Geisert EE, Stewart AM. Changing interactions between astrocytes and neurons during CNS maturation.
Dev Biol 1991;
143:335-45. [PMID:
1991556 DOI:
10.1016/0012-1606(91)90084-g]
[Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The environments of the developing brain and injured adult brain differ in their abilities to support axonal growth. To determine if astrocytes contribute to this difference, neurons were plated onto astrocytes cultured from the neonatal rat cortex and from the injured adult brain. Two patterns of neurite growth were observed in these two astrocyte culture systems. Neurons contacting the neonatal astrocytes had neurites that were twice as long as those contacting the injured adult astrocytes. Furthermore, in cultures with neonatal astrocytes, neurites faithfully followed the astrocytic processes, maximizing their contact, while in cultures of injured adult astrocytes, the neurites had a tendency to cross the processes orthogonally, minimizing their interaction with the astrocytes. When neurons were grown suspended over either neonatal or injured adult astrocytes, no difference in neurite length or the pattern of neurite growth was observed, indicating that neurite growth was not differentially affected by soluble factors released from the two populations of astrocytes. The addition of fetal calf serum, which is known to contain protease inhibitors, did not alter neurite growth when compared to serum-free medium, suggesting that a substantial difference in protease activity does not account for the variations in neurite length observed. Based on these results, it appears that the molecular components of the external surface of injured adult astrocytes do not support neurite growth to the same extent as those found on neonatal astrocytes. The differing abilities of these two populations of cultured astrocytes to support neurite growth in culture may reflect a change in the functional role of these cells that occurs during the development of the central nervous system.
Collapse