1
|
Bajaj S, Jain S, Vyas P, Bawa S, Vohora D. The role of endocannabinoid pathway in the neuropathology of Alzheimer's disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer's disease? Brain Res Bull 2021; 174:305-322. [PMID: 34217798 DOI: 10.1016/j.brainresbull.2021.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by progressive decline of cognitive function in combination with neuronal death. Current approved treatment target single dysregulated pathway instead of multiple mechanism, resulting in lack of efficacy in slowing down disease progression. The proclivity of endocannabinoid system to exert neuroprotective action and mitigate symptoms of neurodegeneration condition has received substantial interest. Growing evidence suggest the endocannabinoids (eCB) system, viz. anadamide (AEA) and arachidonoyl glycerol (2-AG), as potential therapeutic targets with the ability to modify Alzheimer's pathology by targeting the inflammatory, neurodegenerative and cognitive aspects of the disease. In order to modulate endocannabinoid system, number of agents have been reported amongst which are inhibitors of the monoacylglycerol (MAGL) and fatty acid amide hydrolase (FAAH), the enzymes that hydrolyses 2-AG and AEA respectively. However, little is known regarding the exact mechanistic signalling and their effects on pathophysiology and cognitive decline associated with Alzheimer's disease. Both MAGL and FAAH inhibitors possess fascinating properties that may offer a multi-faceted approach for the treatment of Alzheimer's disease such as potential to protect neurons from deleterious effect of amyloid-β, reducing phosphorylation of tau, reducing amyloid-β induced oxidative stress, stimulating neurotrophin to support brain intrinsic repair mechanism etc. Based on empirical evidence, MAGL and FAAH inhibitors might have potential for therapeutic efficacy against cognitive impairment associated with Alzheimer's disease. The aim of this review is to summarize the experimental studies demonstrating the polyvalent properties of MAGL or FAAH inhibitor compounds for the treatment of Alzheimer's disease, and also effect of these on learning and types of memories, which together encourage to study these compounds over other therapeutics targets. Further research in this direction would enhance the molecular mechanisms and development of applicable interventions for the treatment of Alzheimer's disease, which nevertheless stay as the primary unmet need.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
2
|
Pretzsch CM, Floris DL, Voinescu B, Elsahib M, Mendez MA, Wichers R, Ajram L, Ivin G, Heasman M, Pretzsch E, Williams S, Murphy DGM, Daly E, McAlonan GM. Modulation of striatal functional connectivity differences in adults with and without autism spectrum disorder in a single-dose randomized trial of cannabidivarin. Mol Autism 2021; 12:49. [PMID: 34210360 PMCID: PMC8252312 DOI: 10.1186/s13229-021-00454-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has a high cost to affected individuals and society, but treatments for core symptoms are lacking. To expand intervention options, it is crucial to gain a better understanding of potential treatment targets, and their engagement, in the brain. For instance, the striatum (caudate, putamen, and nucleus accumbens) plays a central role during development and its (atypical) functional connectivity (FC) may contribute to multiple ASD symptoms. We have previously shown, in the adult autistic and neurotypical brain, the non-intoxicating cannabinoid cannabidivarin (CBDV) alters the balance of striatal 'excitatory-inhibitory' metabolites, which help regulate FC, but the effects of CBDV on (atypical) striatal FC are unknown. METHODS To examine this in a small pilot study, we acquired resting state functional magnetic resonance imaging data from 28 men (15 neurotypicals, 13 ASD) on two occasions in a repeated-measures, double-blind, placebo-controlled study. We then used a seed-based approach to (1) compare striatal FC between groups and (2) examine the effect of pharmacological probing (600 mg CBDV/matched placebo) on atypical striatal FC in ASD. Visits were separated by at least 13 days to allow for drug washout. RESULTS Compared to the neurotypicals, ASD individuals had lower FC between the ventral striatum and frontal and pericentral regions (which have been associated with emotion, motor, and vision processing). Further, they had higher intra-striatal FC and higher putamenal FC with temporal regions involved in speech and language. In ASD, CBDV reduced hyperconnectivity to the neurotypical level. LIMITATIONS Our findings should be considered in light of several methodological aspects, in particular our participant group (restricted to male adults), which limits the generalizability of our findings to the wider and heterogeneous ASD population. CONCLUSION In conclusion, here we show atypical striatal FC with regions commonly associated with ASD symptoms. We further provide preliminary proof of concept that, in the adult autistic brain, acute CBDV administration can modulate atypical striatal circuitry towards neurotypical function. Future studies are required to determine whether modulation of striatal FC is associated with a change in ASD symptoms. TRIAL REGISTRATION clinicaltrials.gov, Identifier: NCT03537950. Registered May 25th, 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03537950?term=NCT03537950&draw=2&rank=1 .
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Dorothea L. Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bogdan Voinescu
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Department of Liaison Psychiatry, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Malka Elsahib
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Maria A. Mendez
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Robert Wichers
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Department of Psychiatry GGZ Geest, Amsterdam, The Netherlands
| | - Laura Ajram
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, SK10 4TG Cheshire UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Martin Heasman
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steven Williams
- Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Declan G. M. Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Gráinne M. McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| |
Collapse
|
3
|
DeLarge AF, Winsauer PJ. Effects of ∆ 9-THC on memory in ovariectomized and intact female rats. Horm Behav 2021; 127:104883. [PMID: 33160960 PMCID: PMC7856115 DOI: 10.1016/j.yhbeh.2020.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/01/2022]
Abstract
The effects of marijuana's major psychoactive cannabinoid, ∆9-tetrahydrocannibinol (∆9-THC), were examined on memory in female rats by training subjects to respond under a repeated acquisition and delayed-performance procedure. During this task, subjects acquired a different 4-response sequence each session, which was then recalled after a delay. Sequence retention was tested following various delays, and quantified by a percent savings measure. Response rate and percent errors were also recorded. Subsequent to training, subjects underwent an ovariectomy (OVX) or sham surgery (intact). The OVX group then underwent implantation of subcutaneous 17β-estradiol capsules while the intact group received chronic administration of 1 mg/kg of the estrogen receptor modifier, tamoxifen. Increasing delays from 1 min to 24 h produced delay-dependent decreases in percent savings in both OVX and intact rats. Acute administration of ∆9-THC (0.32-3.2 mg/kg) dose-dependently decreased retention, increased percent errors, and decreased response rate in both groups when the delay was 1 h. However, intact rats showed a significantly lower percent savings than OVX rats at the 0.56-mg/kg dose. Delays of 3 h enhanced the disruptive effects of ∆9-THC more in intact than OVX rats; furthermore, implantation of 17β-estradiol attenuated ∆9-THC-induced disruptions in OVX rats and significantly increased estradiol levels and uterine weight as compared to intact rats. Although chronic tamoxifen administration did not alter ∆9-THC's effects on memory in intact rats, it did significantly decrease response rate. These results demonstrate the capacity of chronic 17β-estradiol for attenuating ∆9-THC's acute memory-disrupting effects in OVX female rats.
Collapse
Affiliation(s)
- Alyssa F DeLarge
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center - New Orleans, United States of America.
| | - Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center - New Orleans, United States of America; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center - New Orleans (P.J.W.), United States of America
| |
Collapse
|
4
|
Gibula-Tarlowska E, Wydra K, Kotlinska JH. Deleterious Effects of Ethanol, Δ(9)-Tetrahydrocannabinol (THC), and Their Combination on the Spatial Memory and Cognitive Flexibility in Adolescent and Adult Male Rats in the Barnes Maze Task. Pharmaceutics 2020; 12:pharmaceutics12070654. [PMID: 32660138 PMCID: PMC7407502 DOI: 10.3390/pharmaceutics12070654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Research demonstrates that adolescents differ from adults in their response to drugs of abuse. The aim of the present study was to examine the influence of ethanol, Δ9-tetrahydrocannabinol hydrochloride (THC), and a combination of these drugs given during adolescence on spatial memory in adolescent and adult rats. Thus, adolescent rats (postnatal day (PND) 30) were subjected to the following groups: 0.9% NaCl; 1.5 g/kg ethanol; 1.0 mg/kg THC; 1.5 g/kg ethanol + 1.0 mg/kg THC. Rats received drug injection four times at three-day intervals. One day after the last injection, half of the treated animals were tested in the Barnes maze task, whereas the remaining animals were tested on PND 70. Results show that there was a significant age effect on spatial memory in the Barnes maze task after these drug administrations. Adolescent animals demonstrated more potent deficits in the spatial learning and memory (probe trial) and in cognitive flexibility (reversal learning) than did adults. However, in adult rats that received these drugs in adolescence, memory decline was observed only after ethanol and ethanol + THC administration. Thus, our results are important in understanding the deleterious impact of THC and/or ethanol abuse during adolescence on memory function across the lifespan (adolescent versus adult).
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
- Correspondence:
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
| |
Collapse
|
5
|
Prospéro-García O, Ruiz Contreras AE, Ortega Gómez A, Herrera-Solís A, Méndez-Díaz M. Endocannabinoids as Therapeutic Targets. Arch Med Res 2020; 50:518-526. [PMID: 32028095 DOI: 10.1016/j.arcmed.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
Most of the drugs of abuse affect the brain by interacting with naturally expressed molecular receptors. Marihuana affects a series of receptors including cannabinoid receptor 1 (CB1R) and CB2R, among others. Endogenous molecules with cannabinoid activity interact with these receptors naturally. Receptors, ligands, synthesizing and degrading enzymes, as well as transporters, have been described. This endocannabinoid system modulates behaviors and physiological processes, i.e. food intake, the sleep-waking cycle, learning and memory, motivation, and pain perception, among others. The rather broad distribution of endocannabinoids in the brain explains the different effects marihuana induces in its users. However, this very same anatomical and physiological distribution makes this system a useful target for therapeutic endeavors. In this review, we briefly discuss the potential of small molecules that target the endocannabinoids as therapeutic tools to improve behaviors and treat illnesses. We believe that under medical supervision, endocannabinoid targets offer new advantages for patients for controlling multiple medical disorders.
Collapse
Affiliation(s)
- Oscar Prospéro-García
- Departamento de Fisiología, Laboratorio de Canabinoides, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alejandra E Ruiz Contreras
- Laboratorio de Neurogenómica Cognitiva, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alette Ortega Gómez
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Andrea Herrera-Solís
- Laboratorio Efectos Terapéuticos de los Canabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Mónica Méndez-Díaz
- Departamento de Fisiología, Laboratorio de Canabinoides, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | |
Collapse
|
6
|
Alarcon TA, Areal LB, Herlinger AL, Paiva KK, Cicilini MA, Martins-Silva C, Pires RGW. The cannabinoid agonist WIN-2 affects acquisition but not consolidation of a spatial information in training and retraining processes: Relation with transcriptional regulation of the endocannabinoid system? Behav Brain Res 2020; 377:112231. [PMID: 31526770 DOI: 10.1016/j.bbr.2019.112231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
The endocannabinoid system is capable of modulating multiple physiological brain functions including learning and memory. Moreover, there is evidence that the processes of acquisition and consolidation have distinct biological basis. We used the cannabinoid agonist WIN 55,212-2 (WIN-2) to investigate whether chronic CB1 activation affects acquisition and consolidation differently by evaluating gene expression in the hippocampus (HIP) and prefrontal cortex (PFC). Swiss mice were treated with WIN-2 (2 mg/kg) and submitted to the Morris water maze to evaluate different aspects of memory. We observed short-term memory impairment in acquisition of the spatial task while consolidation remained unchanged. In the PFC, animals that received WIN-2 prior to the task exhibited increased expression of the 2-AG synthesis enzyme diacylglycerol lipase and decreased levels of the degradation enzyme monoacylglycerol lipase, while mice that were treated after the task for the evaluation of consolidation exhibited the opposite profile. With respect to genes related to AEA metabolism, no correlation between the molecular and behavioral data could be established. In this sense, the cognitive impairment in the acquisition promoted by WIN-2 treatment may be related to a possible increase in the concentration of 2-AG in the PFC. Overall, this study confirms the relevance of the endocannabinoid system in the modulation of cognitive processes. A better understanding of the mechanisms underlying endocannabinoids roles in cognition could provide guidance for the development of treatments to reduce the cognitive deficits caused by drug abuse.
Collapse
Affiliation(s)
- T A Alarcon
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - L B Areal
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - A L Herlinger
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - K K Paiva
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - M A Cicilini
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - C Martins-Silva
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil
| | - R G W Pires
- Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Biochemistry and Pharmacology, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil; Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitoria-ES, Brazil.
| |
Collapse
|
7
|
Bellozi PM, Pelição R, Santos MC, Lima IV, Saliba SW, Vieira ÉL, Campos AC, Teixeira AL, de Oliveira AC, Nakamura-Palacios EM, Rodrigues LC. URB597 ameliorates the deleterious effects induced by binge alcohol consumption in adolescent rats. Neurosci Lett 2019; 711:134408. [DOI: 10.1016/j.neulet.2019.134408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
|
8
|
Abela AR, Rahbarnia A, Wood S, Lê AD, Fletcher PJ. Adolescent exposure to Δ9-tetrahydrocannabinol delays acquisition of paired-associates learning in adulthood. Psychopharmacology (Berl) 2019; 236:1875-1886. [PMID: 30694374 DOI: 10.1007/s00213-019-5171-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
RATIONALE AND OBJECTIVES Adolescence is a sensitive period of brain development, during which there may be a heightened vulnerability to the effects of drug use. Despite this, the long-term effects of cannabis use during this developmental period on cognition are poorly understood. METHODS We exposed adolescent rats to escalating doses of Δ9-tetrahydrocannabinol (THC)-the primary psychoactive component of cannabis-or vehicle solution during postnatal days (PND) 35-45, a period of development that is analogous to human adolescence (THC doses: PND 35-37, 2.5 mg/kg; PND 38-41, 5 mg/kg; PND 42-45, 10 mg/kg). After a period of abstinence, in adulthood, rats were tested on an automated touchscreen version of a paired-associates learning (PAL) task to assess their ability to learn and recall object-location associations. Prepulse inhibition (PPI) of the startle response was also measured at three time points (5 days, 4 months, and 6 months after exposure) to assess sensorimotor gating, the ability to filter out insignificant sensory information from the environment. RESULTS Compared to rats exposed to vehicle alone, rats exposed to THC during adolescence took longer to learn the PAL task when tested in adulthood, even when trials contained visually identical stimuli that differed only in location. Despite this, no differences were observed later in testing, when trials contained visually distinct stimuli in different locations. Rats exposed to THC also displayed impairments in sensorimotor gating, as measured by prepulse inhibition of the startle response, though this deficit did appear to decrease over time. CONCLUSION Taken together, THC exposure during adolescence produces long-term deficits in associative learning and sensorimotor gating, though the impact of these deficits seems to diminish with time. Thus, adolescence may represent a period of neurocognitive development that is vulnerable to the harms of cannabis use, though the stability of such harms is uncertain.
Collapse
Affiliation(s)
- Andrew R Abela
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Neuroscience, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, M5T 1R8, Canada.
| | - Arya Rahbarnia
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Suzanne Wood
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Hodges EL, Ashpole NM. Aging circadian rhythms and cannabinoids. Neurobiol Aging 2019; 79:110-118. [PMID: 31035036 DOI: 10.1016/j.neurobiolaging.2019.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 01/04/2023]
Abstract
Numerous aspects of mammalian physiology exhibit cyclic daily patterns known as circadian rhythms. However, studies in aged humans and animals indicate that these physiological rhythms are not consistent throughout the life span. The simultaneous development of disrupted circadian rhythms and age-related impairments suggests a shared mechanism, which may be amenable to therapeutic intervention. Recently, the endocannabinoid system has emerged as a complex signaling network, which regulates numerous aspects of circadian physiology relevant to the neurobiology of aging. Agonists of cannabinoid receptor-1 (CB1) have consistently been shown to decrease neuronal activity, core body temperature, locomotion, and cognitive function. Paradoxically, several lines of evidence now suggest that very low doses of cannabinoids are beneficial in advanced age. One potential explanation for this phenomenon is that these drugs exhibit hormesis-a biphasic dose-response wherein low doses produce the opposite effects of higher doses. Therefore, it is important to determine the dose-, age-, and time-dependent effects of these substances on the regulation of circadian rhythms and other processes dysregulated in aging. This review highlights 3 fields-biological aging, circadian rhythms, and endocannabinoid signaling-to critically assess the therapeutic potential of endocannabinoid modulation in aged individuals. If the hormetic properties of exogenous cannabinoids are confirmed, we conclude that precise administration of these compounds may bidirectionally entrain central and peripheral circadian clocks and benefit multiple aspects of aging physiology.
Collapse
Affiliation(s)
- Erik L Hodges
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Nicole M Ashpole
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA.
| |
Collapse
|
10
|
Myers AM, Siegele PB, Foss JD, Tuma RF, Ward SJ. Single and combined effects of plant-derived and synthetic cannabinoids on cognition and cannabinoid-associated withdrawal signs in mice. Br J Pharmacol 2018; 176:1552-1567. [PMID: 29338068 DOI: 10.1111/bph.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE It has been suggested that the non-euphorogenic phytocannabinoid cannabidiol (CBD) can ameliorate adverse effects of Δ9 -tetrahydrocannabinol (THC). We determined whether CBD ameliorates cognitive deficits and withdrawal signs induced by cannabinoid CB1 /CB2 receptor agonists or produces these pharmacological effects on its own. EXPERIMENTAL APPROACH The effects of THC or the CB1 /CB2 receptor full agonist WIN55212 alone, CBD alone or their combination were tested across a range of doses. Cognitive effects were assessed in C57BL/6 mice in a conditional discrimination task and in the Barnes maze. Cannabinoid withdrawal signs were assessed following precipitated withdrawal by acute administration of the CB1 receptor antagonist SR141716, the 5-HT1A receptor antagonist WAY100635, the TRPV1 receptor antagonist capsazepine or the adenosine A2A receptor antagonist SCH58261. KEY RESULTS THC produced significant motor and cognitive impairment in the Barnes maze task, none of which were attenuated by the addition of CBD. CBD alone did not affect cognitive performance. Precipitation of withdrawal signs by SR141716 occurred in mice chronically treated with THC or WIN55,212. These withdrawal signs were not attenuated by addition of chronic CBD. Chronic treatment with CBD alone did not induce withdrawal signs precipitated by SR141716 or WAY100635. Chronic CBD treatment also produced anxiolysis, which was not altered by attempting to precipitate withdrawal-induced anxiety with a range of antagonists. CONCLUSIONS AND IMPLICATIONS CBD as a monotherapy may prove to be a safer pharmacological agent, than CB1 receptor agonists alone or in combination with CBD, for the treatment of several disorders. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Alyssa M Myers
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Patrick B Siegele
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jeffrey D Foss
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ronald F Tuma
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats. Neurotox Res 2017; 34:834-847. [DOI: 10.1007/s12640-017-9813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022]
|
12
|
Suryadevara U, Bruijnzeel DM, Nuthi M, Jagnarine DA, Tandon R, Bruijnzeel AW. Pros and Cons of Medical Cannabis use by People with Chronic Brain Disorders. Curr Neuropharmacol 2017; 15:800-814. [PMID: 27804883 PMCID: PMC5652027 DOI: 10.2174/1570159x14666161101095325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cannabis is the most widely used illicit drug in the world and there is growing concern about the mental health effects of cannabis use. These concerns are at least partly due to the strong increase in recreational and medical cannabis use and the rise in tetrahydrocannabinol (THC) levels. Cannabis is widely used to self-medicate by older people and people with brain disorders such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), bipolar disorder, and schizophrenia. OBJECTIVE This review provides an overview of the perceived benefits and adverse mental health effects of cannabis use in people with ALS, MS, AD, PD, bipolar disorder, and schizophrenia. RESULTS The reviewed studies indicate that cannabis use diminishes some symptoms associated with these disorders. Cannabis use decreases pain and spasticity in people with MS, decreases tremor, rigidity, and pain in people with PD, and improves the quality of life of ALS patients by improving appetite, and decreasing pain and spasticity. Cannabis use is more common among people with schizophrenia than healthy controls. Cannabis use is a risk factor for schizophrenia which increases positive symptoms in schizophrenia patients and diminishes negative symptoms. Cannabis use worsens bipolar disorder and there is no evidence that bipolar patients derive any benefit from cannabis. In late stage Alzheimer's patients, cannabis products may improve food intake, sleep quality, and diminish agitation. CONCLUSION Cannabis use diminishes some of the adverse effects of neurological and psychiatric disorders. However, chronic cannabis use may lead to cognitive impairments and dependence.
Collapse
Affiliation(s)
- Uma Suryadevara
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Meena Nuthi
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Rajiv Tandon
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Kruk-Slomka M, Biala G. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice. Behav Brain Res 2016; 301:84-95. [DOI: 10.1016/j.bbr.2015.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
14
|
Effect of nucleus accumbens shell 5-HT4 receptors on the impairment of ACPA-induced emotional memory consolidation in male Wistar rats. Behav Pharmacol 2016; 27:12-21. [DOI: 10.1097/fbp.0000000000000174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Schoeler T, Kambeitz J, Behlke I, Murray R, Bhattacharyya S. The effects of cannabis on memory function in users with and without a psychotic disorder: findings from a combined meta-analysis. Psychol Med 2016; 46:177-188. [PMID: 26353818 DOI: 10.1017/s0033291715001646] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Effect of cannabis use on memory function is a contentious issue, with effects being different in healthy individuals and patients with psychosis. METHOD Employing a meta-analytic approach we investigated the effects of cannabis use on memory function in patients with psychosis and healthy individuals, and the effect of diagnosis, memory dimension and moderating factors. A total of 88 studies were identified through a systematic literature search, investigating healthy (n = 7697) and psychotic (n = 3261) individuals. Standardized mean differences between the cannabis user and non-user groups on memory tasks were estimated using random-effects models and the effect-size statistic Cohen's d. Effects of potential moderating factors were tested using mixed-effects models and subgroup analyses. RESULTS We found that cannabis use was associated with significantly (p ⩽ 0.05) impaired global (d = 0.27) and prospective memory (d = 0.61), verbal immediate (d = 0.40) and delayed (d = 0.36) recall as well as visual recognition (d = 0.41) in healthy individuals, but a better global memory (d = -0.11), visual immediate recall (d = -0.73) and recognition (d = -0.42) in patients. Lower depression scores and younger age appeared to attenuate the effects of cannabis on memory. Cannabis-using patients had lower levels of depression and were younger compared with non-using patients, whilst healthy cannabis-users had higher depression scores than age-matched non-users. Longer duration of abstinence from cannabis reduced the effects on memory in healthy and patient users. CONCLUSIONS These results suggest that cannabis use is associated with a significant domain-specific impairment in memory in healthy individuals but not in cannabis-using patients, suggesting that they may represent a less developmentally impaired subgroup of psychotic patients.
Collapse
Affiliation(s)
- T Schoeler
- Department of Psychosis Studies,Institute of Psychiatry, Psychology & Neuroscience,King's College London,De Crespigny Park,London SE5 8AF,UK
| | - J Kambeitz
- Department of Psychosis Studies,Institute of Psychiatry, Psychology & Neuroscience,King's College London,De Crespigny Park,London SE5 8AF,UK
| | - I Behlke
- Department of Psychosis Studies,Institute of Psychiatry, Psychology & Neuroscience,King's College London,De Crespigny Park,London SE5 8AF,UK
| | - R Murray
- Department of Psychosis Studies,Institute of Psychiatry, Psychology & Neuroscience,King's College London,De Crespigny Park,London SE5 8AF,UK
| | - S Bhattacharyya
- Department of Psychosis Studies,Institute of Psychiatry, Psychology & Neuroscience,King's College London,De Crespigny Park,London SE5 8AF,UK
| |
Collapse
|
16
|
Hasanein P, Sharifi M. GABAA receptors in the central amygdala are involved in memory retention deficits induced by cannabinoids in rats. Pharmacol Biochem Behav 2015; 138:26-31. [DOI: 10.1016/j.pbb.2015.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
|
17
|
Persistent effects of chronic Δ9-THC exposure on motor impulsivity in rats. Psychopharmacology (Berl) 2015; 232:3033-43. [PMID: 25925779 DOI: 10.1007/s00213-015-3942-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
RATIONALE In humans, long-term marijuana use is associated with impaired impulse control and attentional capacity, though it has been difficult to distinguish pre-existing cognitive deficits from possible consequences of prolonged marijuana exposure. OBJECTIVE To evaluate the effects of long-term exposure to Δ9-Tetrahydrocannabinol (Δ9-THC), the primary psychoactive constituent in marijuana, on indices of impulse control and attentional capacity using the rat 5-Choice Serial Reaction Time Task (5-CSRTT). METHODS Ten 14-day cycles of Δ9-THC dosing and 5-CSRTT testing were employed, each comprised of 5-day Δ9-THC dosing (0.3 or 3 mg/kg b.i.d.) and 5-CSRTT testing during the 9 days of drug abstinence. Subsequent 5-CSRTT testing continued during 5 weeks of protracted abstinence. RESULTS Dose-dependent increases in motor impulsivity (premature responses) and behavioral disinhibition (perseverative responses) emerged following 5 cycles of Δ9-THC exposure that persisted for the remaining dosing and testing cycles. Δ9-THC-related disruptions in motor impulsivity and behavioral inhibition were most pronounced during cognitively challenging 5-CSRTT sessions incorporating varying novel inter-trial intervals (ITIs), and these disruptions persisted for at least 5 weeks of Δ9-THC abstinence. Δ9-THC-related impairments in attentional capacity (response accuracy) were also evident during variable ITI challenge tests, though these attentional disruptions abated within 3 weeks of Δ9-THC abstinence. CONCLUSIONS These observations demonstrate that long-term intermittent exposure to clinically meaningful Δ9-THC doses induces persistent impairments in impulse control and attentional function. If present in humans, these disruptions may impact academic and professional performance.
Collapse
|
18
|
Nasehi M, Kafi F, Khakpai F, Zarrindast MR. Involvement of the serotonergic system of the ventral hippocampus (CA3) on amnesia induced by ACPA in mice. Behav Brain Res 2015; 286:356-63. [DOI: 10.1016/j.bbr.2015.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
19
|
Bialuk I, Dobosz K, Potrzebowski B, Winnicka MM. CP55,940 attenuates spatial memory retrieval in mice. Pharmacol Rep 2014; 66:931-6. [DOI: 10.1016/j.pharep.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
20
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Rasekhi K, Oryan S, Nasehi M, Zarrindast MR. Involvement of the nucleus accumbens shell glutamatergic system in ACPA-induced impairment of inhibitory avoidance memory consolidation. Behav Brain Res 2014; 269:28-36. [DOI: 10.1016/j.bbr.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/30/2022]
|
22
|
Goodman J, Packard MG. Peripheral and intra-dorsolateral striatum injections of the cannabinoid receptor agonist WIN 55,212-2 impair consolidation of stimulus-response memory. Neuroscience 2014; 274:128-37. [PMID: 24838065 DOI: 10.1016/j.neuroscience.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
Abstract
The endocannabinoid system plays a major role in modulating memory. In the present study, we examined whether cannabinoid agonists influence the consolidation of stimulus-response/habit memory, a form of memory dependent upon the dorsolateral striatum (DLS). In Experiment 1, rats were trained in a cued platform water maze task in which animals were released from different start points and in order to escape had to find a cued platform which was moved to various spatial locations across trials. Immediately following training, rats received an i.p. injection of the cannabinoid receptor agonist WIN 55,212-2 (1 or 3mg/kg) or a vehicle solution. In Experiment 2, rats were trained in a forced-response version of the water plus-maze task in which a consistent body-turn response was reinforced across trials. Immediately following training, rats received an i.p. injection of WIN 55,212-2 (3 mg/kg) or vehicle. In Experiment 3, rats were trained in the cued platform task and after training received bilateral intra-DLS WIN 55,212-2 (100 ng/.5 μL or 200 ng/.5 μL) or vehicle. In Experiments 1-3, the higher doses of WIN 55,212-2 were associated with significant memory impairments, relative to vehicle-treated controls. The results indicate that peripheral or intra-DLS administration of a cannabinoid receptor agonist impairs consolidation of DLS-dependent memory. The findings are discussed within the context of previous research encompassing cannabinoids and DLS-dependent learning and memory processes, and the possibility that cannabinoids may be used to treat some habit-like human psychopathologies (e.g. posttraumatic stress disorder) is considered.
Collapse
Affiliation(s)
- J Goodman
- Department of Psychology, Institute for Neuroscience, Texas A&M University, United States
| | - M G Packard
- Department of Psychology, Institute for Neuroscience, Texas A&M University, United States.
| |
Collapse
|
23
|
Pharmacological effects of cannabinoids on the reference and working memory functions in mice. Psychopharmacology (Berl) 2013; 225:483-94. [PMID: 22903389 DOI: 10.1007/s00213-012-2834-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE Evidence indicates cannabinoid receptor agonists impair performance in procedures to assess memory that may also be confounded by motivational or motor effects, both of which occur with cannabinoids. Thus, convergence of evidence from a variety of procedures that differ in motivation, attention, arousal and response requirements, but share a common reliance on memory, is required. There are no current reports on cannabinoid effects on mice tested in the radial arm maze. OBJECTIVES The objective was to determine the effects of the cannabinoid agonist CP 55940 and the dependence of any such effects on the CB1 receptor using the CB1 receptor antagonist SR 141716A on two strains of mice in the eight-arm radial maze procedure. METHODS Male C57BL/6J (N = 36) and C3H/HEJ (N = 12) mice were trained to a criterion and then were treated (IP) with vehicle + vehicle, SR 141716A + vehicle, vehicle + CP 55940 and SR 141716A + CP 55940 in a fully balanced mixed design prior to further tests in the maze. Reference (long-term) and working (short-term) memory were assessed. RESULTS CP 55940 impaired performance of the reference memory task in the C57BL/6J strain but not the C3H/HEJ strain; SR 141716A reversed the effect of CP 55940 on these measures. CP 55940 also increased working memory errors in the C57BL/6J mice only, which was not affected by SR 141716A. CONCLUSION The present study provides evidence for a strain-specific effect of a dose of CP 55940 on reference memory. While the cannabinoid agonist also impaired working memory in one strain, this effect was apparently not mediated by CB1 receptors.
Collapse
|
24
|
Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology (Berl) 2012; 223:319-30. [PMID: 22569815 DOI: 10.1007/s00213-012-2719-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
RATIONALE Flavonoid-rich foods have been shown to be able to reverse age-related cognitive deficits in memory and learning in both animals and humans. However, to date, there have been only a limited number of studies investigating the effects of flavonoid-rich foods on cognition in young/healthy animals. OBJECTIVES The aim of this study was to investigate the effects of a blueberry-rich diet in young animals using a spatial working memory paradigm, the delayed non-match task, using an eight-arm radial maze. Furthermore, the mechanisms underlying such behavioural effects were investigated. RESULTS We show that a 7-week supplementation with a blueberry diet (2 % w/w) improves the spatial memory performance of young rats (2 months old). Blueberry-fed animals also exhibited a faster rate of learning compared to those on the control diet. These behavioural outputs were accompanied by the activation of extracellular signal-related kinase (ERK1/2), increases in total cAMP-response element-binding protein (CREB) and elevated levels of pro- and mature brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in hippocampal CREB correlated well with memory performance. Further regional analysis of BDNF gene expression in the hippocampus revealed a specific increase in BDNF mRNA in the dentate gyrus and CA1 areas of hippocampi of blueberry-fed animals. CONCLUSIONS The present study suggests that consumption of flavonoid-rich blueberries has a positive impact on spatial learning performance in young healthy animals, and these improvements are linked to the activation of ERK-CREB-BDNF pathway in the hippocampus.
Collapse
|
25
|
Abstract
The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.
Collapse
Affiliation(s)
- Raphael Mechoulam
- Institute for Drug Research, Hebrew University, Medical Faculty, Jerusalem 91120, Israel.
| | | |
Collapse
|
26
|
Zarrindast M, Ghiasvand M, Rezayof A, Ahmadi S. The amnesic effect of intra-central amygdala administration of a cannabinoid CB1 receptor agonist, WIN55,212-2, is mediated by a beta-1 noradrenergic system in rat. Neuroscience 2012; 212:77-85. [DOI: 10.1016/j.neuroscience.2012.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
27
|
Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S. Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci 2011; 5:57. [PMID: 21949506 PMCID: PMC3171696 DOI: 10.3389/fnbeh.2011.00057] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/21/2011] [Indexed: 11/24/2022] Open
Abstract
Cannabis has long been known to produce cognitive and emotional effects. Research has shown that cannabinoid drugs produce these effects by driving the brain’s endogenous cannabinoid system and that this system plays a modulatory role in many cognitive and emotional processes. This review focuses on the effects of endocannabinoid system modulation in animal models of cognition (learning and memory) and emotion (anxiety and depression). We review studies in which natural or synthetic cannabinoid agonists were administered to directly stimulate cannabinoid receptors or, conversely, where cannabinoid antagonists were administered to inhibit the activity of cannabinoid receptors. In addition, studies are reviewed that involved genetic disruption of cannabinoid receptors or genetic or pharmacological manipulation of the endocannabinoid-degrading enzyme, fatty acid amide hydrolase (FAAH). Endocannabinoids affect the function of many neurotransmitter systems, some of which play opposing roles. The diversity of cannabinoid roles and the complexity of task-dependent activation of neuronal circuits may lead to the effects of endocannabinoid system modulation being strongly dependent on environmental conditions. Recent findings are reviewed that raise the possibility that endocannabinoid signaling may change the impact of environmental influences on emotional and cognitive behavior rather than selectively affecting any specific behavior.
Collapse
Affiliation(s)
- Claudio Zanettini
- Department of Health and Human Services, Preclinical Pharmacology Section, Behavioral Neurosciences Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ghiasvand M, Rezayof A, Zarrindast MR, Ahmadi S. Activation of cannabinoid CB1 receptors in the central amygdala impairs inhibitory avoidance memory consolidation via NMDA receptors. Neurobiol Learn Mem 2011; 96:333-8. [DOI: 10.1016/j.nlm.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 12/14/2022]
|
29
|
Chronic administration of THC prevents the behavioral effects of intermittent adolescent MDMA administration and attenuates MDMA-induced hyperthermia and neurotoxicity in rats. Neuropharmacology 2011; 61:1183-92. [PMID: 21763331 DOI: 10.1016/j.neuropharm.2011.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 11/20/2022]
Abstract
Most recreational users of 3, 4-methylenedioxymethamphetamine (MDMA or "ecstasy") also take cannabis, in part because cannabis can reduce the dysphoric symptoms of the ecstasy come-down such as agitation and insomnia. Although previous animal studies have examined the acute effects of co-administering MDMA and Δ(9)-tetrahydrocannabinol (THC), which is the major psychoactive ingredient in cannabis, research on chronic exposure to this drug combination is lacking. Therefore, the present study was conducted to investigate the effects of chronic adolescent administration of both THC and MDMA on behavior and on regional serotonin transporter (SERT) binding and serotonin (5-HT) concentrations as indices of serotonergic system integrity. Male Sprague-Dawley rats were divided into four drug administration groups: (1) MDMA alone, (2) THC alone, (3) MDMA plus THC, and (4) vehicle controls. MDMA (2 × 10 mg/kg × 4 h) was administered every fifth day from postnatal day (PD) 35 to 60 to simulate intermittent recreational ecstasy use, whereas THC (5mg/kg) was given once daily over the same time period to simulate heavy cannabis use. THC unexpectedly produced a modest hyperthermic effect when administered alone, but in animals co-treated with both THC and MDMA, there was an attenuation of MDMA-induced hyperthermia on dosing days. Subsequent testing conducted after a drug washout period revealed that THC reduced MDMA-related behavioral changes in the emergence and social interaction tests of anxiety-like behavior and also blunted the MDMA-induced decrease in exploratory behavior in the hole-board test. THC additionally attenuated MDMA -induced decreases in 5-HT levels and in SERT binding in the frontal cortex, parietal cortex, and striatum, but not in the hippocampus. These results suggest that chronic co-administration of THC during adolescence can provide some protection against various adverse physiological, behavioral, and neurochemical effects produced by MDMA.
Collapse
|
30
|
Akirav I. The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front Behav Neurosci 2011; 5:34. [PMID: 21734875 PMCID: PMC3124830 DOI: 10.3389/fnbeh.2011.00034] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/14/2011] [Indexed: 01/22/2023] Open
Abstract
Cannabinoid agonists generally have a disruptive effect on memory, learning, and operant behavior that is considered to be hippocampus-dependent. Nevertheless, under certain conditions, cannabinoid receptor activation may facilitate neuronal learning processes. For example, CB1 receptors are essential for the extinction of conditioned fear associations, indicating an important role for this receptor in neuronal emotional learning and memory. This review examines the diverse effects of cannabinoids on hippocampal memory and plasticity. It shows how the effects of cannabinoid receptor activation may vary depending on the route of administration, the nature of the task (aversive or not), and whether it involves emotional memory formation (e.g., conditioned fear and extinction learning) or non-emotional memory formation (e.g., spatial learning). It also examines the memory stage under investigation (acquisition, consolidation, retrieval, extinction), and the brain areas involved. Differences between the effects of exogenous and endogenous agonists are also discussed. The apparently biphasic effects of cannabinoids on anxiety is noted as this implies that the effects of cannabinoid receptor agonists on hippocampal learning and memory may be attributable to a general modulation of anxiety or stress levels and not to memory per se. The review concludes that cannabinoids have diverse effects on hippocampal memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect. A better understanding of the involvement of cannabinoids in memory processes will help determine whether the benefits of the clinical use of cannabinoids outweigh the risks of possible memory impairments.
Collapse
Affiliation(s)
- Irit Akirav
- Department of Psychology, University of Haifa Haifa, Israel
| |
Collapse
|
31
|
Rodrigues LCDM, Conti CL, Nakamura-Palacios EM. Clozapine and SCH 23390 prevent the spatial working memory disruption induced by Δ9-THC administration into the medial prefrontal cortex. Brain Res 2011; 1382:230-7. [PMID: 21281616 DOI: 10.1016/j.brainres.2011.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 01/07/2023]
Abstract
Marijuana (Cannabis sativa) is one of the most widely used illicit drugs in the world. Its use is associated with impairments in cognitive function. We previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the primary psychoactive component of marijuana, impaired spatial working memory in the radial maze task when injected intracortically (IC) into the medial prefrontal cortex (mPFC) of rats. Here, we used this paradigm to evaluate the involvement of prefrontal dopamine receptors in working memory disruption induced by Δ(9)-THC. Intracortical pre-treatment of animals with either the D(1)- or D(2)-like dopamine receptor antagonists SCH 23390 or clozapine, respectively, significantly reduced the number of errors rats made in the radial maze following treatment with Δ(9)-THC also administered intracortically. These results were obtained in the absence of locomotor impairment, as evidenced by the time spent in each arm a rat visited. Our findings suggest that prefrontal dopamine receptors are involved in Δ(9)-THC-induced disruption of spatial working memory. This interaction between the cannabinoid system and dopamine release in the PFC contributes to new directions in research and to treatments for cognitive dysfunctions associated with drug abuse and dependence.
Collapse
|
32
|
Acheson SK, Moore NLT, Kuhn CM, Wilson WA, Swartzwelder HS. The synthetic cannabinoid WIN 55212-2 differentially modulates thigmotaxis but not spatial learning in adolescent and adult animals. Neurosci Lett 2010; 487:411-4. [PMID: 21055447 DOI: 10.1016/j.neulet.2010.10.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/15/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Unlike Δ(9)-THC, the synthetic compound WIN 55212-2 (WIN) is a full agonist of endogenous cannabinoid receptors. Previous work has shown Δ(9)-THC to affect adolescent and adult animals differently on numerous behavioral measures of spatial memory, anxiety, and locomotor activity. However, far less is known about the developmental and neurobehavioral effects of WIN. To address this, we assessed the effect of WIN (1mg/kg) on spatial learning in adolescent and adult rats using the Morris water maze. While all animals demonstrated decreased swim distance across days, WIN affected adolescents and adults differently. It improved performance in adolescents and resulted in a nearly significant performance decrement in adults. However, these effects were significantly related to thigmotaxis, which declined across days in the water maze testing protocol. WIN reduced thigmotaxis on days 1 and 2 (but not days 3-5) only in adolescents. The effect of age, treatment, and the age×treatment interaction was eliminated after controlling for thigmotaxis. These results indicate that WIN affects thigmotaxis rather than spatial reference memory. More importantly, these findings indicate a dissociation between the developmental effects of THC and the synthetic CB1 receptor agonist, WIN 55212-2. We suggest that the role of thigmotaxis be carefully evaluated in future neurodevelopmental studies of spatial learning, especially those investigating the endocannabinoid system.
Collapse
Affiliation(s)
- Shawn K Acheson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, United States.
| | | | | | | | | |
Collapse
|
33
|
Roser P, Vollenweider FX, Kawohl W. Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists. World J Biol Psychiatry 2010; 11:208-19. [PMID: 20218784 DOI: 10.3109/15622970801908047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the principal psychoactive constituent of the Cannabis sativa plant, and other agonists at the central cannabinoid (CB(1)) receptor may induce characteristic psychomotor effects, psychotic reactions and cognitive impairment resembling schizophrenia. These effects of Delta(9)-THC can be reduced in animal and human models of psychopathology by two exogenous cannabinoids, cannabidiol (CBD) and SR141716. CBD is the second most abundant constituent of Cannabis sativa that has weak partial antagonistic properties at the CB(1) receptor. CBD inhibits the reuptake and hydrolysis of anandamide, the most important endogenous CB(1) receptor agonist, and exhibits neuroprotective antioxidant activity. SR141716 is a potent and selective CB(1) receptor antagonist. Since both CBD and SR141716 can reverse many of the biochemical, physiological and behavioural effects of CB(1) receptor agonists, it has been proposed that both CBD and SR141716 have antipsychotic properties. Various experimental studies in animals, healthy human volunteers, and schizophrenic patients support this notion. Moreover, recent studies suggest that cannabinoids such as CBD and SR141716 have a pharmacological profile similar to that of atypical antipsychotic drugs. In this review, both preclinical and clinical studies investigating the potential antipsychotic effects of both CBD and SR141716 are presented together with the possible underlying mechanisms of action.
Collapse
Affiliation(s)
- Patrik Roser
- Research Group Clinical and Experimental Psychopathology, Department of General and Social Psychiatry ZH West, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
34
|
Robinson L, Goonawardena AV, Pertwee R, Hampson RE, Platt B, Riedel G. WIN55,212-2 induced deficits in spatial learning are mediated by cholinergic hypofunction. Behav Brain Res 2010; 208:584-92. [PMID: 20079375 DOI: 10.1016/j.bbr.2010.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
Cannabinoids acting on CB(1) receptors induce learning and memory impairments. However, the identification of novel non-CB(1) receptors which are insensitive to the psychoactive ingredient of marijuana, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) but sensitive to synthetic cannabinoids such as WIN55,212-2 (WIN-2) or endocannabinoids like anandamide lead us to question whether WIN-2 induced learning and memory deficits are indeed mediated by CB(1) receptor activation. Given the relative paucity of receptor subtype specific antagonists, a way forward would be to determine the transmitter systems, which are modulated by the respective cannabinoids. This study set out to evaluate this proposition by determination of the effects of WIN-2 on acquisition of spatial reference memory using the water maze in rats. Particular weight was given to performance in trial 1 of each daily session as an index of between-session long-term memory, and in trial 4 as an index of within-session short-term memory. Intraperitoneal (i.p.) administration of WIN-2 (1 mg/kg and 3 mg/kg) prior to training impaired long-term, but not short-term memory. This deficit was not reversed by the CB(1) antagonists/inverse agonists Rimonabant (3mg/kg i.p.) and AM281 (0.5 mg/kg i.p.), but recovered in the presence of the cholinesterase inhibitor rivastigmine (1 mg/kg). Reversal by rivastigmine was specific to WIN-2, as it failed to reverse MK801 (0.08 mg/kg) induced learning impairments. Collectively, these data suggest that in this spatial reference memory task WIN-2 causes a reduction in cholinergic activation, possibly through a non-CB(1)-like mechanism, which affects long-term but not short-term spatial memory.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medical Sciences, College of Life Science and Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
35
|
The impact of flavonoids on spatial memory in rodents: from behaviour to underlying hippocampal mechanisms. GENES AND NUTRITION 2009; 4:251-70. [PMID: 19727888 DOI: 10.1007/s12263-009-0137-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.
Collapse
|
36
|
Gunasekaran N, Long LE, Dawson BL, Hansen GH, Richardson DP, Li KM, Arnold JC, McGregor IS. Reintoxication: the release of fat-stored delta(9)-tetrahydrocannabinol (THC) into blood is enhanced by food deprivation or ACTH exposure. Br J Pharmacol 2009; 158:1330-7. [PMID: 19681888 DOI: 10.1111/j.1476-5381.2009.00399.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Delta(9)-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in adipose tissue where it is stored for long periods of time. Here we investigated whether conditions that promote lipolysis can liberate THC from adipocytes to yield increased blood levels of THC. EXPERIMENTAL APPROACH In vitro studies involved freshly isolated rat adipocytes that were incubated with THC before exposure to the lipolytic agent adrenocorticotrophic hormone (ACTH). A complementary in vivo approach examined the effects of both food deprivation and ACTH on blood levels of THC in rats that had been repeatedly injected with THC (10 mg.kg(-1)) for 10 consecutive days. Lipolysis promoted by ACTH or food deprivation was indexed by measurement of glycerol levels. KEY RESULTS ACTH increased THC levels in the medium of THC-pretreated adipocytes in vitro. ACTH also enhanced THC release from adipocytes in vitro when taken from rats repeatedly pretreated with THC in vivo. Finally, in vivo ACTH exposure and 24 h food deprivation both enhanced the levels of THC and its metabolite, (-)-11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH) in the blood of rats that had been pre-exposed to repeated THC injections. CONCLUSIONS AND IMPLICATIONS The present study shows that lipolysis enhances the release of THC from fat stores back into blood. This suggests the likelihood of 'reintoxication' whereby food deprivation or stress may raise blood THC levels in animals chronically exposed to the drug. Further research will need to confirm whether this can lead to functional effects, such as impaired cognitive function or 'flashbacks'.
Collapse
Affiliation(s)
- N Gunasekaran
- School of Medical Science (Pharmacology) and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wise LE, Thorpe AJ, Lichtman AH. Hippocampal CB(1) receptors mediate the memory impairing effects of Delta(9)-tetrahydrocannabinol. Neuropsychopharmacology 2009; 34:2072-80. [PMID: 19322169 PMCID: PMC2822461 DOI: 10.1038/npp.2009.31] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is firmly established that the hippocampus, a brain region implicated in spatial learning, episodic memory, and consolidation, contains a high concentration of CB(1) receptors. Moreover, systemic and intrahippocampal administration of cannabinoid agonists have been shown to impair hippocampal-dependent memory tasks. However, the degree to which CB(1) receptors in the hippocampus play a specific functional role in the memory disruptive effects of marijuana or its primary psychoactive constituent Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is unknown. This study was designed to determine whether hippocampal CB(1) receptors play a functional role in the memory disruptive effects of systemically administered cannabinoids, using the radial arm maze, a well characterized rodent model of working memory. Male Sprague-Dawley rats were implanted with bilateral cannulae aimed at the CA1 region of the dorsal hippocampus. The CB(1) receptor antagonist, rimonabant, was delivered into the hippocampus before to a systemic injection of either Delta(9)-THC or the potent cannabinoid analog, CP-55,940. Strikingly, intrahippocampal administration of rimonabant completely attenuated the memory disruptive effects of both cannabinoids in the radial arm maze task, but did not affect other pharmacological properties of cannabinoids, as assessed in the tetrad assay (that is, hypomotility, analgesia, catalepsy, and hypothermia). Infusions of rimonabant just dorsal or ventral to the hippocampus did not prevent Delta(9)-THC-induced memory impairment, indicating that its effects on mnemonic function were regionally selective. These findings provide compelling evidence in support of the view that hippocampal CB(1) receptors play a necessary role in the memory disruptive effects of marijuana.
Collapse
Affiliation(s)
- Laura E Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
38
|
Chronic treatment with Delta(9)-tetrahydrocannabinol impairs spatial memory and reduces zif268 expression in the mouse forebrain. Behav Pharmacol 2009; 20:45-55. [PMID: 19179850 DOI: 10.1097/fbp.0b013e3283242f6a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Few studies have investigated the effects of chronic cannabinoid exposure on memory performance and whether tolerance occurs to cannabinoid-induced memory impairment. Here, we studied the effects of repeated exposure to Delta-tetrahydrocannabinol (THC: 1 mg/kg) on spatial memory and zif268 expression in mice. One group of animals was not pretreated with THC, whereas another group was injected with 13 daily injections of THC before memory testing in the Morris water maze. Both groups were administered with THC throughout the memory-testing phase of the experiment. THC decreased spatial memory and reversal learning, even in animals that received the THC pretreatment and were tolerant to the locomotor suppressant effects of the drug. Zif268 immunoreactivity was reduced in the CA3 of the hippocampus and in the prefrontal cortex only in non-pretreated animals, indicating that although tolerance to the effects of THC on neuronal activity was evident, cannabinoid-induced memory impairment in these animals persisted even after 24 days of exposure. This study shows that after extended administration of THC, its spatial memory-impairing effects are resistant to tolerance.
Collapse
|
39
|
Biala G, Kruk M. Cannabinoid receptor ligands suppress memory-related effects of nicotine in the elevated plus maze test in mice. Behav Brain Res 2008; 192:198-202. [DOI: 10.1016/j.bbr.2008.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 02/06/2023]
|
40
|
Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, Thompson MR, Dawson B, Mallet PE, Kashem MA, Matsuda-Matsumoto H, Iwazaki T, McGregor IS. Adolescent rats find repeated Delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 2008; 33:1113-26. [PMID: 17581536 DOI: 10.1038/sj.npp.1301475] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The current study examined whether adolescent rats are more vulnerable than adult rats to the lasting adverse effects of cannabinoid exposure on brain and behavior. Male Wistar rats were repeatedly exposed to Delta-9-tetrahydrocannabinol (Delta(9)-THC, 5 mg/kg i.p.) in a place-conditioning paradigm during either the adolescent (post-natal day 28+) or adult (post-natal day 60+) developmental stages. Adult rats avoided a Delta(9)-THC-paired environment after either four or eight pairings and this avoidance persisted for at least 16 days following the final Delta(9)-THC injection. In contrast, adolescent rats showed no significant place aversion. Adult Delta(9)-THC-treated rats produced more vocalizations than adolescent rats when handled during the intoxicated state, also suggesting greater drug-induced aversion. After a 10-15 day washout, both adult and adolescent Delta(9)-THC pretreated rats showed decreased social interaction, while only Delta(9)-THC pretreated adolescent rats showed significantly impaired object recognition memory. Seventeen days following their last Delta(9)-THC injection, rats were euthanased and hippocampal tissue processed using two-dimensional gel electrophoresis proteomics. There was no evidence of residual Delta(9)-THC being present in blood at this time. Proteomic analysis uncovered 27 proteins, many involved in regulating oxidative stress/mitochondrial functioning and cytoarchitecture, which were differentially expressed in adolescent Delta(9)-THC pretreated rats relative to adolescent controls. In adults, only 10 hippocampal proteins were differentially expressed in Delta(9)-THC compared to vehicle-pretreated controls. Overall these findings suggest that adolescent rats find repeated Delta(9)-THC exposure less aversive than adults, but that cannabinoid exposure causes greater lasting memory deficits and hippocampal alterations in adolescent than adult rats.
Collapse
Affiliation(s)
- Heidi R Quinn
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barna I, Soproni K, Arszovszki A, Csabai K, Haller J. WIN-55,212-2 chronically implanted into the CA3 region of the dorsal hippocampus impairs learning: a novel method for studying chronic, brain-area-specific effects of cannabinoids. Behav Pharmacol 2007; 18:515-20. [PMID: 17762520 DOI: 10.1097/fbp.0b013e3282d9e9f9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report here that local hippocampal WIN-55,212-2 implants release this cannabinoid agonist for extended periods, the release is restricted to the implanted brain region and is behaviorally active. Radiolabeled WIN-55,212-2 was implanted bilaterally into the CA3 region of the dorsal hippocampus by means of fused silica capillaries. Significant amounts of the compound were released from the implants for at least 10 days. No labeled WIN-55,212-2 was detected in other brain regions, for example, the cortex, amygdala, thalamus, hypothalamus, and pons. In a separate experiment, radiolabeled WIN-55,212-2 was implanted chronically into the same hippocampal region, and rats were assessed 8 days later in the object-recognition test. In contrast to controls, rats implanted with WIN-55,212-2 were unable to differentiate familiar and unfamiliar objects. Object recognition was reinstated by the cannabinoid antagonist SR141716A, as rats implanted with both WIN-55,212-2 and SR141716A did not differ from controls. Thus, chronic hippocampal WIN-55,212-2 implants impaired recognition memory via the CB1 receptor. The memory-impairing effects of acute cannabinoid treatments are well known, but the effects of chronic treatments are controversial. The rate and magnitude of tolerance, however, have been shown to be brain-area specific and cell-type specific. Here we show that chronic hippocampal treatments impair memory, suggesting that no tolerance develops in the hippocampus towards the memory-impairing effects of cannabinoids. The data also suggest that chronic, brain-area-specific effects of cannabinoids can be studied by the novel method described here.
Collapse
Affiliation(s)
- István Barna
- Institute of Experimental Medicine, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
42
|
Cha YM, Jones KH, Kuhn CM, Wilson WA, Swartzwelder HS. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav Pharmacol 2007; 18:563-9. [PMID: 17762524 DOI: 10.1097/fbp.0b013e3282ee7b7e] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Like other recreational drugs, cannabinoids may produce different effects in men and women. In this study we measured the effects of delta9-tetrahydrocannabinol (THC) on spatial learning in two groups that are underrepresented in drug research--females and adolescents. In the first experiment, adolescent (postnatal day 30) and adult (postnatal day 70) rats of both sexes were treated subchronically with 5.0 mg/kg THC or vehicle for five consecutive days. Thirty minutes after each daily injection, they were tested on the spatial version of the Morris water maze task. In the second experiment, a separate group of adolescent and adult rats of both sexes was treated with 5.0 mg/kg THC or vehicle daily for 21 days and tested, 4 weeks later, on the spatial version of the water maze. Subchronic THC impaired spatial learning, and this effect was dependent upon both the age and sex of the animals tested. Prior exposure to chronic THC, however, did not cause any long-lasting spatial learning deficits. On the basis of our previous studies in male rats the third experiment assessed the dose-response relationship for the effects of THC on spatial learning and memory in female animals. We found that subchronic THC treatment (2.5, 5.0, or 10.0 mg/kg, intraperitoneally) disrupted learning in both adolescents and adults, but with greater effects at higher doses in adolescents compared with adults. The developmental sensitivity to subchronic THC confirms previous work carried out in our laboratory, and the sex-dependent effects highlight the importance of including females in drug abuse and addiction research.
Collapse
Affiliation(s)
- Young May Cha
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
43
|
Robinson L, Goonawardena AV, Pertwee RG, Hampson RE, Riedel G. The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats. Br J Pharmacol 2007; 151:688-700. [PMID: 17502849 PMCID: PMC2013991 DOI: 10.1038/sj.bjp.0707273] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/27/2007] [Accepted: 03/14/2007] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. EXPERIMENTAL APPROACH HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. KEY RESULTS HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. CONCLUSIONS AND IMPLICATIONS These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.
Collapse
Affiliation(s)
- L Robinson
- Department of Biomedical Sciences, Institute for Medical Sciences, University of Aberdeen, Foresterhill Aberdeen, UK
| | - A V Goonawardena
- Department of Biomedical Sciences, Institute for Medical Sciences, University of Aberdeen, Foresterhill Aberdeen, UK
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences Winston-Salem, NC, USA
| | - R G Pertwee
- Department of Biomedical Sciences, Institute for Medical Sciences, University of Aberdeen, Foresterhill Aberdeen, UK
| | - R E Hampson
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences Winston-Salem, NC, USA
| | - G Riedel
- Department of Biomedical Sciences, Institute for Medical Sciences, University of Aberdeen, Foresterhill Aberdeen, UK
| |
Collapse
|
44
|
Cha YM, White AM, Kuhn CM, Wilson WA, Swartzwelder HS. Differential effects of delta9-THC on learning in adolescent and adult rats. Pharmacol Biochem Behav 2006; 83:448-55. [PMID: 16631921 DOI: 10.1016/j.pbb.2006.03.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 02/24/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
Marijuana use remains strikingly high among young users in the U.S., and yet few studies have assessed the effects of delta9-tetrahydrocannabinol (THC) in adolescents compared to adults. This study measured the effects of THC on male adolescent and adult rats in the Morris water maze. In Experiment 1, adolescent (PD=30-32) and adult (PD=65-70) rats were treated acutely with 5.0 mg/kg THC or vehicle while trained on the spatial version of the water maze on five consecutive days. In Experiment 2, adolescent and adult rats were treated acutely with 2.5 or 10.0 mg/kg THC or vehicle while trained on either the spatial and non-spatial versions of the water maze. In Experiment 3, adolescent and adult rats were treated with 5.0 mg/kg THC or vehicle daily for 21 days, and were trained on the spatial and then the non-spatial versions of the water maze task four weeks later in the absence of THC. THC impaired both spatial and nonspatial learning more in adolescents than in adults at all doses tested. However, there were no long-lasting significant effects on either spatial or non-spatial learning in rats that had been previously exposed to THC for 21 days. This developmental sensitivity is analogous to the effects of ethanol, another commonly used recreational drug.
Collapse
Affiliation(s)
- Young May Cha
- Department of Psychiatry, Duke University Medical Center, USA
| | | | | | | | | |
Collapse
|
45
|
Mikics E, Dombi T, Barsvári B, Varga B, Ledent C, Freund TF, Haller J. The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice. Behav Pharmacol 2006; 17:223-30. [PMID: 16572000 DOI: 10.1097/00008877-200605000-00003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We studied the effects of cannabinoids on contextual conditioned fear responses. CB1 knockout and wild-type (CD1) mice were exposed to a brief session of electric shocks, and their behavior was studied in the same context 24 h later. In wild-type mice, shock exposure increased freezing and resting, and decreased locomotion and exploration. The genetic disruption of the CB1 receptor abolished the conditioned fear response. The CB1 antagonist AM-251 reduced the peak of the conditioned fear response when applied 30 min before behavioral testing (i.e. 24 h after shocks) in CD1 (wild-type) mice. The cannabinoid agonist WIN-55,212-2 markedly increased the conditioned fear response in CD1 mice, the effect of which was potently antagonized by AM-251. Thus, cannabinoid receptor activation appears to strongly promote the expression of contextual conditioned fear. In earlier experiments, cannabinoids did not interfere with the expression of cue-induced conditioned fear but strongly promoted its extinction. Considering the primordial role of the amygdala in simple associative learning (e.g. in cue-induced fear) and the role of the hippocampus in learning more complex stimulus relationships (e.g. in contextual fear), the present and earlier findings are not necessarily contradictory, but suggest that cannabinoid signaling plays different roles in the two structures. Data are interpreted in terms of the potential involvement of cannabinoids in trauma-induced behavioral changes.
Collapse
Affiliation(s)
- Eva Mikics
- Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
Fadda P, Robinson L, Fratta W, Pertwee RG, Riedel G. Scopolamine and MK801-induced working memory deficits in rats are not reversed by CBD-rich cannabis extracts. Behav Brain Res 2006; 168:307-11. [PMID: 16406104 DOI: 10.1016/j.bbr.2005.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/27/2022]
Abstract
Smoking marijuana causes working and short-term memory deficits, an effect that is mediated by cannabinoid receptor (CB1) activation in the brain. While this may be due to the main psychoactive constituent Delta9-tetrahydrocannabinol (Delta9-THC), plant extracts also contain other cannabinoid and terpenoid compounds with unknown properties. Towards this end, we have recently shown that high concentrations of plant extracts rich in cannabidiol (CBD) can reverse working memory deficits induced by Delta9-THC which is a remaining contaminant of this extract [Fadda P, Robinson L, Fratta W, Pertwee RG, Riedel G. Differential effects of THC- and CBD-rich cannabis-extracts on working memory in rats. Neuropahrmacology 2004;47:1170-9]. Since this effect was dose-dependent and indicative of memory enhancing qualities of the CBD-rich extract, this prompted a wider investigation into the effects of CBD on other forms of amnesia in order to determine the mechanism of action and to reveal its potency against anticholinergic and antiglutamatergic agents. We employed a spatial delayed matching to position task in the open-field water maze. Both scopolamine (0.2 mg/kg i.p.) and dizocilpine (MK801: 0.1mg/kg i.p.) impaired working memory at delays of 30 s and 4 h. Two doses of CBD-rich extracts (5 and 10 mg/kg), which did not affect working memory when given alone, were unable to reverse these deficits when co-administered with scopolamine or MK801. These data suggest that reversal of working memory deficits by CBD-rich extracts are specific to the cannabinoid system and do not compensate for acutely induced cholinergic or glutamatergic receptor hypoactivity.
Collapse
Affiliation(s)
- Paola Fadda
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
47
|
Pamplona FA, Takahashi RN. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci Lett 2006; 397:88-92. [PMID: 16406322 DOI: 10.1016/j.neulet.2005.12.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/18/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
The memory deficits induced by cannabinoid agonists have been found in several behavioral paradigms. Nevertheless, there is evidence that not all types of memory are impaired after cannabinoid administration. The aim of this study was to investigate whether the cannabinoid agonist WIN 55212-2 (WIN) is able to influence the acquisition of fear conditioning using tone and contextual versions. For tone-fear conditioning, male Wistar rats were placed in the conditioning chamber and after 3 min, a sound (CS) was presented for 10s that terminated with a 1-s electric footshock (1.5 mA). For contextual-fear conditioning, a similar procedure was used but no sound was presented. Twenty-four hours after, the animals were re-exposed to the respective CS (tone or conditioning chamber) and the freezing behavior was registered. A subsequent experiment investigated a possible state-dependent effect of WIN by administering WIN or control solution 30 min before conditioning and before testing. WIN (2.5 and 5.0 mg/kg) administered i.p. 30 min before impaired contextual fear conditioning but did not modify the freezing behavior elicited by tone presentation. These animals did not show any state-dependent effects of WIN. Further, the impaired contextual conditioning was prevented by preadministration of SR141716A (1.0 mg/kg, i.p.) or SR147778 (1.0 mg/kg, i.p.), selective cannabinoid CB1 receptor antagonists. The present findings highlight that cannabinoid agonists effects are selective for the hippocampus-dependent aversive memories in rats. This effect appears to be related to the activation of CB1 cannabinoid receptors and confirms that cannabinoids might provide a novel approach for the treatment of unpleasant memories.
Collapse
Affiliation(s)
- Fabrício Alano Pamplona
- Departamento de Farmacologia CCB-UFSC, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88049-900 Florianópolis, SC, Brazil
| | | |
Collapse
|
48
|
Egerton A, Allison C, Brett RR, Pratt JA. Cannabinoids and prefrontal cortical function: Insights from preclinical studies. Neurosci Biobehav Rev 2006; 30:680-95. [PMID: 16574226 DOI: 10.1016/j.neubiorev.2005.12.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 11/18/2005] [Accepted: 12/19/2005] [Indexed: 10/24/2022]
Abstract
Marijuana use has been associated with disordered cognition across several domains influenced by the prefrontal cortex (PFC). Here, we review the contribution of preclinical research to understanding the effects of cannabinoids on cognitive ability, and the mechanisms by which cannabinoids may affect the neurochemical processes in the PFC that are associated with these impairments. In rodents, acute administration of cannabinoid agonists produces deficits in working memory, attentional function and reversal learning. These effects appear to be largely dependent on CB1 cannabinoid receptor activation. Preclinical studies also indicate that the endogenous cannabinoid system may tonically regulate some mnemonic processes. Effects of cannabinoids on cognition may be mediated via interaction with neurochemical processes in the PFC and hippocampus. In the PFC, cannabinoids may alter dopaminergic, cholinergic and serotonergic transmission. These mechanisms may underlie cognitive impairments observed following marijuana intake in humans, and may also be relevant to other disorders of cognition. Preclinical research will further enhance our understanding of the interactions between the cannabinoid system and cognitive functioning.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | | | | | | |
Collapse
|
49
|
Silva de Melo LC, Cruz AP, Rios Valentim SJ, Marinho AR, Mendonça JB, Nakamura-Palacios EM. Delta(9)-THC administered into the medial prefrontal cortex disrupts the spatial working memory. Psychopharmacology (Berl) 2005; 183:54-64. [PMID: 16163518 DOI: 10.1007/s00213-005-0141-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Delta(9)-Tetrahydrocannabinol (Delta(9)-THC) disrupts working memory. The prefrontal cortex (PFC) is involved in the processing of working memory, and its medial portion (mPFC) is part of a brain reward circuit as constituted by the mesocorticolimbic dopaminergic system. OBJECTIVE This study examined the involvement of the mPFC in the effects of Delta(9)-THC on spatial working memory. METHODS Ten male Wistar rats well-trained in a radial arm maze and with bilateral cannula implanted in the mPFC received Delta(9)-THC intra-cortically (Delta(9)-THC IC) at doses of 0 (VEH), 32, 100 or 180 microg, 5 min before a 5-s or a 1-h delayed task in order to measure a short- or long-term spatial working memory, respectively. By contrast, 11 other animals received Delta(9)-THC intraperitoneally (Delta(9)-THC IP) at doses of 0 (VEH), 0.32, 1 or 1.8 mg/kg, 30 min before a 5-s or a 1-h delayed task. Additionally, after a 15-day washout, the effect of an IP or IC pre-exposure of Delta(9)-THC was examined by repeating both dose-effect curves in a crossover order for the routes of administration. RESULTS Delta(9)-THC IP produced significantly larger number of errors at doses of 0.32 or 1 mg/kg as compared to VEH in the 1-h post-delay performance. Delta(9)-THC 100 microg IC also produced significantly larger number of errors as compared to VEH and also to the other doses (32 or 180 microg) IC in the 1-h post-delay performance. Previous exposure to Delta(9)-THC IP or IC did not significantly affect the disruptive effect of this cannabinoid. CONCLUSIONS Delta(9)-THC administered directly in the mPFC impaired 1-h delayed task in the radial arm maze in a manner similar to that observed for its systemic administration, suggesting that the mPFC is involved in the disruptive effects of Delta(9)-THC on spatial working memory.
Collapse
Affiliation(s)
- Lívia Carla Silva de Melo
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, B. Maruípe, 29042-755 Vitória, ES, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Young JM, McGregor IS, Mallet PE. Co-administration of THC and MDMA ('ecstasy') synergistically disrupts memory in rats. Neuropsychopharmacology 2005; 30:1475-82. [PMID: 16178074 DOI: 10.1038/sj.npp.1300692] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') and cannabis are two of the most commonly used illicit drugs in the western world, and are often used in combination. Very little research has examined their effect on cognitive function or behavior when combined, The present study used a double Y-maze task to examine the acute effect of MDMA and delta9-tetrahydrocannabinol (THC, the principal psychoactive ingredient of cannabis) on mnemonic function in rats, at a range of doses representative of common human use. Experiment I (low doses) examined the effect of 0.25 mg/kg THC and 1.25 mg/kg MDMA alone and together. At these doses MDMA or THC given alone had no effect on working memory, but the co-administered drugs significantly disrupted working memory. Experiment 2 (medium doses) examined the effect of 0.5 mg/kg THC and 2.5 mg/kg MDMA given alone or together. At these doses THC, but not MDMA, impaired working memory. Although MDMA alone had no effect, it exacerbated the impairment due to THC when the drugs were co-administered. Experiment 3 (high doses) examined the effects of 1 mg/kg THC and 5 mg/kg MDMA alone and together. Both drugs significantly impaired memory when given alone, although the impairment due to MDMA was less than that caused by THC. When co-administered at these doses, the drugs caused a major disruption of behavior and this precluded ascribing a mnemonic cause to poor performance on the double Y-maze task Taken together, these experiments demonstrate a synergistic disruption of working memory by acute co-administration of THC and MDMA.
Collapse
Affiliation(s)
- June M Young
- School of Psychology, University of New England, Armidale, NSW, Australia
| | | | | |
Collapse
|