radiobiological late effect on normal tissue was equivalent for external-beam and brachytherapy dose delivery. For brachytherapy at doses greater than 30 Gy, the calculated equivalent dose to normal tissues was less than for external-beam radiosurgery. However, the dose-calculated homogeneity was better for the LINAC radiosurgery, with a mean relative homogeneity index of 0.62 compared to the calculated value of 0.19 for the brachytherapy (P=0.0002). These results are only predictions based on calculations concerning normal tissue tolerance. More data and research are needed to understand the clinical relevance of these findings.
Collapse
Affiliation(s)
- Arpad Viola
- Doctoral School, Semmelweis University, 1085 Budapest, Hungary.
| | | | | |
Collapse
|
21
|
Verhey LJ, Chen CC, Chapman P, Loeffler J, Curry WT. Single-Fraction Stereotactic Radiosurgery for Intracranial Targets. Neurosurg Clin N Am 2006; 17:79-97, v. [PMID: 16793501 DOI: 10.1016/j.nec.2006.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stereotactic radiosurgery (SRS) is a technique for treating intracranial lesions with a high dose of ionizing radiation, usually in a single session, using a stereotactic apparatus for accurate localization and patient immobilization. This article describes several modalities of SRS and some of its applications, particularly for intracranial lesions.
Collapse
Affiliation(s)
- Lynn J Verhey
- Department of Radiation Oncology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | | | | | | | |
Collapse
|
22
|
Ma L, Kwok Y, Chin LS, Yu C, Regine WF. Comparative analyses of linac and Gamma Knife radiosurgery for trigeminal neuralgia treatments. Phys Med Biol 2005; 50:5217-27. [PMID: 16264249 DOI: 10.1088/0031-9155/50/22/001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dedicated linac-based radiosurgery has been reported for trigeminal neuralgia treatments. In this study, we investigated the dose fall-off characteristics and setup error tolerance of linac-based radiosurgery as compared with standard Gamma Knife radiosurgery. In order to minimize the errors from different treatment planning calculations, consistent imaging registration, dose calculation and dose volume analysis methods were developed and implemented for both Gamma Knife and linac-based treatments. Intra-arc setup errors were incorporated into the treatment planning process of linac-based deliveries. The effects of intra-arc setup errors with increasing number of arcs were studied and benchmarked against Gamma Knife deliveries with and without plugging patterns. Our studies found equivalent dose fall-off properties between Gamma Knife and linac-based radiosurgery given a sufficient number of arcs (>7) and small intra-arc errors (<0.5 mm) were satisfied for linac-based deliveries. Increasing the number of arcs significantly decreased the variations in the dose fall-off curve at the low isodose region (e.g. from 40% to 10%) and also improved dose uniformity at the high isodose region (e.g. from 70% to 90%). As the number of arcs increased, the effects of intra-arc setup errors on the dose fall-off curves decreased. Increasing the number of arcs also reduced the integral dose to the distal normal brain tissues. In conclusion, linac-based radiosurgery produces equivalent dose fall-off characteristics to Gamma Knife radiosurgery with a high number of arcs. However, one must note the increased treatment time for a large number of arcs and isocentre accuracies.
Collapse
Affiliation(s)
- L Ma
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
23
|
Ma L, Kwok Y, Chin LS, Simard JM, Regine WF. Concomitant GRID boost for Gamma Knife radiosurgery. Med Phys 2005; 32:3419-23. [PMID: 16370428 DOI: 10.1118/1.2068887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed an integrated GRID boost technique for Gamma Knife radiosurgery. The technique generates an array of high dose spots within the target volume via a grid of 4-mm shots. These high dose areas were placed over a conventional Gamma Knife plan where a peripheral dose covers the full target volume. The beam weights of the 4-mm shots were optimized iteratively to maximize the integral dose inside the target volume. To investigate the target volume coverage and the dose to the adjacent normal brain tissue for the technique, we compared the GRID boosted treatment plans with conventional Gamma Knife treatment plans using physical and biological indices such as dose-volume histogram (DVH), DVH-derived indices, equivalent uniform dose (EUD), tumor control probabilities (TCP), and normal tissue complication probabilities (NTCP). We found significant increase in the target volume indices such as mean dose (5%-34%; average 14%), TCP (4%-45%; average 21%), and EUD (2%-22%; average 11%) for the GRID boost technique. No significant change in the peripheral dose coverage for the target volume was found per RTOG protocol. In addition, the EUD and the NTCP for the normal brain adjacent to the target (i.e., the near region) were decreased for the GRID boost technique. In conclusion, we demonstrated a new technique for Gamma Knife radiosurgery that can escalate the dose to the target while sparing the adjacent normal brain tissue.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21210, USA.
| | | | | | | | | |
Collapse
|
24
|
Bayouth JE, Morrill SM. MLC dosimetric characteristics for small field and IMRT applications. Med Phys 2004; 30:2545-52. [PMID: 14528977 DOI: 10.1118/1.1603743] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The objective of this work was to measure the performance characteristics of a double-focus multileaf collimator (MLC) for intensity modulated radiation therapy (IMRT), specifically the variation in penumbra and leakage for narrow fields as a function of field position over a 20x27 cm space available for segmented MLC IMRT. Measurements were made with 6 MV x rays through a MLC containing 29 leaf pairs (27 pairs of 1 cm width), and EDR2 film at 10 cm depth in solid water at 100 cm SAD. Films were digitized with 0.17 mm resolution and converted to dose. Interleaf and intraleaf transmission were measured along 11 vertical profile locations. Leaf-end transmission was measured along horizontal profiles for each of 9 different leaf abutments, traveling over a 20 cm range. In-plane penumbra measurements were made through a single leaf retracted, for 7 different leaves. Cross-plane penumbra (leaf-end) measurements were made for all 27 leaf pairs, where the 1 cm field width was placed in 11 different off-axis positions (20 cm range). Interleaf leakage (range 1.0%-1.5%), intraleaf transmission (range 0.6%-0.8%), and leaf-end transmission (range 0.8%-2.7%) were consistent for all leaf pairs at a given abutment position. The penumbra for these 1-cm-wide fields was measured to be 0.36 cm+/-0.03 cm for 99% of the measurements. In conclusion, the penumbra and leakage of the double-focus MLC were remarkably consistent for the range of leaf positions studied, producing dosimetric characteristics that are well suited for IMRT segments where opposing leaf pairs are often separated by 10 mm or less.
Collapse
Affiliation(s)
- J E Bayouth
- University of Texas Medical Branch, Department of Radiation Oncology, Galveston, Texas 77555, USA.
| | | |
Collapse
|
25
|
Yu C, Shepard D. Treatment planning for stereotactic radiosurgery with photon beams. Technol Cancer Res Treat 2003; 2:93-104. [PMID: 12680789 DOI: 10.1177/153303460300200204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stereotactic Radiosurgery (SRS) has evolved as a unique discipline that combines aspects of both surgery and radiation oncology. Technological developments in the past few decades have provided a wide array of treatment techniques, including (i) the Gamma Knife; (ii) Linac-based stereotactic techniques using circular collimators or using micro multileaf collimators (mMLCs); (iii) the Cyber Knife, using an x-band linac mounted on a robotic arm; and (iv) serial and spiral tomotherapy. This paper provides a review of the treatment planning methods for stereotactic radiosurgery. Because of the differences in planning strategies used for each SRS technique, this paper will provide both a general review of the pre-requisites and common features of SRS treatment planning and the planning techniques specific to each of the SRS techniques.
Collapse
Affiliation(s)
- Cedric Yu
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
26
|
Ma L. Dependence of normal brain integral dose and normal tissue complication probability on the prescription isodose values for gamma-knife radiosurgery. Phys Med Biol 2001; 46:3031-41. [PMID: 11720361 DOI: 10.1088/0031-9155/46/11/317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A recent multi-institutional clinical study suggested possible benefits of lowering the prescription isodose lines for stereotactic radiosurgery procedures. In this study, we investigate the dependence of the normal brain integral dose and the normal tissue complication probability (NTCP) on the prescription isodose values for gamma-knife radiosurgery. An analytical dose model was developed for gamma-knife treatment planning. The dose model was commissioned by fitting the measured dose profiles for each helmet size. The dose model was validated by comparing its results with the Leksell gamma plan (LGP, version 5.30) calculations. The normal brain integral dose and the NTCP were computed and analysed for an ensemble of treatment cases. The functional dependence of the normal brain integral dose and the NCTP versus the prescribing isodose values was studied for these cases. We found that the normal brain integral dose and the NTCP increase significantly when lowering the prescription isodose lines from 50% to 35% of the maximum tumour dose. Alternatively, the normal brain integral dose and the NTCP decrease significantly when raising the prescribing isodose lines from 50% to 65% of the maximum tumour dose. The results may be used as a guideline for designing future dose escalation studies for gamma-knife applications.
Collapse
Affiliation(s)
- L Ma
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore 21201, USA.
| |
Collapse
|
27
|
Benedict SH, Cardinale RM, Wu Q, Zwicker RD, Broaddus WC, Mohan R. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys 2001; 50:751-8. [PMID: 11395244 DOI: 10.1016/s0360-3016(01)01487-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE The implementation of dynamic leaf motion on a micro-multileaf collimator system provides the capability for intensity-modulated stereotactic radiosurgery (IMSRS), and the consequent potential for improved dose distributions for irregularly shaped tumor volumes adjacent to critical organs. This study explores the use of IMSRS to provide improved tumor coverage and normal tissue sparing for small cranial tumors relative to plans based on multiple fixed uniform-intensity beams or traditional circular collimator arc-based stereotactic techniques. METHODS AND MATERIALS Four patient cases involving small brain lesions are presented and analyzed. The cases were chosen to include a representative selection of target shapes, number of targets, and adjacent critical areas. Patient plans generated for these comparisons include standard arcs with multiple circular collimators, and fixed noncoplanar static fields with uniform-intensity beams and IMSRS. Parameters used for evaluation of the plans include the percentage of irradiated volume to tumor volume (PITV), normal tissue dose-volume histograms, and dose-homogeneity ratios. All IMSRS plans were computed using previously established IMRT techniques adapted for use with the BrainLAB M3 micro-multileaf collimator. The algorithms comprising the IMRT system for optimization of intensity distributions and conversion into leaf trajectories of the BrainLab M3 were developed at our institution. The ADAC Pinnacle(3) radiation treatment-planning system was used for dose calculations and for input of contours for target volumes and normal critical structures. RESULTS For all cases, the IMSRS plans showed a high degree of conformity of the dose distribution with the target shape. The IMSRS plans provided either (1) a smaller volume of normal tissue irradiated to significant dose levels, generally taken as doses greater than 50% of the prescription, or (2) a lower dose to an important adjacent critical organ. The reduction in volume of normal tissue irradiated in the IMSRS plans ranged from 10% to 50% relative to the other arc and uniform fixed-field plans. CONCLUSION The case studies presented for IMSRS demonstrate significant dosimetric improvements for small, irregularly shaped lesions of the brain when compared to treatments using multiple static fields or standard SRS arc techniques with circular collimators. For all cases, the IMSRS plan yielded a smaller volume of normal tissue irradiated, and/or a reduction in the volume of an adjacent critical organ (i.e., brainstem) irradiated to significant dose levels.
Collapse
Affiliation(s)
- S H Benedict
- Department of Radiation Oncology, Medical College of Virginia Hospitals of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Leavitt DD, Tobler M, Gaffney D, Zhang P, Moeller J. Comparison of interpolated vs. calculated micromultileaf settings in dynamic conformal arc treatment. Med Dosim 2000; 25:17-21. [PMID: 10751714 DOI: 10.1016/s0958-3947(99)00035-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stereotactic radiosurgery has developed into a technique where patient positioning and treatment delivery can be performed with submillimeter precision. Achievement of this level of precision has allowed margins to be significantly reduced, and in some cases, removed altogether. Joined with these reductions in treatment margin has come a desire to shape the radiation beam, further limiting dose to normal tissues. Initial applications of shaped radiosurgery fields utilized circular blocking apertures in an attempt to shape the beam to these small volumes. The resultant dose distributions conformed well to spherical treatment volumes but were inadequate for situations where the volume of interest was irregular in shape. Other techniques, such as applying these circular apertures through multiple isocenter positions to a single volume, have been investigated as possible ways to better conform dose distributions to these irregularly-shaped volumes. Recent technological advances allow the use of micromultileaf collimators which dynamically shape the beam by adjustment of individual leaves as the gantry rotates through the are. With margins potentially so tight, accurate evaluation of these dynamically adjusting treatment parameters becomes critical. Our current treatment planning software evaluates adjustments of the leaf positions in increments of 10 degrees and then does a linear interpolation between increments. Treatment delivery, however, is performed with adjustment in leaf position more consistent with a 1 degree increment. This paper compares the individual position of each leaf as determined for the 10 degrees interpolation to required changes in leaf position when the calculation is performed at increments of less than 10 degrees. Our data suggest that there are instances where improvements can be seen when corrections in leaf positions are made at these smaller increments.
Collapse
Affiliation(s)
- D D Leavitt
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, USA
| | | | | | | | | |
Collapse
|
30
|
Platoni K, Lefkopoulos D, Grandjean P, Schlienger M. [Implementation of receiver operating characteristics for the quantitative evaluation of stereotactic radiotherapy treatment plans]. Cancer Radiother 1999; 3:494-502. [PMID: 10630163 DOI: 10.1016/s1278-3218(00)88257-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The definition of criteria and of a methodology dedicated to the quantitative evaluation of conformal stereotactic treatment plans is presented. We implemented the 'Receiver Operating Characteristics' (ROC) analysis, already used in medical imaging, for the quantitative evaluation of irradiation treatment plans. This implementation is based on data provided by dose-volume histograms (DVH). Three techniques, each one using a different dosimetric criterion, were defined for the choice of a reference isodose for a given treatment plan. We used this ROC analysis for the selection of the most conformal treatment plan and its reference isodose among the treatment plans proposed for one patient. This study revealed the interest of ROC analysis based on dose-volume histograms for the quantitative evaluation of treatment plans.
Collapse
Affiliation(s)
- K Platoni
- Département de radiothérapie-oncologie, hôpital Tenon, Paris, France
| | | | | | | |
Collapse
|
31
|
Meeks SL, Bova FJ, Buatti JM, Friedman WA, Eyster B, Kendrick LA. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization. Phys Med Biol 1999; 44:2777-87. [PMID: 10588284 DOI: 10.1088/0031-9155/44/11/307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations.
Collapse
Affiliation(s)
- S L Meeks
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville 32610-0265, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Perks JR, Jalali R, Cosgrove VP, Adams EJ, Shepherd SF, Warrington AP, Brada M. Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms. Int J Radiat Oncol Biol Phys 1999; 45:507-13. [PMID: 10487578 DOI: 10.1016/s0360-3016(99)00156-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To investigate the optimal treatment plan for stereotactically-guided conformal radiotherapy (SCRT) of sellar and parasellar lesions, with respect to sparing normal brain tissue, in the context of routine treatment delivery, based on dose volume histogram analysis. METHODS AND MATERIALS Computed tomography (CT) data sets for 8 patients with sellar- and parasellar-based tumors (6 pituitary adenomas and 2 meningiomas) have been used in this study. Treatment plans were prepared for 3-coplanar and 3-, 4-, 6-, and 30-noncoplanar-field arrangements to obtain 95% isodose coverage of the planning target volume (PTV) for each plan. Conformal shaping was achieved by customized blocks generated with the beams eye view (BEV) facility. Dose volume histograms (DVH) were calculated for the normal brain (excluding the PTV), and comparisons made for normal tissue sparing for all treatment plans at > or =80%, > or =60%, and > or =40% of the prescribed dose. RESULTS The mean volume of normal brain receiving > or =80% and > or =60% of the prescribed dose decreased by 22.3% (range 14.8-35.1%, standard deviation sigma = 7.5%) and 47.6% (range 25.8-69.1%, sigma = 13.2%), respectively, with a 4-field noncoplanar technique when compared with a conventional 3-field coplanar technique. Adding 2 further fields, from 4-noncoplanar to 6-noncoplanar fields reduced the mean normal brain volume receiving > or =80% of the prescribed dose by a further 4.1% (range -6.5-11.8%, sigma = 6.4%), and the volume receiving > or =60% by 3.3% (range -5.5-12.2%, sigma = 5.4%), neither of which were statistically significant. Each case must be considered individually however, as a wide range is seen in the volume spared when increasing the number of fields from 4 to 6. Comparing the 4- and 6-field noncoplanar techniques to a 30-field conformal field approach (simulating a dynamic arc plan) revealed near-equivalent normal tissue sparing. CONCLUSION Four to six widely spaced, fixed-conformal fields provide the optimum class solution for the treatment of sellar and parasellar lesions, both in terms of normal brain tissue sparing and providing a relatively straightforward patient setup. Increasing the number of fields did not result in further significant sparing, with no clear benefit from techniques approaching dynamic conformal radiotherapy in the cases examined.
Collapse
Affiliation(s)
- J R Perks
- Physics Department, The Royal Marsden NHS Trust and Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Mitsuhashi N, Sakurai H, Katano S, Kurosaki H, Hasegawa M, Akimoto T, Nozaki M, Hayakawa K, Niibe H. Stereotactic radiotherapy for locally recurrent nasopharyngeal carcinoma. Laryngoscope 1999; 109:805-9. [PMID: 10334235 DOI: 10.1097/00005537-199905000-00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the efficacy of stereotactic radiotherapy (SRT) in the treatment of recurrent nasopharyngeal carcinoma. STUDY DESIGN A retrospective review of the outcome of SRT for patients with recurrent nasopharyngeal carcinomas following definitive conventional radiation therapy. METHODS Five patients were treated with daily static multiportal irradiation. Two Gy was administered with eight isocentric portals in a single plane 5 days a week, and the plane was changed for every 20 to 30 Gy. Of these patients, three had poorly differentiated squamous cell carcinoma. Tumor sizes ranged from 1 to 15 cm3, with a median size 3.2 cm3. Median follow-up time from SRT was 34 months (range, 4-61 mo). RESULTS Four of five recurrent tumors responded well and achieved complete regression. Three patients have survived without evidence of local recurrence with a median follow-up time of 34 months. Marginal recurrence was observed at the posterosuperior wall in a patient with adenoid cystic carcinoma at 30 months after SRT. One patient who received SRT after the two complete courses of radiation therapy died 6 months after SRT as a result of rupture of a branch of the left carotid artery, but autopsy revealed no local residual tumor. CONCLUSIONS Stereotactic radiotherapy with isocentric multiportals in one plane, which is changed at every 20 to 30 Gy, can provide local control with acceptable toxicity in patients with recurrent nasopharyngeal carcinoma, but increased clinical experience and longer follow-up will be necessary to evaluate the overall role of this technique in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- N Mitsuhashi
- Department of Radiology and Radiation Oncology, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Meeks SL, Bova FJ, Friedman WA, Buatti JM, Mendenhall WM. Linac scalpel radiosurgery at the University of Florida. Med Dosim 1998; 23:177-85. [PMID: 9783271 DOI: 10.1016/s0958-3947(98)00011-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimal implementation of stereotactic radiosurgery requires multidisciplinary input from neurosurgeons, radiation oncologists, and physicists. Clinical processes of most importance to the physics staff include stereotactic imaging, treatment planning, and radiation delivery. Careful attention to each of these details helps to ensure the quality of the overall process. Here we provide a practical review of the clinical processes involved in linac scalpel radiosurgery. The linac scalpel system is a linear-accelerator-based radiosurgery system that was developed at the University of Florida. It has been used at the University of Florida to treat more than 1000 patients since 1988. The aim of the linac scalpel system is to minimize all possible uncertainties in imaging and treatment delivery. Once these errors are minimized, truly conformal treatment plans can be generated and delivered with confidence, allowing clinicians to focus solely on the patient's problem. By following practical examples of this well established system, many pitfalls in the clinical process can be avoided.
Collapse
Affiliation(s)
- S L Meeks
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville 32610, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Field shaping for stereotactic radiosurgery and stereotactic radiotherapy has evolved from static field shaping techniques applied to static or arc fields and now includes dynamic field shaping definition which can be dynamically modified during the arc. This allows greater conformation of dose to the target volume while minimizing dose to surrounding normal tissue. This results in treatment to a single isocenter, which simplifies the treatment planning and dose delivery, thereby minimizing treatment time and improving patient comfort and satisfaction during the treatment. A number of optimization techniques remain to be investigated.
Collapse
Affiliation(s)
- D D Leavitt
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City 84132, USA
| |
Collapse
|
36
|
Meeks SL, Buatti JM, Bova FJ, Friedman WA, Mendenhall WM. Treatment planning optimization for linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 1998; 41:183-97. [PMID: 9588933 DOI: 10.1016/s0360-3016(98)00044-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Linear accelerator radiosurgery uses multiple arcs delivered through circular collimators to produce a nominally spherical dose distribution. Production of dose distributions that conform to irregular lesions or conformally avoid critical neural structures requires a detailed understanding of the available treatment planning parameters. METHODS AND MATERIALS Treatment planning parameters that may be manipulated within a single isocenter to provide conformal avoidance and dose conformation to ellipsoidal lesions include differential arc weighting and gantry start/stop angles. More irregular lesions require the use of multiple isocenters. Iterative manipulation of treatment planning variables can be difficult and computationally expensive, especially if the effects of these manipulations are not well defined. Effects of treatment parameter manipulation are explained and illustrated. This is followed by description of the University of Florida Stereotactic Radiosurgery Treatment Planning Algorithm. This algorithm organizes the manipulations into a practical approach for radiosurgery treatment planning. RESULTS Iterative treatment planning parameters may be efficiently manipulated to achieve optimal treatment plans by following the University of Florida Treatment Planning Algorithm. The ability to produce conformal stereotactic treatment plans using the algorithm is demonstrated for a variety of clinical presentations. CONCLUSION The standard dose distribution produced in linear accelerator radiosurgery is spherical, but manipulation of available treatment planning parameters may result in optimal dose conformation. The University of Florida Treatment Planning Algorithm organizes available treatment parameters to efficiently produce conformal radiosurgery treatment plans.
Collapse
Affiliation(s)
- S L Meeks
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, USA
| | | | | | | | | |
Collapse
|
37
|
Kunieda E, Kitamura M, Kawaguchi O, Ohira T, Ogawa K, Ando Y, Nakamura K, Kubo A. New system for linear accelerator radiosurgery with a gantry-mounted video camera. Int J Radiat Oncol Biol Phys 1998; 40:739-46. [PMID: 9486627 DOI: 10.1016/s0360-3016(97)00844-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE We developed a positioning method that does not depend on the positioning mechanism originally annexed to the linac and investigated the positioning errors of the system. METHODS AND MATERIALS A small video camera was placed at a location optically identical to the linac x-ray source. A target pointer comprising a convex lens and bull's eye was attached to the arc of the Leksell stereotactic system so that the lens would form a virtual image of the bull's eye (virtual target) at the position of the center of the arc. The linac gantry and target pointer were placed at the side and top to adjust the arc center to the isocenter by referring the virtual target. Coincidence of the target and the isocenter could be confirmed in any combination of the couch and gantry rotation. In order to evaluate the accuracy of the positioning, a tungsten ball was attached to the stereotactic frame as a simulated target, which was repeatedly localized and repositioned to estimate the magnitude of the error. The center of the circular field defined by the collimator was marked on the film. RESULTS The differences between the marked centers of the circular field and the centers of the shadow of the simulated target were less than 0.3 mm.
Collapse
Affiliation(s)
- E Kunieda
- Department of Radiology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Verhey LJ, Smith V, Serago CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys 1998; 40:497-505. [PMID: 9457840 DOI: 10.1016/s0360-3016(97)00720-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE As a means of selecting the optimal stereotactic radiosurgery (SRS) treatment modality, a comparison of physical dose distributions to defined targets and nontarget brain tissue has been made for a group of test cases selected to represent a range of treatment-planning situations from small, nearly spherical volumes to large irregular volumes. METHODS AND MATERIALS Plans were developed for each case using photon beams from the Leksell Gamma Unit (LGU), multiarc bremsstrahlung photon beams from a linear accelerator (linac) and proton beams, with the objective of encompassing the target as closely as possible with the prescription isodose line, and minimizing dosage to normal tissue within the bounds of standard clinical practice. Dose-volume histograms (DVHs) were calculated for target and for nontarget brain tissue and compared for the various modalities. RESULTS In general, protons delivered less dosage to normal brain than other modalities for large and peripheral lesions and LGU plans were more successful at conforming to highly irregular shapes than conventional linac plans. CONCLUSIONS Differences were observed to depend on treatment modality, target characteristics (shape, size and location), and the amount of effort expended on treatment planning and the time allotted for treatment implementation.
Collapse
Affiliation(s)
- L J Verhey
- Department of Radiation Oncology, University of California, San Francisco 94143-0226, USA.
| | | | | |
Collapse
|
39
|
Abstract
Surgical resection and whole brain radiotherapy (WBRT) have been the mainstays of the treatment of cerebral metastases. This approach results in a median survival of about 10 months. Several recent publications and our own experience suggest that a similar median survival can be achieved with stereotactic radiosurgery using either the Leksell Gamma Knife or the linear accelerator radiosurgical techniques. In addition, radiosurgery can effectively treat metastatic tumors in surgically inaccessible sites, e.g., the brainstem. Radiosurgery can also effectively treat multiple intracranial metastases in widely separated areas of the brain. In fact, we have shown that patients with multiple metastases have similar lengths and qualities of survival as do patients with single metastases treated with stereotactic radiosurgery. The most important predictor of success in radiosurgical treatment of cerebral metastases is the neurological status of the patient, usually expressed as the Karnofsky Performance Status (KPS). The histological type of primary cancer is not an outcome predictor. Even so-called "radioresistant" tumors (e.g., melanoma, renal cell) respond favorable to radiosurgery. A great benefit of radiosurgery is the virtual lack of perioperative complications and the minimal interference with quality of life compared either to surgery or to fractionated whole brain radiotherapy. Long-term complications of radiosurgery are infrequent and primarily relate to failure of local tumor control (10%) and radiation-induced edema or necrosis. The later usually can be controlled with corticosteroids, but occasionally, craniotomy may be required to treat life-threatening mass effects. We believe that radiosurgery is the treatment of choice for most cerebral metastases. Only large lesions (> 3.5-4 cm diameter) and those which require immediate decompression to treat life-threatening mass effects require surgical treatment. Radiosurgery also may be used to treat residual disease after surgical resection. We have shown that WBRT does not increase the efficacy of radiosurgery in the treatment of cerebral metastases, and, therefore, we prefer to avoid both the short- and long-term morbidity of that treatment, if possible.
Collapse
Affiliation(s)
- R F Young
- Northwest Neurosciences Institute, Northwest Hospital, Seattle, Washington 98133, USA
| |
Collapse
|
40
|
Abstract
Previous prospective and retrospective trials have failed to demonstrate the best treatment approach for patients with brain metastases. As a result, fractionated whole brain radiotherapy (WBRT) has been the mainstay of treatment for several decades. However, with improved surgical techniques and the advent of radiosurgical procedures to treat single and multiple metastases, the continued value of WBRT is in question. This is particularly true in the treatment of a favorable patient subset where the risks of long-term morbidity need to be addressed. This article reviews the trials of the Radiation Therapy Oncology Group (RTOG) and other select radiotherapy brain metastases trials, and compares their morbidities and outcomes to surgical and radiosurgical techniques. It is unfortunate that the inherent selection bias in most retrospective studies makes comparisons difficult. Therefore, to better understand the roles of WBRT, surgery, and radiosurgery in the treatment of brain metastases, additional randomized studies need to be conducted on homogeneous patient groups.
Collapse
Affiliation(s)
- S S Vermeulen
- Northwest Tumor Institute, Deke Slayton Center for Brain Cancer Studies, Seattle, Washington 98133, USA
| |
Collapse
|
41
|
Ertl A, Zehetmayer M, Schöggl A, Kindl P, Hartl R. Dosimetry studies with TLDs for stereotactic radiation techniques for intraocular tumours. Phys Med Biol 1997; 42:2137-45. [PMID: 9394402 DOI: 10.1088/0031-9155/42/11/009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Between March 1993 and January 1997, stereotactic radiation techniques were used to irradiate 66 intraocular tumour patients with the Gamma Knife (Leksell Gamma Knife, model B unit) at the University of Vienna, Austria. This study investigates the dosimetry for stereotactic irradiation of ocular structures. For the dosimetry program KULA 4.4, Gamma Knife stereotactic irradiation of the eye represents an extreme frontal skull position. In addition, irradiation of the eye may be performed in the usual supine position in exceptional cases only. With the patient in the prone position, the dose planning program has to calculate with a significantly large number of single-beam extrapolations. In our first experiment we measured the isocentre dose for eight different gamma-angle positions, both in prone and supine positions, using TLD measurements in an Alderson head phantom. We found a maximum deviation of +/- 1.6% using these individually calibrated TLDs. In the second experiment we examined the dose cross profiles for the two most frequently used treatment positions (supine position, gamma = 65 degrees, and prone position, gamma = 140 degrees). For this purpose we implanted a specially designed TLD array into the orbit of a human cadaver head. We found excellent agreement of the dose values measured for the isocentre as well as the posterior part of the eye with orbit with deviations of less than -2.7%. However, for the anterior part of the eye, deviations between computer-generated calculations and the TLD measurements were found to range up to -30%. These differences were noticed both for supine and prone positions. For the Gamma Knife stereotactic irradiation of ocular tumours or pathologies, precautions should be taken to avoid significant underdosage in the anterior part of the radiation field.
Collapse
Affiliation(s)
- A Ertl
- Department of Neurosurgery, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
42
|
Prasad SG, Parthasaradhi K, Des Rosiers C, Bloomer WD, LaCombe MA. Dosimetric analysis and clinical implementation of 6 MV X-ray radiosurgery beam. Med Dosim 1997; 22:127-33. [PMID: 9243467 DOI: 10.1016/s0958-3947(97)00010-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dosimetric data on tissue maximum ratios (TMR), output factors, off axis ratios and beam profiles are presented for small circular fields of diameters ranging from 12.5 to 40 mm for 6 MV radiosurgery beam. It is noticed that dmax increases as the collimator field size increases. Comparison of our data with the published TMR and output factors of similar small circular fields shows that our values are higher than those data. Similarities in trend are noticed with the published isodose volumes for 1-5 and 10 arcs. Not much variation is seen beyond two arcs for 80% isodose volumes for all the field sizes. The variation is small in 20% isodose volumes beyond three arcs. Variations are noticed in 5% isodose volumes for 12.5 mm diameter collimated beam. Our experience has been exclusively with malignant neoplasms. An ideal target volume is covered by 80% isodose volume with 3-4 arcs and a single isocenter. Sixteen patients have been treated to date at our institution, including one patient with brain metastases, two patients with meningiomas, one patient with lymphoma and 12 patients with astrocytomas. The majority of tumors have been treated with single isocenter but some as large as 7 cm have been treated safely with two isocenters.
Collapse
Affiliation(s)
- S G Prasad
- Evanston Hospital Corporation, Division of Medical Physics, Northwestern University Medical School, IL 60201, USA
| | | | | | | | | |
Collapse
|
43
|
Brezovich IA, Pareek PN, Plott WE, Jennelle RL. Quality assurance system to correct for errors arising from couch rotation in linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1997; 38:883-90. [PMID: 9240658 DOI: 10.1016/s0360-3016(97)00057-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this project was the development of a quality assurance (QA) system that would provide geographically accurate targeting for linac-based stereotactic radiosurgery (LBSR). METHODS AND MATERIALS The key component of our QA system is a novel device (Alignment Tool) for expedient measurement of gantry and treatment table excursions (wobble) during rotation. The Alignment Tool replaces the familiar pencil-shaped pointers with a ball pointer that is used with the field light of the accelerator to indicate alignment of beam and target. Wobble is measured prior to each patient treatment and analyzed together with the BRW coordinates of the target by a spreadsheet. The corrections required to compensate for any imprecisions are identified, and a printout generated indicating the floor stand coordinates for each couch angle used to place the target at isocenter. RESULTS The Alignment Tool has an inherent accuracy of measurement better than 0.1 mm. The overall targeting error of our QA method, found by evaluating 177 target simulator films of 55 foci in 40 randomly selected patients, was 0.47 +/- 0.23 mm. The Alignment Tool was also valuable during installation of the floor stand and a supplemental collimator for the accelerator. CONCLUSIONS The QA procedure described allows accurate targeting in LBSR, even when couch rotation is imprecise. The Alignment Tool can facilitate the installation of any stereotactic irradiation system, and can be useful for annual QA checks as well as in the installation and commissioning of new accelerators.
Collapse
Affiliation(s)
- I A Brezovich
- Department of Radiation Oncology, University of Alabama at Birmingham, 35233, USA
| | | | | | | |
Collapse
|
44
|
Auchter RM, Lamond JP, Alexander E, Buatti JM, Chappell R, Friedman WA, Kinsella TJ, Levin AB, Noyes WR, Schultz CJ, Loeffler JS, Mehta MP. A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int J Radiat Oncol Biol Phys 1996; 35:27-35. [PMID: 8641923 DOI: 10.1016/s0360-3016(96)85008-5] [Citation(s) in RCA: 395] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Recent randomized trials of selected patients with single brain metastasis comparing resection followed by whole-brain radiotherapy (WBRT) to WBRT alone have shown a statistically significant survival advantage for surgery and WBRT. A multiinstitutional retrospective study was performed, which identified comparable patients who were treated with stereotactic radiosurgery (RS) and WBRT. METHODS AND MATERIALS The RS databases of four institutions were reviewed to identify patients who met the following criteria: single-brain metastasis; no prior cranial surgery or WBRT; age > 18 years; surgically resectable lesion; Karnofsky Performance Status (KPS) > or = 70 at time of RS; nonradiosensitive histology. One hundred twenty-two patients were identified who met these criteria. Patients were categorized by: (a) status of the primary, (b) status of non-CNS metastasis, (c) age, (d) baseline KPS (from 70-100), (e) histology, (f) time from diagnosis of primary to the detection of the brain metastasis, (g) gender, and (h) tumor volume. RS was performed with a linear accelerator based technique (peripheral dose range was 10-27 Gy, median was 17 Gy). WBRT was performed in all but five patients who refused WBRT (dose range was 25-40 Gy, median was 37.5 Gy). RESULTS The median follow-up for all patients was 123 weeks. The overall local control rate (defined as lack of progression in the RS volume) was 86%. Intracranial recurrence outside of the RS volume was seen in 27 patients (22%). The actuarial median survival from date of RS is 56 weeks, and the 1-year and 2-year actuarial survival rates are 53% and 30%. The median duration of functional independence (sustained KPS > or = 70) is 44 weeks. Nineteen of 77 deaths were attributed to CNS progression (25% of all deaths). Multivariate analysis revealed the following factors to be statistically significant predictors of survival: baseline KPS (p < .0001) and absence of other sites of metastasis (p = 0.008). CONCLUSION The RS in conjunction with WBRT for single brain metastasis can produce substantial functional survival, especially in patients with good performance status and without extracranial metastasis. These results are comparable to recent randomized trials of resection and WBRT. The advantages of RS over surgery in terms of cost, hospitalization, morbidity, and wider applicability strongly suggest that a randomized trial to compare RS with surgery is warranted.
Collapse
Affiliation(s)
- R M Auchter
- Department of Human Oncology, University of Wisconsin-Madison, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Affiliation(s)
- O Dahl
- Department of Oncology, University of Bergen, Norway
| | | | | | | |
Collapse
|
47
|
|
48
|
Faria SL, Souhami L, Bahary JP, Caron JL, Villemure JG, Olivier A, Clark B, Podgorsak EB. Metástase cerebral: tratamento paliativo com radiocirurgia. ARQUIVOS DE NEURO-PSIQUIATRIA 1995. [DOI: 10.1590/s0004-282x1995000400004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
O artigo faz avaliação de 52 pacientes com metástase cerebral tratados com radiocirurgia estereotática na Universidade McGill, em Montreal. A radiocirurgia foi realizada com a técnica dinâmica em que, ao mesmo tempo, giram a mesa e a cabeça do acelerador linear de 10 MV. Todos os pacientes (56 tratamentos ao todo) foram tratados com um único isocentro e uma dose única mediana de 1800 cGy na periferia da metástase. Em 88% dos casos a radiocirurgia foi usada após falha de tratamento radioterápico fracionado em todo cérebro. Todos os 52 casos tiveram avaliação com CT pós radiocirurgia. O seguimento mediano foi de 6 meses (variou entre 1 e 37 meses) e a taxa de resposta, parcial ou completa, foi de 64%. Apenas 4 pacientes (7%) tiveram algum tipo de complicação tardia relacionada ao tratamento. Estes achados vão de encontro com dados da literatura. A radiocirurgia é tratamento pouco agressivo, bem tolerado e com alta taxa de resposta para lesões locais e pode ser útil para pacientes selecionados. O seu valor definitivo, como tratamento único ou combinado com radioterapia em todo cérebro, está sendo avaliado de forma prospectiva e randomizada.
Collapse
|
49
|
|
50
|
|