1
|
Structure-Activity Relationship of Benzofuran Derivatives with Potential Anticancer Activity. Cancers (Basel) 2022; 14:cancers14092196. [PMID: 35565325 PMCID: PMC9099631 DOI: 10.3390/cancers14092196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is the leading cause of death worldwide and responsible for killing approximately 10 million people per year. Fused heterocyclic ring systems such as benzofuran have emerged as important scaffolds with many biological properties. Furthermore, derivatives of benzofurans demonstrate a wide range of biological and pharmacological activities, including anticancer properties. The main aim of this review is to highlight and discuss the contribution of benzofuran derivatives as anticancer agents by considering and discussing the chemical structure of 20 different compounds. Evaluating the chemical structure of these compounds will guide future medicinal chemists in designing new drugs for cancer therapy that might give excellent results in in vivo/in vitro applications. Abstract Benzofuran is a heterocyclic compound found naturally in plants and it can also be obtained through synthetic reactions. Multiple physicochemical characteristics and versatile features distinguish benzofuran, and its chemical structure is composed of fused benzene and furan rings. Benzofuran derivatives are essential compounds that hold vital biological activities to design novel therapies with enhanced efficacy compared to conventional treatments. Therefore, medicinal chemists used its core to synthesize new derivatives that can be applied to a variety of disorders. Benzofuran exhibited potential effectiveness in chronic diseases such as hypertension, neurodegenerative and oxidative conditions, and dyslipidemia. In acute infections, benzofuran revealed anti-infective properties against microorganisms like viruses, bacteria, and parasites. In recent years, the complex nature and the number of acquired or resistant cancer cases have been largely increasing. Benzofuran derivatives revealed potential anticancer activity with lower incidence or severity of adverse events normally encountered during chemotherapeutic treatments. This review discusses the structure–activity relationship (SAR) of several benzofuran derivatives in order to elucidate the possible substitution alternatives and structural requirements for a highly potent and selective anticancer activity.
Collapse
|
2
|
S El Salamouni N, Buckley BJ, Jiang L, Huang M, Ranson M, Kelso MJ, Yu H. Disruption of Water Networks is the Cause of Human/Mouse Species Selectivity in Urokinase Plasminogen Activator (uPA) Inhibitors Derived from Hexamethylene Amiloride (HMA). J Med Chem 2021; 65:1933-1945. [PMID: 34898192 DOI: 10.1021/acs.jmedchem.1c01423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The urokinase plasminogen activator (uPA) plays a critical role in tumor cell invasion and migration and is a promising antimetastasis target. 6-Substituted analogues of 5-N,N-(hexamethylene)amiloride (HMA) are potent and selective uPA inhibitors that lack the diuretic and antikaliuretic properties of the parent drug amiloride. However, the compounds display pronounced selectivity for human over mouse uPA, thus confounding interpretation of data from human xenograft mouse models of cancer. Here, computational and experimental findings reveal that residue 99 is a key contributor to the observed species selectivity, whereby enthalpically unfavorable expulsion of a water molecule by the 5-N,N-hexamethylene ring occurs when residue 99 is Tyr (as in mouse uPA). Analogue 7 lacking the 5-N,N-hexamethylene ring maintained similar water networks when bound to human and mouse uPA and displayed reduced selectivity, thus supporting this conclusion. The study will guide further optimization of dual-potent human/mouse uPA inhibitors from the amiloride class as antimetastasis drugs.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Longguang Jiang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Mingdong Huang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Buckley BJ, Aboelela A, Minaei E, Jiang LX, Xu Z, Ali U, Fildes K, Cheung CY, Cook SM, Johnson DC, Bachovchin DA, Cook GM, Apte M, Huang M, Ranson M, Kelso MJ. 6-Substituted Hexamethylene Amiloride (HMA) Derivatives as Potent and Selective Inhibitors of the Human Urokinase Plasminogen Activator for Use in Cancer. J Med Chem 2018; 61:8299-8320. [PMID: 30130401 DOI: 10.1021/acs.jmedchem.8b00838] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastasis is the cause of death in the majority (∼90%) of malignant cancers. The oral potassium-sparing diuretic amiloride and its 5-substituted derivative 5 -N, N-(hexamethylene)amiloride (HMA) reportedly show robust antitumor/metastasis effects in multiple in vitro and animal models. These effects are likely due, at least in part, to inhibition of the urokinase plasminogen activator (uPA), a key protease determinant of cell invasiveness and metastasis. This study reports the discovery of 6-substituted HMA analogs that show nanomolar potency against uPA, high selectivity over related trypsin-like serine proteases, and minimal inhibitory effects against epithelial sodium channels (ENaC), the diuretic and antikaliuretic target of amiloride. Reductions in lung metastases were demonstrated for two analogs in a late-stage experimental mouse metastasis model, and one analog completely inhibited formation of liver metastases in an orthotopic xenograft mouse model of pancreatic cancer. The results support further evaluation of 6-substituted HMA derivatives as uPA-targeting anticancer drugs.
Collapse
Affiliation(s)
- Benjamin J Buckley
- Molecular Horizons and School of Chemistry & Molecular Bioscience , University of Wollongong , Wollongong , NSW 2522 , Australia.,Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry & Molecular Bioscience , University of Wollongong , Wollongong , NSW 2522 , Australia.,Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia
| | - Elahe Minaei
- Molecular Horizons and School of Chemistry & Molecular Bioscience , University of Wollongong , Wollongong , NSW 2522 , Australia.,Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia
| | - Longguang X Jiang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies , Fuzhou University , Fujian 350116 , China
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School , University of New South Wales, and Ingham Institute for Applied Medical Research , Liverpool , NSW 2170 , Australia
| | - Umar Ali
- Molecular Horizons and School of Chemistry & Molecular Bioscience , University of Wollongong , Wollongong , NSW 2522 , Australia.,Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia
| | - Karen Fildes
- Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia.,Graduate School of Medicine , University of Wollongong , Wollongong , NSW 2522 , Australia
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology , University of Otago , Otago 9016 , New Zealand
| | - Simon M Cook
- Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia
| | - Darren C Johnson
- Tri-Institutional PhD Program in Chemical Biology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Daniel A Bachovchin
- Tri-Institutional PhD Program in Chemical Biology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Chemical Biology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Gregory M Cook
- Department of Microbiology and Immunology , University of Otago , Otago 9016 , New Zealand
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School , University of New South Wales, and Ingham Institute for Applied Medical Research , Liverpool , NSW 2170 , Australia
| | - Mingdong Huang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies , Fuzhou University , Fujian 350116 , China
| | - Marie Ranson
- Molecular Horizons and School of Chemistry & Molecular Bioscience , University of Wollongong , Wollongong , NSW 2522 , Australia.,Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry & Molecular Bioscience , University of Wollongong , Wollongong , NSW 2522 , Australia.,Illawarra Health & Medical Research Institute , Wollongong , NSW 2522 , Australia
| |
Collapse
|
4
|
Hatial I, Addy PS, Ghosh AK, Basak A. Synthesis of highly efficient pH-sensitive DNA cleaving aminomethyl N-substituted cyclic enediyne and its L-lysine conjugate. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yang WY, Breiner B, Kovalenko SV, Ben C, Singh M, LeGrand SN, Sang QXA, Strouse GF, Copland JA, Alabugin IV. C-lysine conjugates: pH-controlled light-activated reagents for efficient double-stranded DNA cleavage with implications for cancer therapy. J Am Chem Soc 2009; 131:11458-70. [PMID: 19637922 PMCID: PMC2771568 DOI: 10.1021/ja902140m] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Double-stranded DNA cleavage of light-activated lysine conjugates is strongly enhanced at the slightly acidic pH (<7) suitable for selective targeting of cancer cells. This enhancement stems from the presence of two amino groups of different basicities. The first amino group plays an auxiliary role by enhancing solubility and affinity to DNA, whereas the second amino group, which is positioned next to the light-activated DNA cleaver, undergoes protonation at the desired pH threshold. This protonation results in two synergetic effects which account for the increased DNA-cleaving ability at the lower pH. First, lysine conjugates show tighter binding to DNA at the lower pH, which is consistent with the anticipated higher degree of interaction between two positively charged ammonium groups with the negatively charged phosphate backbone of DNA. Second, the unproductive pathway which quenches the excited state of the photocleaver through intramolecular electron transfer is eliminated once the donor amino group next to the chromophore is protonated. Experiments in the presence of traps for diffusing radicals show that reactive oxygen species do not contribute significantly to the mechanism of DNA cleavage at the lower pH, which is indicative of tighter binding to DNA under these conditions. This feature is valuable not only because many solid tumors are hypoxic but also because cleavage which does not depend on diffusing species is more localized and efficient. Sequence-selectivity experiments suggest combination of PET and base alkylation as the chemical basis for the observed DNA damage. The utility of these molecules for phototherapy of cancer is confirmed by the drastic increase in toxicity of five conjugates against cancer cell lines upon photoactivation.
Collapse
Affiliation(s)
- Wang-Yong Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Boris Breiner
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Serguei V. Kovalenko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Chi Ben
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Mani Singh
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Shauna N. LeGrand
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Geoffrey F. Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
6
|
Hayashi Y, Katayama K, Togawa T, Kimura T, Yamaguchi A. Effects of bafilomycin A1, a vacuolar type H+ATPase inhibitor, on the thermosensitivity of a human pancreatic cancer cell line. Int J Hyperthermia 2009; 22:275-85. [PMID: 16754349 DOI: 10.1080/02656730600708049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE It has been known that the thermosensitivity of tumour cells can be increased by lowering intra-cellular pH (pHi) by inhibiting pHi control mechanisms. The pHi is partially controlled by transport of H+ from cytoplasm into endocytic and secretary systems in the cells mediated by vacuolar type H+ATPase and also by transport of H+ through plasma membrane. METHODS This study investigated the effects the bafilomycine A1, an inhibitor of the vacuolar type H+ATPase and the EIPA, an inhibitor of the Na+/H+ exchanger in plasma membrane, on thermosensitivity of AsPC-1 cells, a human pancreatic cancer cell line. It also investigated the effects of combination of bafilomycine A1 and EIPA. RESULTS The treatment of cancer cells with bafilomycine A1 or EIPA individually slightly lowered pHi of the cells in vitro and increased the thermosensitivity of the cells. CONCLUSION The combination of these two drugs significantly lowered pHi and increased thermosensitivity of cancer cells in vitro and enhanced the heat-induced the growth delay of AsPC-1 tumours grown s.c in the legs of BALB/cA nude mice.
Collapse
Affiliation(s)
- Yasuo Hayashi
- First Department of Surgery, Faculty of Medicine, University of Fukui, Matsuoka, Fukui, Japan.
| | | | | | | | | |
Collapse
|
7
|
Goñi-Allo B, Puerta E, Hervias I, Di Palma R, Ramos M, Lasheras B, Aguirre N. Studies on the mechanisms underlying amiloride enhancement of 3,4-methylenedioxymethamphetamine-induced serotonin depletion in rats. Eur J Pharmacol 2007; 562:198-207. [PMID: 17320075 DOI: 10.1016/j.ejphar.2007.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/13/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Amiloride and several of its congeners known to block the Na(+)/Ca(2+) and/or Na(+)/H(+) antiporters potentiate methamphetamine-induced neurotoxicity without altering methamphetamine-induced hyperthermia. We now examine whether amiloride also exacerbates 3,4-methylenedioxymethamphetamine (MDMA)-induced long-term serotonin (5-HT) loss in rats. Amiloride (2.5 mg/kg, every 2 h x 3, i.p.) given at ambient temperature 30 min before MDMA (5 mg/kg, every 2 h x 3, i.p.), markedly exacerbated long-term 5-HT loss. However, in contrast to methamphetamine, amiloride also potentiated MDMA-induced hyperthermia. Fluoxetine (10 mg/kg i.p.) completely protected against 5-HT depletion caused by the MDMA/amiloride combination without significantly altering the hyperthermic response. By contrast, the calcium channel antagonists flunarizine or diltiazem did not afford any protection. Findings with MDMA and amiloride were extended to the highly selective Na(+)/H(+) exchange inhibitor dimethylamiloride, suggesting that the potentiating effects of amiloride are probably mediated by the blockade of Na(+)/H(+) exchange. When the MDMA/amiloride combination was administered at 15 degrees C hyperthermia did not develop and brain 5-HT concentrations remained unchanged 7 days later. Intrastriatal perfusion of MDMA (100 microM for 8 h) in combination with systemic amiloride caused a small depletion of striatal 5-HT content in animals made hyperthermic but not in the striatum of normothermic rats. These data suggest that enhancement of MDMA-induced 5-HT loss caused by amiloride or dimethylamiloride depends on their ability to enhance MDMA-induced hyperthermia. We hypothesise that blockade of Na(+)/H(+) exchange could synergize with hyperthermia to render 5-HT terminals more vulnerable to the toxic effects of MDMA.
Collapse
Affiliation(s)
- Beatriz Goñi-Allo
- Department of Pharmacology, School of Medicine, University of Navarra, C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
We have investigated the feasibility of enhancing damage induced by hyperthermia in SCK murine tumors by reducing tumor blood perfusion using a new agent, KB-R8498. Within several minutes of an i.v. injection, the tumor perfusion was reduced to less than 20% of the control value, and it recovered to 40-70% of the control value by 1 h after injection. The perfusion in normal tissues decreased or increased soon after drug administration depending on the tissue type. However, by 1 h after drug treatment, perfusion in five of the seven tissues examined had returned to the control level. The tumor pH was also reduced after i.v. drug administration. Control tumors grew to four times the initial volume in 6 days. Tumors that were heated at 42.5 degrees C for 60 min were delayed in growth by 4 days compared to control tumors. There was a growth delay of 14 days when an i.v. injection of KB-R8498 was given and the tumors were heated at 42.5 degrees C either immediately or 1 h later. In drug-alone studies, the tumor growth was delayed by 4 days when the drug was infused continuously at a rate of 30-50 mg/kg day(-1) for 7 days or about 2 days when mice were treated with five daily injections of 30 mg/kg KB-R8498.
Collapse
Affiliation(s)
- R J Griffin
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
9
|
Kitai R, Kabuto M, Kubota T, Kobayashi H, Matsumoto H, Hayashi S, Shioura H, Ohtsubo T, Katayama K, Kano E. Sensitization to hyperthermia by intracellular acidification of C6 glioma cells. J Neurooncol 1998; 39:197-203. [PMID: 9821105 DOI: 10.1023/a:1005996816453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hyperthermia has been introduced as a new modality of treatment for glioma. In these experiments, the cytotoxicity of hyperthermia in C6 glioma cells was enhanced by increasing the intracellular acidity with amiloride and/or 4,4'-diisothiocyanatostilbene-2,2' disulfonic acid (DIDS). Intracellular pH (pHi) is regulated mainly by Na+/H+ and HCO3-/Cl- antiports through the cell membrane, and amiloride acts on the former, DIDS on the latter to lower pHi. The cellular thermosensitivity to clinically achievable brain hyperthermia at 42 degrees C was enhanced by 0.5 mM amiloride (Na+/H+ antiport inhibitor). T0 values (T0 = the heating period required to reduce experimental survival rate by 1/e) at 42 degrees C without and with amiloride was 192 and 81 min, respectively. The addition of DIDS (HCO3-/Cl- antiport inhibitor) further enhanced. T0 value was 25 min. Fluorophotometric measurement of pHi was employed using the pH sensitive dye, bis(carboxyethyl)carboxyfluorescein, which is trapped in viable cells. The average pHi in control C6 glioma cells in pH 7.2 media was 7.21. In the untreated cells heated at 42 degrees C for 1 hour, the pHi was 7.12. The pHi of the cells heated in the presence of amiloride was decreased to 6.83. The pHi was further lowered to 6.67 by the treatment with amiloride in combination with DIDS for 2 hours. Hyperthermia with amiloride and DIDS may be a more effective treatment for malignant gliomas.
Collapse
Affiliation(s)
- R Kitai
- Department of Neurosurgery, Fukui Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Owen CS, Wahl ML, Pooler PM, Coss RA, Leeper DB. Temporal association between alterations in proton extrusion and low pH adaptation. Int J Hyperthermia 1998; 14:227-32. [PMID: 9589327 DOI: 10.3109/02656739809018227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells which have been adapted to growth at low extracellular pH (pHe) typically develop both an upregulation of steady state intracellular pH (pHi) and an ability to develop thermotolerance to 42 degrees C hyperthermia. These properties were acquired at different times, however. Days were required at pHe = 6.70 for two cell lines to adapt to low pHe by the thermotolerance criterion, but both had elevated steady state pHi values after only 4 hours at pHe = 6.70. A better correlation with adaptation to low pHe (as defined by hyperthermia) was found with changes in proton extrusion and the rate of pHi recovery after cytosolic acidification.
Collapse
Affiliation(s)
- C S Owen
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
11
|
Ben-Yoseph O, Lyons JC, Song CW, Ross BD. Mechanism of action of lonidamine in the 9L brain tumor model involves inhibition of lactate efflux and intracellular acidification. J Neurooncol 1998; 36:149-57. [PMID: 9525814 DOI: 10.1023/a:1005819604858] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malignant gliomas have been associated with a high rate of glycolytic activity which is believed necessary to sustain cellular function and integrity. Since lonidamine (LND) is believed to reduce tumor glucose utilization by inhibition of the mitochondrially-bound glycolytic enzyme hexokinase (HK), 31P magnetic resonance spectroscopy (MRS) was used to noninvasively follow the effects of LND on both tumor pH and the high-energy phosphate metabolites: ATP, phosphocreatine (PCr) and inorganic phosphate (Pi) in subcutaneous rat 9L gliosarcomas. 31P tumor spectra acquired in 5 min intervals pre- and post LND administration of 50 and 100 mg/kg, i.p. revealed an acidotic pH shift of -0.25 and -0.45 pH units, respectively within 30 min post administration. The ATP/Pi ratio of 9L tumors decreased to 40% of control and Pi levels increased to 280% of control over a 3 hr period. LND exerted no effect on tumor blood flow and mean arterial blood pressure. Brain and muscle metabolite levels and pH were also unaffected by LND. In vitro measurements of cultured 9L tumor cell intra- and extracellular lactate, pentose phosphate pathway (PPP) and hexokinase (HK) activities suggest that the mode of action of LND involves inhibition of lactate efflux and intracellular acidification. The selective reduction of tumor energy metabolites and pH by LND may be exploitable for sensitizing gliomas to radiation, chemotherapy or hyperthermia.
Collapse
Affiliation(s)
- O Ben-Yoseph
- Department of Radiology, University of Michigan, Ann Arbor 48109-0648, USA
| | | | | | | |
Collapse
|
12
|
Aoki Y, Akagi K, Tanaka Y, Kawai J, Takahashi M. Measurement of intratumor pH by pH indicator used in 19F-magnetic resonance spectroscopy. Measurement of extracellular pH decrease caused by hyperthermia combined with hydralazine. Invest Radiol 1996; 31:680-9. [PMID: 8915749 DOI: 10.1097/00004424-199611000-00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE AND OBJECTIVES Without affect of metabolic changes, the authors measured intratumor pH by using 19F-magnetic resonance spectroscopy (MRS) with a fluorine compound (ZK-150471) on the basis of a calibration curve by pH electrode. METHODS Using the 4.7-tesla magnetic resonance apparatus, a fluorine compound that had acid-base equilibrial change and was impermeable within cell membranes was used. The fluorine compound was injected intravenously. The signal was obtained from mouse mammary cancer by creating an experimental tumor on the leg of mice. And the tumors, which were heated with and without hydralazine. The pH evaluated from chemical shift of the fluorine compound. The pH data was obtained from an electrode for reference. RESULTS The pH of nontreated tumors (n = 25) were 6.94 + 0.091. The pH decreased to 6.772 + 0.169 at 20 minutes even after 20 minutes of heating, and decreased to < 6.71 at 40 minutes after every heating time. The pH decreased to 6.456 at 20 minutes after 15 minutes of heating combined with hydralazine, and to 6.416 at 40 minutes after same treatment. CONCLUSIONS It is possible to measure the extracellular pH by 19F-MRS with the fluorine compound noninvasively in vivo, even after heating.
Collapse
Affiliation(s)
- Y Aoki
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | | | | | | | | |
Collapse
|
13
|
Park HJ, Makepeace CM, Lyons JC, Song CW. Effect of intracellular acidity and ionomycin on apoptosis in HL-60 cells. Eur J Cancer 1996; 32A:540-6. [PMID: 8814704 DOI: 10.1016/0959-8049(95)00606-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim was to investigate in detail the influence of intracellular pH (pHi) and intracellular Ca2+ concentration ([Ca2+]i) on apoptosis in HL-60 human promyelocytic leukaemia cells. The pHi was controlled by changing the pH of media as well as by interfering with the pHi regulatory mechanisms with 3-amino-6-chloro-5-(1-homopiperidyl)-N-(diaminomethylene) pyrazincarboxamide (HMA; an inhibitor of Na+/H+ antiport), 4-diiosothiocyanatostilbene-2,2'disulfonic acid, (DIDS; an inhibitor of Na(+)-dependent HCO3-/Cl- exchange) and nigericin (a K+ ionophore). The [Ca2+]i was increased with ionomycin, a Ca2+ ionophore. The apoptosis of HL-60 cells was measured with conventional agarose gel electrophoresis for DNA fragmentation and also with the release of 3H from 3H-thymidine-labelled DNA. Based on the magnitude of DNA fragmentation and 3H release at different pHi, it was shown that apoptosis occurred in HL-60 cells when the pHi was lowered from normal pHi of 7.4 to about 7.2-6.7 with a peak increase at pHi 6.8-6.9. Addition of 4 microM ionomycin to RPMI 1640 medium, which contained 615 microM Ca2+, elevated the apoptosis in the cells. Such an increase in apoptosis by ionomycin in HL-60 cells appeared to result from both an increase in [Ca2+]i and from a decline in pHi. The results indicate that the acidic intratumour environment may greatly affect the response of neoplastic tissues to hyperthermia, radiation and chemotherapeutic drugs which cause apoptosis.
Collapse
Affiliation(s)
- H J Park
- Department of Microbiology, Inha University, Inchon, Korea
| | | | | | | |
Collapse
|