1
|
Hervig MES, Toschi C, Petersen A, Vangkilde S, Gether U, Robbins TW. Theory of visual attention (TVA) applied to rats performing the 5-choice serial reaction time task: differential effects of dopaminergic and noradrenergic manipulations. Psychopharmacology (Berl) 2023; 240:41-58. [PMID: 36434307 PMCID: PMC9816296 DOI: 10.1007/s00213-022-06269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Attention is compromised in many psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). While dopamine and noradrenaline systems have been implicated in ADHD, their exact role in attentional processing is yet unknown. OBJECTIVES We applied the theory of visual attention (TVA) model, adapted from human research, to the rat 5-choice serial reaction time task (5CSRTT) to investigate catecholaminergic modulation of visual attentional processing in healthy subjects of high- and low-attention phenotypes. METHODS Rats trained on the standard 5CSRTT and tested with variable stimulus durations were treated systemically with noradrenergic and/or dopaminergic agents (atomoxetine, methylphenidate, amphetamine, phenylephrine and atipamezole). TVA modelling was applied to estimate visual processing speed for correct and incorrect visual perceptual categorisations, independent of motor reaction times, as measures of attentional capacity. RESULTS Atomoxetine and phenylephrine decreased response frequencies, including premature responses, increased omissions and slowed responding. In contrast, methylphenidate, amphetamine and atipamezole sped up responding and increased premature responses. Visual processing speed was also affected differentially. Atomoxetine and phenylephrine slowed, whereas methylphenidate and atipamezole sped up, visual processing, both for correct and incorrect categorisations. Amphetamine selectively improved visual processing for correct, though not incorrect, responses in high-attention rats only, possibly reflecting improved attention. CONCLUSIONS These data indicate that the application of TVA to the 5CSRTT provides an enhanced sensitivity to capturing attentional effects. Unexpectedly, we found overall slowing effects, including impaired visual processing, following drugs either increasing extracellular noradrenaline (atomoxetine) or activating the α1-adrenoceptor (phenylephrine), while also ameliorating premature responses (impulsivity). In contrast, amphetamine had potential pro-attentional effects by enhancing visual processing, probably due to central dopamine upregulation.
Collapse
Affiliation(s)
- Mona El-Sayed Hervig
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Chiara Toschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anders Petersen
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Vangkilde
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Trevor W. Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Higgins GA, Silenieks LB. The Effects of Drug Treatments for ADHD in Measures of Cognitive Performance. Curr Top Behav Neurosci 2022; 57:321-362. [PMID: 35606638 DOI: 10.1007/7854_2022_341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on core symptoms of inattention and deficient impulse control, and the identification of effective pharmacotherapies such as amphetamine (AMP; Adderall®), methylphenidate (MPH; Ritalin®), and atomoxetine (ATX; Strattera®), ADHD is a clinical condition which provides opportunity for translational research. Neuropsychological tests such as the 5-Choice and Continuous Performance Tasks, which measure aspects of attention and impulse control in animals and humans, provide scope for both forward (animal to human) and reverse (human to animal) translation. Rodent studies support pro-attentive effects of AMP and MPH and effectiveness in controlling some forms of impulsive behavior. In contrast, any pro-attentive effects of ATX appear to be less consistent, the most reliable effects of ATX are recorded in tests of impulsivity. These differences may account for AMP and MPH being recognized as first-line treatments for ADHD with a higher efficacy relative to ATX. DSM-5 classifies three "presentations" of ADHD: predominantly inattentive type (ADHD-I), predominantly hyperactive/impulsive type (ADHD-HI), or combined (ADHD-C). Presently, it is unclear whether AMP, MPH, or ATX has differential levels of efficacy across these presentation types. Nonetheless, these studies encourage confidence for the forward translation of NCEs in efforts to identify newer pharmacotherapies for ADHD.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
3
|
Toschi C, Hervig MES, Moazen P, Parker MG, Dalley JW, Gether U, Robbins TW. Adaptive aspects of impulsivity and interactions with effects of catecholaminergic agents in the 5-choice serial reaction time task: implications for ADHD. Psychopharmacology (Berl) 2021; 238:2601-2615. [PMID: 34104987 PMCID: PMC8373759 DOI: 10.1007/s00213-021-05883-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/21/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Work in humans has shown that impulsivity can be advantageous in certain settings. However, evidence for so-called functional impulsivity is lacking in experimental animals. AIMS This study investigated the contexts in which high impulsive (HI) rats show an advantage in performance compared with mid- (MI) and low impulsive (LI) rats. We also assessed the effects of dopaminergic and noradrenergic agents to investigate underlying neurotransmitter mechanisms. METHODS We tested rats on a variable inter-trial interval (ITI) version of the 5-choice serial reaction time task (5CSRTT). Rats received systemic injections of methylphenidate (MPH, 1 mg/kg and 3 mg/kg), atomoxetine (ATO, 0.3 mg/kg and 1 mg/kg), amphetamine (AMPH, 0.2 mg/kg), the alpha-2a adrenoceptor antagonist atipamezole (ATI, 0.3 mg/kg) and the alpha-1 adrenoceptor agonist phenylephrine (PHEN, 1 mg/kg) prior to behavioural testing. RESULTS Unlike LI rats, HI rats exhibited superior performance, earning more reinforcers, on short ITI trials, when the task required rapid responding. MPH, AMPH and ATI improved performance on short ITI trials and increased impulsivity in long ITI trials, recapitulating the behavioural profile of HI. In contrast, ATO and PHEN impaired performance on short ITI trials and decreased impulsivity, thus mimicking the behavioural profile of LI rats. The effects of ATO were greater on MI rats and LI rats. CONCLUSIONS These findings indicate that impulsivity can be advantageous when rapid focusing and actions are required, an effect that may depend on increased dopamine neurotransmission. Conversely, activation of the noradrenergic system, with ATO and PHEN, led to a general inhibition of responding.
Collapse
Affiliation(s)
- Chiara Toschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK.
| | - Mona El-Sayed Hervig
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Parisa Moazen
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maximilian G Parker
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St., CB2 3EB, Cambridge, UK
| |
Collapse
|
4
|
Impact of anesthesia on static and dynamic functional connectivity in mice. Neuroimage 2021; 241:118413. [PMID: 34293463 DOI: 10.1016/j.neuroimage.2021.118413] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
A few studies have compared the static functional connectivity between awake and lightly anesthetized states in rodents by resting-state fMRI. However, impact of light anesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under light anesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric and subcortical connections were key connections for anesthetized condition from awake state. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only under light anesthesia compared with awake state. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anesthesia. These results indicate that typical anesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.
Collapse
|
5
|
Benn A, Robinson ESJ. Differential roles for cortical versus sub-cortical noradrenaline and modulation of impulsivity in the rat. Psychopharmacology (Berl) 2017; 234:255-266. [PMID: 27744551 PMCID: PMC5203835 DOI: 10.1007/s00213-016-4458-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Atomoxetine is a noradrenaline re-uptake inhibitor licensed for the treatment of adult and childhood attention deficit hyperactivity disorder. Although atomoxetine has established efficacy, the mechanisms which mediate its effects are not well understood. OBJECTIVES In this study, we investigated the role of cortical versus sub-cortical noradrenaline by using focal dopamine beta hydroxylase-saporin-induced lesions, to the prefrontal cortex (n = 16) or nucleus accumbens shell (n = 18). METHODS Healthy animals were tested by using the forced-choice serial reaction time task to assess the impact of the lesion on baseline performance and the response to atomoxetine and the psychostimulant amphetamine. RESULTS We observed attenuation in the efficacy of atomoxetine in animals with lesions to the nucleus accumbens shell, but not the prefrontal cortex. Amphetamine-induced increases in premature responses were potentiated in animals with lesions to the prefrontal cortex, but not the nucleus accumbens shell. CONCLUSIONS These data suggest that noradrenaline in the nucleus accumbens shell plays an important role in the effects of atomoxetine. Under these conditions, prefrontal cortex noradrenaline did not appear to contribute to atomoxetine's effects suggesting a lack of cortical-mediated "top-down" modulation. Noradrenaline in the prefrontal cortex appears to contribute to the modulation of impulsive responding in amphetamine-treated animals, with a loss of noradrenaline associated with potentiation of its effects. These data demonstrate a potential dissociation between cortical and sub-cortical noradrenergic mechanisms and impulse control in terms of the actions of atomoxetine and amphetamine.
Collapse
Affiliation(s)
- Abigail Benn
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
6
|
Abstract
The ability to focus one's attention on important environmental stimuli while ignoring irrelevant stimuli is fundamental to human cognition and intellectual function. Attention is inextricably linked to perception, learning and memory, and executive function; however, it is often impaired in a variety of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, depression, and attention deficit hyperactivity disorder (ADHD). Accordingly, attention is considered as an important therapeutic target in these disorders. The purpose of this chapter is to provide an overview of the most common behavioral paradigms of attention that have been used in animals (particularly rodents) and to review the literature where these tasks have been employed to elucidate neurobiological substrates of attention as well as to evaluate novel pharmacological agents for their potential as treatments for disorders of attention. These paradigms include two tasks of sustained attention that were developed as rodent analogues of the human Continuous Performance Task (CPT), the Five-Choice Serial Reaction Time Task (5-CSRTT) and the more recently introduced Five-Choice Continuous Performance Task (5C-CPT), and the Signal Detection Task (SDT) which was designed to emphasize temporal components of attention.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, CB-3545, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA, 30912-2450, USA
| | | |
Collapse
|
7
|
Pattij T, Schetters D, Schoffelmeer ANM, van Gaalen MM. On the improvement of inhibitory response control and visuospatial attention by indirect and direct adrenoceptor agonists. Psychopharmacology (Berl) 2012; 219:327-40. [PMID: 21769568 PMCID: PMC3249209 DOI: 10.1007/s00213-011-2405-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/17/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE The clinical efficacy of the monoamine and noradrenaline transporter inhibitors methylphenidate and atomoxetine in attention deficit/hyperactivity disorder implicates noradrenergic neurotransmission in modulating inhibitory response control processes. Nonetheless, it is unclear which adrenoceptor subtypes are involved in these effects. OBJECTIVES The present study aimed at investigating the effects of adrenoceptor agonists on inhibitory response control as assessed in the rodent 5-choice serial reaction time task, a widely used translational model to measure this executive cognitive function. RESULTS Consistent with the previous reported effects of atomoxetine, the noradrenaline transporter inhibitor desipramine improved inhibitory response control, albeit the effect size was smaller compared to that of atomoxetine. Methylphenidate exerted a bimodal effect on inhibitory response control. Interestingly, the preferential β2-adrenoceptor agonist clenbuterol improved inhibitory response control. Moreover, clenbuterol improved visuospatial attention in the task, an effect that was also observed with the preferential β1-adrenoceptor agonist dobutamine. By contrast, although the preferential α1-adrenoceptor and α2-adrenoceptor agonists (phenylephrine and clonidine, respectively) and the non-selective β-adrenoceptor agonist (isoprenaline) were found to alter inhibitory response control, this was probably secondary to the simultaneous increments in response latencies and omissions observed at effective doses. CONCLUSIONS Taken together, these findings further strengthen the notion of noradrenergic modulation of inhibitory response control and attentional processes and particularly reveal the involvement of β2-adrenoceptors therein.
Collapse
Affiliation(s)
- Tommy Pattij
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Barak S, Weiner I. Putative cognitive enhancers in preclinical models related to schizophrenia: The search for an elusive target. Pharmacol Biochem Behav 2011; 99:164-89. [DOI: 10.1016/j.pbb.2011.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 12/12/2022]
|
9
|
Abstract
Pharmacologic management of attention-deficit/hyperactivity disorder (ADHD) has expanded beyond stimulant medications to include alpha-2 adrenergic agonists. These agents exert their actions through presynaptic stimulation and likely involve facilitation of dopamine and noradrenaline neurotransmission, both of which are thought to play critical roles in the pathophysiology of ADHD. Furthermore, frontostriatal dysfunction giving rise to neuropsychological weaknesses has been well-established in patients with ADHD and may explain how alpha-2 agents exert their beneficial effects. In the following review, we consider relevant neurobiological underpinnings of ADHD with respect to why alpha-2 agents may be effective in treating this condition. We also review new formulations of alpha-2 agonists, emerging data on their use in ADHD, and implications for clinical practice. Integrating knowledge of pathophysiologic mechanisms and mechanisms of drug action may inform our medication choices and facilitate treatment of ADHD and related disorders.
Collapse
|
10
|
Alpha adrenergic modulation on effects of norepinephrine transporter inhibitor reboxetine in five-choice serial reaction time task. J Biomed Sci 2009; 16:72. [PMID: 19678962 PMCID: PMC2739512 DOI: 10.1186/1423-0127-16-72] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 08/14/2009] [Indexed: 11/10/2022] Open
Abstract
The study examined the effects of a norepinephrine transporter (NET) inhibitor reboxetine (RBX) on an attentional performance test. Adult SD rats trained with five-choice serial reaction time task (5-CSRTT) were administered with RBX (0, 3.0 and 10 mg/kg) in the testing day. Alpha-1 adrenergic receptor antagonist PRA and alpha-2 adrenergic receptor antagonist RX821002 were used to clarify the RBX effect. Results revealed that rat received RBX at 10 mg/kg had an increase in the percentage of the correct response and decreases in the numbers of premature response. Alpha-1 adrenergic receptor antagonist Prazosin (PRA) at 0.1 mg/kg reversed the RBX augmented correct responding rate. However, alpha-2 adrenergic receptor antagonist RX821002 at 0.05 and 0.1 mg/kg dose dependently reversed the RBX reduced impulsive responding. Our results suggested that RBX as a norepinephrine transporter inhibitor can be beneficial in both attentional accuracy and response control and alpha-1 and alpha-2 adrenergic receptors might be involved differently.
Collapse
|
11
|
Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 2009; 122:150-202. [PMID: 19269307 DOI: 10.1016/j.pharmthera.2009.02.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
Abstract
Cognitive deficits in schizophrenia are among the core symptoms of the disease, correlate with functional outcome, and are not well treated with current antipsychotic therapies. In order to bring together academic, industrial, and governmental bodies to address this great 'unmet therapeutic need', the NIMH sponsored the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative. Through careful factor analysis and consensus of expert opinion, MATRICS identified seven domains of cognition that are deficient in schizophrenia (attention/vigilance, working memory, reasoning and problem solving, processing speed, visual learning and memory, verbal learning and memory, and social cognition) and recommended a specific neuropsychological test battery to probe these domains. In order to move the field forward and outline an approach for translational research, there is a need for a "preclinical MATRICS" to develop a rodent test battery that is appropriate for drug development. In this review, we outline such an approach and review current rodent tasks that target these seven domains of cognition. The rodent tasks are discussed in terms of their validity for probing each cognitive domain as well as a brief overview of the pharmacology and manipulations relevant to schizophrenia for each task.
Collapse
|
12
|
Fletcher PJ, Tenn CC, Sinyard J, Rizos Z, Kapur S. A sensitizing regimen of amphetamine impairs visual attention in the 5-choice serial reaction time test: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Neuropsychopharmacology 2007; 32:1122-32. [PMID: 17047670 DOI: 10.1038/sj.npp.1301221] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to repeated, intermittent, escalating doses of amphetamine in rats disrupts information processing in several tasks. Some of these deficits, notably impaired attentional set shifting, may reflect altered prefrontal cortex function. This study examined the effects of repeated treatment with amphetamine on performance in the 5-choice serial reaction time test. This test measures sustained visual attention, a behavior that is known to require the prefrontal cortex. Rats were trained to respond to a brief light stimulus presented randomly in one of five spatial locations, with 100 trials per session. Once performance had stabilized rats were treated with escalating doses of amphetamine (three injections per week for 5 weeks at 1-5 mg/kg per week); testing was continued on nondrug days, and for several weeks of withdrawal. During the amphetamine-treatment and withdrawal phases accuracy of responding was unaffected, but errors of omission increased. Lengthening the stimulus duration abolished this effect. Reducing the stimulus duration also reduced response accuracy and this effect was more marked in amphetamine-treated rats. Both reduced accuracy, and increased omissions, seen in amphetamine-treated rats were reversed by injecting the D1 receptor agonist SKF38393 into the medial prefrontal cortex. This treatment also prevented the decline in accuracy in control animals that resulted from reducing the stimulus duration. These results, indicating that exposure to amphetamine induces a long-lasting deficit in visual attention, add to a growing list of deficits suggesting that amphetamine-sensitized state may model the cognitive deficit state in schizophrenia. The reversal of these deficits by a D1 receptor agonist provides further evidence that prefrontal D1 dopamine receptors are involved in cognition, and may be a potential target for treatment of impaired cognition in schizophrenia.
Collapse
Affiliation(s)
- Paul J Fletcher
- Section of Biopsychology, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
13
|
Semenova S, Markou A. The effects of the mGluR5 antagonist MPEP and the mGluR2/3 antagonist LY341495 on rats' performance in the 5-choice serial reaction time task. Neuropharmacology 2006; 52:863-72. [PMID: 17126859 PMCID: PMC1847349 DOI: 10.1016/j.neuropharm.2006.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/21/2006] [Accepted: 10/09/2006] [Indexed: 11/23/2022]
Abstract
Schizophrenia is characterized by attentional deficits possibly associated with glutamate dysfunction. The role of postsynaptic metabotropic glutamate 5 receptors (mGluR5) or presynaptic inhibitory mGluR2/3 on attention is currently unknown. We investigated the effects of the mGluR5 antagonist MPEP (2-methyl-6[phenylethynyl]-pyridine) and the mGluR2/3 antagonist LY341495 on attention in the 5-choice serial reaction time task (5CSRTT), as well as on food intake to evaluate their effects on food motivation. The effects of pre-feeding and the muscle relaxant curare were examined to characterize the effects of alterations in the motivation or ability to perform the task, respectively. MPEP had no effect on accuracy but overall decreased performance in the 5CSRTT, including decreased speed of responding and decreased premature responses. LY341495 had no significant effect on rats' performance in the 5CSRTT. LY341495 decreased food intake in the home cage to a greater extent than MPEP. Curare decreased the speed of correct responding, reflecting motor impairment. Free feeding decreased overall performance, number of trials completed and number of head entries into the feeder, reflecting decreased motivation to perform the task. Thus, blockade of mGluR5, but not mGluR2/3, decreased overall responding without affecting accuracy in the 5CSRTT.
Collapse
Affiliation(s)
- Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, M/C 0603, La Jolla, CA 92093-0603, USA
| | | |
Collapse
|
14
|
Chudasama Y, Robbins TW. Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 2004; 174:86-98. [PMID: 15071717 DOI: 10.1007/s00213-004-1805-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 01/11/2004] [Indexed: 11/25/2022]
Abstract
RATIONALE In schizophrenia, attentional disturbance is a core feature which may not only accompany the disorder, but may precede the onset of psychiatric symptoms. OBJECTIVES The five-choice serial reaction time task (5CSRTT) is a test of visuo-spatial attention that has been used extensively in rats for measuring the effects of systemic and central neurochemical manipulations on various aspects of attentional performance, including selective attention, vigilance and executive control. These findings are relevant to our understanding of the neural systems that may be compromised in patients with schizophrenia. METHODS The 5CSRTT is conducted in an operant chamber that has multiple response locations, in which brief visual stimuli can be presented randomly. Performance is maintained using food reinforcers to criterion levels of accuracy. Various aspects of performance are measured, including attentional accuracy and premature responding, especially under different attentional challenges. RESULTS The effects of systemic and intra-cerebral infusions of selective dopamine, serotonin and cholinergic receptor agents on the 5CSRTT are reviewed with a view to identifying attention-enhancing effects that may be relevant to the treatment of cognitive deficits in schizophrenia. In addition, some novel agents such as modafinil and histamine receptor agents are also considered. Examining the effects of selective neurochemical lesions helped define the neural locus of attentional effects. Similarly, findings from microdialysis studies helped identify the extracellular changes in neurotransmitters and their metabolites in freely moving rats during performance of the 5CSRTT. CONCLUSIONS The monoaminergic and cholinergic systems have independent but complementary roles in attentional function, as measured by the 5CSRTT. These functions are predominantly under the control of the prefrontal cortex and striatum. These conclusions are considered in the context of their application towards therapeutic approaches for attentional disturbances that are typically observed in schizophrenic patients.
Collapse
Affiliation(s)
- Y Chudasama
- National Institute of Mental Health, Building 49, Room 1B80, Convent Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
15
|
Koskinen T, Haapalinna A, Sirviö J. Alpha-adrenoceptor-mediated modulation of 5-HT2 receptor agonist induced impulsive responding in a 5-choice serial reaction time task. PHARMACOLOGY & TOXICOLOGY 2003; 92:214-25. [PMID: 12753409 DOI: 10.1034/j.1600-0773.2003.920504.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activation of 5-HT2A receptors has been shown to enhance the probability of premature responding, regarded as a form of motor impulsive behaviour. At the behavioural level, the interaction of alpha-adrenoceptors and 5-HT2 receptors has been linked to head twitch behaviour, regarded as an experimental model of compulsive behaviour. The aim was to determine whether the probability of premature responding induced by an excess activation of 5-HT2A receptors can be modulated by the blockade of alpha1- or alpha2- adrenoceptors. In the experiments, the 5-choice serial reaction time task was used to measure attention and response control of the rats. The experiments assessed the effects of (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) 0.1-0.2 mg/kg subcutaneously, a 5-HT2A/2C agonist, and prazosin, an alpha1-adrenoceptor antagonist, alone or in combination, on the performance of rats. In an additional experiment to examine the possible role of the alpha2-adrenoceptors, a potent, selective and specific alpha2-adrenoceptor antagonist, atipamezole, was given alone or in combination with DOI. Results showed that DOI increased the probability of premature responses, but it did not affect the choice accuracy. Prazosin (0.1 or 0.3 mg/kg, subcutaneously), given on its own had no effects on probability of responding prematurely, but prazosin (0.3 mg/kg.) was able to attenuate the DOI-induced responding. Atipamezole (0.1 mg/kg, s.c.) did not attenuate the effect of DOI on probability of premature responding. When given at lower doses, DOI (0.03 mg/kg) and atipamezole (0.03 mg/kg) synergistically increased the probability of premature responding, whereas a higher dose of atipamezole (0.3 mg/kg) on its own increased the probability of responding prematurely, but this effect was not additive to that of 0.1 mg/kg DOI. These data indicate that 5-HT2 receptor activation enhances impulsive responding and this effect can be diminished by the blockade of alpha1-adrenoceptors. Atipamezole, an alpha2-antagonist, enhances the probability of premature responding and shares the mechanism of action with the 5-HT2 agonist in this respect. These results provide evidence for an interaction between the serotonergic 5-HT2 receptors and alpha-adrenoceptors in the modulation of response control to the motor impulsivity type of behaviour (premature responding) in addition to that of compulsory behaviour (head shakes) found previously.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Behavior, Animal/drug effects
- Discrimination, Psychological/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Imidazoles/pharmacology
- Impulsive Behavior/psychology
- Indophenol/administration & dosage
- Indophenol/analogs & derivatives
- Indophenol/pharmacology
- Male
- Prazosin/pharmacology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/physiology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/physiology
- Serial Learning/drug effects
- Serotonin Receptor Agonists/pharmacology
Collapse
Affiliation(s)
- Tiina Koskinen
- A I Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | |
Collapse
|
16
|
Puumala T, Björklund M, Ruotsalainen S, Riekkinen M, Jäkälä P, Haapalinna A, Björk E, Riekkinen P, Sirviö J. Lack of relationship between thalamic oscillations and attention in rats: differential modulation by an alpha-2 antagonist. Brain Res Bull 2001; 43:163-71. [PMID: 9222529 DOI: 10.1016/s0361-9230(96)00433-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A five-choice serial reaction time (5-CSRT) task was used to assess attention in rats. In this behavioral paradigm, the rats are required to spatially discriminate a short visual stimulus that will occur randomly in one of five locations while maintaining a sufficient activity level. The ability of a rat to maintain attention on the task can be measured by counting the choice accuracy (percent correct responses), whereas the probability of premature responses indicates the level of impulsivity. According to previous results [24], rats performing poorly in the task have a lower choice accuracy and make more premature responses than normally behaving individuals, i.e., a clear, inverse correlation was observed between choice accuracy and impulsiveness of rats. Methylphenidate, a psychostimulant that has been shown to alleviate the symptoms in attention deficit-hyperactivity disorder (ADHD), improved the choice accuracy of poor performing rats in this task [24]. The present results show that the correlation between choice accuracy and impulsivity exists also when the rats are tested using a reduced stimulus intensity or curtailed stimulus duration. The results of a pharmacological experiment suggested that atipamezole (30, 300, or 1000 micrograms/kg), a potent and specific alpha-2 antagonist that is known to increase the activity of monoaminergic systems in the brain, did not affect the percent correct responses in poor performers or in controls tested either at the baseline conditions or at a curtailed stimulus duration (which impaired their choice accuracy). At the doses of 300 and 1000 micrograms/kg, however, atipamezole slightly increased the probability of premature responses in all group of rats. The results of an electrophysiological study indicated that the poor choice accuracy or impulsiveness of rats is not related to the amount of cortically recorded spike-wave discharges/high voltage spindle (HVS) activity, which reflect thalamo-cortical oscillation. Atipamezole dose-dependently reduced the incidence and duration of HVSs. The present data, therefore, indicate that (a) alpha-2 antagonist treatment is not superior to methylphenidate treatment when investigated using acute administrations of the agents in poor performers of the 5-CSRT task, and (b) thalamic oscillations are not the reason for the attention deficit of rats in this model of ADHD. The relationship between choice accuracy and impulsivity is discussed.
Collapse
Affiliation(s)
- T Puumala
- A. I. Virtanen Institute, Department of Neuroscience and Neurology, University of Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mantz J. Alpha2-adrenoceptor agonists: analgesia, sedation, anxiolysis, haemodynamics, respiratory function and weaning. Best Pract Res Clin Anaesthesiol 2000. [DOI: 10.1053/bean.2000.0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Niittykoski M, Ruotsalainen S, Haapalinna A, Larson J, Sirviö J. Activation of muscarinic M3-like receptors and beta-adrenoceptors, but not M2-like muscarinic receptors or alpha-adrenoceptors, directly modulates corticostriatal neurotransmission in vitro. Neuroscience 1999; 90:95-105. [PMID: 10188937 DOI: 10.1016/s0306-4522(98)00447-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to characterize the modulation of synaptic transmission in the glutamatergic corticostriatal pathway by cholinergic and adrenergic receptors. In coronal slices of mouse brain, negative-going field potentials were recorded in the dorsal striatum in response to stimulation of the overlying white matter, and their susceptibility to various pharmacological manipulations was studied. The responses were mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, since they were augmented by aniracetam (0.5-1.5 mM), a positive modulator of AMPA-type glutamate receptors, and blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (> or = 10 microM), a selective antagonist of AMPA receptors. Carbachol (10 microM), a muscarinic agonist, reduced the size of responses and abolished paired-pulse depression; these effects being consistent with previous studies indicating that muscarinic activation inhibits release of glutamate in the corticostriatal pathway. Muscarinic antagonists could block the effect of carbachol. Their rank order was: 10 microM scopolamine (a non-selective muscarinic antagonist) > or = 1 microM 4-diphenylacetoxy-N-methyl-piperidine (M3/M1 antagonist)>1 microM pirenzepine (M1 antagonist)>10 microM methoctramine (M2 antagonist). McN-A-343 (1-10 microM), an M1 muscarinic agonist, was ineffective in this preparation. In contrast, isoproterenol (10-30 microM), a beta-adrenergic agonist, slightly increased the synaptic responses, but it did not affect paired-pulse depression. None of alpha-adrenergic agents (30 nM-1.0 microM dexmedetomidine, an alpha2-adrenergic agonist, 0.3 microM atipamezole, an alpha2-adrenergic antagonist or 30 microM phenylephrine, an alpha1-adrenergic agonist) influenced the size of the responses; neither did these drugs alter paired-pulse depression. These results indicate that the activation of striatal M3-like muscarinic receptors and beta-adrenoceptors, but not M2-like muscarinic receptors and alpha-adrenoceptors, modulates directly corticostriatal glutamatergic neurotransmission.
Collapse
MESH Headings
- (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride/pharmacology
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Adrenergic Fibers/drug effects
- Adrenergic Fibers/physiology
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Carbachol/pharmacology
- Cerebral Cortex/drug effects
- Cerebral Cortex/physiology
- Cholinergic Fibers/drug effects
- Cholinergic Fibers/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/physiology
- Diamines/pharmacology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Glutamic Acid/metabolism
- Imidazoles/pharmacology
- Isoproterenol/pharmacology
- Male
- Medetomidine
- Mice
- Mice, Inbred DBA
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Phenylephrine/pharmacology
- Piperidines/pharmacology
- Pirenzepine/pharmacology
- Pyrrolidinones/pharmacology
- Receptor, Muscarinic M2
- Receptor, Muscarinic M3
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Scopolamine/pharmacology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- M Niittykoski
- A. I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | |
Collapse
|
19
|
Niittykoski M, Lappalainen R, Jolkkonen J, Haapalinna A, Riekkinen P, Sirviö J. Systemic administration of atipamezole, a selective antagonist of alpha-2 adrenoceptors, facilitates behavioural activity but does not influence short-term or long-term memory in trimethyltin-intoxicated and control rats. Neurosci Biobehav Rev 1998; 22:735-50. [PMID: 9809309 DOI: 10.1016/s0149-7634(98)00002-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study used trimethyltin (TMT)-intoxicated rats as a model for the behavioural syndrome seen after neuronal damage to the limbic system. Behavioural assessments indicated increased locomotor activity and reduced number of groomings in an open-arena task in TMT-intoxicated (6.6 mg/kg as a free base) rats, as has been found previously. A novel finding was the severe deficit in swimming to a visible platform in the water maze task, with reduced swimming speed at the beginning of the training period. During the reacquisition phase of a radial arm maze task, TMT-intoxicated rats made more short-term and long-term memory errors, and their behavioural activity was increased in comparison with controls. The administration of atipamezole (300 micrograms/kg), a selective antagonist of alpha 2-adrenoceptors, enhanced locomotor activity compared to saline-treated rats, but these effects did not differ between the TMT group and their controls. Atipamezole did not enhance short-term or long-term memory in either TMT or control groups. Taken together, the present data indicate that TMT intoxication is a model for global dementia rather than for a specific loss of relational memory. Previous studies on the neurochemical effects of TMT and the alleviation or prevention of neurotoxicity of TMT are reviewed.
Collapse
Affiliation(s)
- M Niittykoski
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Puumala T, Sirviö J. Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 1998; 83:489-99. [PMID: 9460757 DOI: 10.1016/s0306-4522(97)00392-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of the present study was to investigate whether differences in the function of monoaminergic systems could account for the variability in attention and impulsive behaviour between rats tested in the five-choice serial reaction time task in a model of attention deficit hyperactivity disorder. The ability of a rat to sustain its attention in this task can be assessed by measuring choice accuracy (percent correct responses) to visual stimuli, whereas the percentage of premature responses indicates the level of impulsivity. Following training with the five-choice serial reaction time task, rats were decapitated and brain pieces taken for neurochemical determination. Levels of dopamine, noradrenaline, 5-hydroxytryptamine, the dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid and the 5-hydroxytryptamine metabolite, 5-hydroxyindoleacetic acid were determined in the frontal cortex, nucleus accumbens, dorsal striatum and hippocampus. Multivariate regression analysis with a stepwise method revealed that the indeces of utilization of serotonin (5-hydroxyindoleacetic acid/5-hydroxytryptamine) in the left frontal cortex and dopamine (3,4-dihydroxyphenylacetic acid/dopamine) in the right frontal cortex together accounted for 49% of the variability in attentional performance between subjects. According to the regression analysis, a negative correlation existed between the left frontal cortex 5-hydroxyindoleacetic acid/5-hydroxytryptamine and choice accuracy, and a positive correlation was observed between 3,4-dihydroxyphenylacetic acid/dopamine ratio and choice accuracy on the opposite hemisphere. Additionally, right frontal cortex serotonin utilization was found to correlate positively with the proportion of premature hole responses and this relation accounted for about 24% of the variability in this index of impulsivity between animals. These data indicate that frontal cortex dopamine and serotonin play an important role in the modulation of attention and response control.
Collapse
Affiliation(s)
- T Puumala
- A. I. Virtanen Institute, University of Kuopio, Finland
| | | |
Collapse
|
21
|
Rämä P, Linnankoski I, Carlson S. The effects of alpha-2 agonist, medetomidine and its antagonist, atipamezole on reaction and movement times in a visual choice reaction time task in monkeys. Brain Res Bull 1997; 44:171-5. [PMID: 9292207 DOI: 10.1016/s0361-9230(97)00108-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alpha-2 adrenoceptor agonists have been shown to improve the working memory task performance of aged monkeys. Suggestions offered to explain this finding include improved short-term memory processing, slight sedation, and decreased distractiveness. Although sedation is evident at high doses, it may also contribute to the working memory task performance at low doses. The aim of the present work was to find out whether the positive effects of an alpha-2 agonist, medetomidine, on working memory performance could be explained by its sedative effects. This was accomplished by measuring the reaction and movement times of monkeys performing a visual choice reaction time task under the influence of medetomidine or its antagonist atipamezole. In the task a trial began with the monkey holding a central pad. After a short period one of two lateral light emitting diodes was turned on for 300 ms and the monkeys were trained to release the central bar and touch either of the bars, situated below the diodes, depending on the location of the stimulus. The reaction and movement times were significantly longer than on saline control only at the highest dose of medetomidine (10.0 micrograms/kg). At the lowest dose of atipamezole (0.01 mg/kg), the reaction times were significantly shorter than on saline control. The results of this study demonstrate that low doses of medetomidine, which have earlier been shown to improve working memory performance, do not induce sedation as measured by reaction and movement times.
Collapse
Affiliation(s)
- P Rämä
- Department of Physiology, University of Helsinki, Finland
| | | | | |
Collapse
|
22
|
Puumala T, Riekkinen P, Sirviö J. Modulation of vigilance and behavioral activation by alpha-1 adrenoceptors in the rat. Pharmacol Biochem Behav 1997; 56:705-12. [PMID: 9130297 DOI: 10.1016/s0091-3057(96)00408-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigated the role of alpha-1 adrenergic receptors in the modulation of attention and behavioral activity by assessing the effects of alpha-1 adrenergic receptor stimulation or blockade on the performance of rats in tasks involving vigilance (sustained attention) and selective attention [five-choice serial reaction time (5-CSRT)]. Pretesting subcutaneous administration of St-587 (a putative alpha-1 agonist) at 100 micrograms/kg, but not at 300 or 1000 micrograms/kg, significantly improved the choice accuracy of rats in the 5-CSRT task (monitoring of visual stimuli), whereas prazosin (a prototype alpha-1 antagonist) at 300 micrograms/kg administered subcutaneously slightly impaired choice accuracy of the rats in this task. Prazosin at 100 micrograms/kg blocked the ability of St-587 at 100 micrograms/kg to improve choice accuracy. Furthermore, St-587 at 100 micrograms/kg significantly increased the number of trials completed and reduced the probability of premature responses, whereas prazosin at 300 micrograms/kg decreased the number of trials completed and the latency of animals to make correct responses in the task. Prazosin at 100 micrograms/kg blocked the effect of St-587 at 100 micrograms/kg in increasing the number of trials completed. However, prazosin at 100 micrograms/kg did not abolish the effect of St-587 in reducing the probability of premature responses. Because the effect of St-587 at 100 micrograms/kg in improving choice accuracy is rather modest, it is possible that when the 100- and 300-microgram/kg doses of St-587 were administered in a counterbalanced order, this effect could have been overlooked due to day-to-day variation. Thus, the present results suggest that stimulation of alpha-1 adrenergic receptors can facilitate vigilance.
Collapse
Affiliation(s)
- T Puumala
- A. I. Virtanen Institute, University of Kuopio, Finland
| | | | | |
Collapse
|
23
|
Ruotsalainen S, Haapalinna A, Riekkinen PJ, Sirviö J. Dexmedetomidine reduces response tendency, but not accuracy of rats in attention and short-term memory tasks. Pharmacol Biochem Behav 1997; 56:31-40. [PMID: 8981606 DOI: 10.1016/s0091-3057(96)00151-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study investigated the role of alpha 2-adrenergic mechanisms in the performance of motor responses, attention and short-term memory in rats. A low dose (3.0 micrograms/kg, s.c.) of dexmedetomidine, an alpha 2-adrenoceptor agonist, reduced response tendency in an attentional task and a working memory task, but it did not affect the choice accuracy of rats. Atipamezole (300 micrograms/kg), an alpha 2-adrenoceptor antagonist, increased anticipatory responding. Although atipamezole did not affect the number of omissions, it reversed the effects of dexmedetomidine on that parameter. We also investigated the effects of dexmedetomidine in rats with partial destruction of noradrenergic nerves induced by the neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride). On its own, DSP-4 treatment did not affect choice accuracy or behavioural activity of rats in the attentional task. The effects of dexmedetomidine (0.3-3.0 micrograms/kg) on anticipatory responses did not differ between controls and DSP-4 group. Furthermore, the effect on omissions was not consistently diminished in DSP-4 treated rats. These results suggest that the activation of postsynaptic alpha 2-adrenoreceptors may be responsible for dexmedetomidine-induced reduction of response tendency while attention and short-term memory are not markedly affected.
Collapse
|