1
|
Stovicek V, Lengeler KB, Wendt T, Rasmussen M, Katz M, Förster J. Modifying flavor profiles of Saccharomyces spp. for industrial brewing using FIND-IT, a non-GMO approach for metabolic engineering of yeast. N Biotechnol 2024; 82:92-106. [PMID: 38788897 DOI: 10.1016/j.nbt.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Species of Saccharomyces genus have played an irreplaceable role in alcoholic beverage and baking industry for centuries. S. cerevisiae has also become an organism of choice for industrial production of alcohol and other valuable chemicals and a model organism shaping the rise of modern genetics and genomics in the past few decades. Today´s brewing industry faces challenges of decreasing consumption of traditional beer styles and increasing consumer demand for new styles, flavors and aromas. The number of currently used brewer's strains and their genetic diversity is yet limited and implementation of more genetic and phenotypic variation is seen as a solution to cope with the market challenges. This requires modification of current production strains or introduction of novel strains from other settings, e.g. industrial or wild habitats into the brewing industry. Due to legal regulation in many countries and negative customer perception of GMO organisms, the production of food and beverages requires non-GMO production organisms, whose development can be difficult and time-consuming. Here, we apply FIND-IT (Fast Identification of Nucleotide variants by DigITal PCR), an ultrafast genome-mining method, for isolation of novel yeast variants with varying flavor profiles. The FIND-IT method uses combination of random mutagenesis, droplet digital PCR with probes that target a specific desired mutation and a sub-isolation of the mutant clone. Such an approach allows the targeted identification and isolation of specific mutant strains with eliminated production of certain flavor and off-flavors and/or changes in the strain metabolism. We demonstrate that the technology is useful for the identification of loss-of function or gain of function mutations in unrelated industrial and wild strains differing in ploidy. Where no other phenotypic selection exists, this technology serves together with standard breeding techniques as a modern tool facilitating a modification of (brewer's) yeast strains leading to diversification of the product portfolio.
Collapse
Affiliation(s)
- Vratislav Stovicek
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Klaus B Lengeler
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark; Traitomic A/S, J.C. Jacobsens Gade 1, DK-1799 Copenhagen V, Denmark
| | - Magnus Rasmussen
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Michael Katz
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Jochen Förster
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark; DTU Biosustain, The Novo Nordisk Foundation Center for Biosustainability, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Stirke A, Celiesiute-Germaniene R, Zimkus A, Zurauskiene N, Simonis P, Dervinis A, Ramanavicius A, Balevicius S. The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment. Sci Rep 2019; 9:14731. [PMID: 31611587 PMCID: PMC6791849 DOI: 10.1038/s41598-019-51184-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023] Open
Abstract
An investigation of the yeast cell resealing process was performed by studying the absorption of the tetraphenylphosphonium (TPP+) ion by the yeast Saccharomyces cerevisiae. It was shown that the main barrier for the uptake of such TPP+ ions is the cell wall. An increased rate of TPP+ absorption after treatment of such cells with a pulsed electric field (PEF) was observed only in intact cells, but not in spheroplasts. The investigation of the uptake of TPP+ in PEF treated cells exposed to TPP+ for different time intervals also showed the dependence of the absorption rate on the PEF strength. The modelling of the TPP+ uptake recovery has also shown that the characteristic decay time of the non-equilibrium (PEF induced) pores was approximately a few tens of seconds and this did not depend on the PEF strength. A further investigation of such cell membrane recovery process using a florescent SYTOX Green nucleic acid stain dye also showed that such membrane resealing takes place over a time that is like that occurring in the cell wall. It was thus concluded that the similar characteristic lifetimes of the non-equilibrium pores in the cell wall and membrane after exposure to PEF indicate a strong coupling between these parts of the cell.
Collapse
Affiliation(s)
- Arunas Stirke
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | | | - Aurelijus Zimkus
- Department of Biochemistry and Biophysics, Life Sciences Center, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Nerija Zurauskiene
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Povilas Simonis
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Aldas Dervinis
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania.,Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225, Vilnius, Lithuania
| | - Saulius Balevicius
- Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
3
|
Álvarez-Cao ME, Cerdán ME, González-Siso MI, Becerra M. Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides. Microb Cell Fact 2019; 18:172. [PMID: 31601209 PMCID: PMC6786279 DOI: 10.1186/s12934-019-1222-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND α-Galactosidases are enzymes that act on galactosides present in many vegetables, mainly legumes and cereals, have growing importance with respect to our diet. For this reason, the use of their catalytic activity is of great interest in numerous biotechnological applications, especially those in the food industry directed to the degradation of oligosaccharides derived from raffinose. The aim of this work has been to optimize the recombinant production and further characterization of α-galactosidase of Saccharomyces cerevisiae. RESULTS The MEL1 gene coding for the α-galactosidase of S. cerevisiae (ScAGal) was cloned and expressed in the S. cerevisiae strain BJ3505. Different constructions were designed to obtain the degree of purification necessary for enzymatic characterization and to improve the productive process of the enzyme. ScAGal has greater specificity for the synthetic substrate p-nitrophenyl-α-D-galactopyranoside than for natural substrates, followed by the natural glycosides, melibiose, raffinose and stachyose; it only acts on locust bean gum after prior treatment with β-mannosidase. Furthermore, this enzyme strongly resists proteases, and shows remarkable activation in their presence. Hydrolysis of galactose bonds linked to terminal non-reducing mannose residues of synthetic galactomannan-oligosaccharides confirms that ScAGal belongs to the first group of α-galactosidases, according to substrate specificity. Optimization of culture conditions by the statistical model of Response Surface helped to improve the productivity by up to tenfold when the concentration of the carbon source and the aeration of the culture medium was increased, and up to 20 times to extend the cultivation time to 216 h. CONCLUSIONS ScAGal characteristics and improvement in productivity that have been achieved contribute in making ScAGal a good candidate for application in the elimination of raffinose family oligosaccharides found in many products of the food industry.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| | - María-Esperanza Cerdán
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| | - María-Isabel González-Siso
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| | - Manuel Becerra
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña. Grupo EXPRELA, A Coruña, Spain
| |
Collapse
|
4
|
Nguyen HV, Boekhout T. Characterization of Saccharomyces uvarum (Beijerinck, 1898) and related hybrids: assessment of molecular markers that predict the parent and hybrid genomes and a proposal to name yeast hybrids. FEMS Yeast Res 2018; 17:3061370. [PMID: 28334169 DOI: 10.1093/femsyr/fox014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022] Open
Abstract
The use of the nuclear DNA reassociation technique has led taxonomists to consider Saccharomyces uvarum a synonym of S. bayanus. The latter, however, is not a species but a hybrid harbouring S. eubayanus (Seu) and S. uvarum (Su) subgenomes with a minor DNA contribution from S. cerevisiae (Sc). To recognize genetically pure lines of S. uvarum and putative interspecies hybrids among so-called S. bayanus strains present in public culture collections, we propose the use of four markers that were defined from the S. bayanus CBS 380T composite genome, namely SeuNTS2 (rDNA), ScMAL31, MTY1 and SuMEL1. Saccharomyces carlsbergensis CBS 1513 was found to be similar to S. bayanus except that it carries the SeuMEL1 allele. Different marker combinations revealed that among 33 strains examined only a few were similar to CBS 380T, but many pure S. uvarum lines and putative Su/Seu-related hybrids occurred. Our results demonstrated that these hybrids were erroneously considered authentic S. bayanus and therefore the varietal state 'Saccharomyces bayanus var. uvarum comb. nov. Naumov' is not valid. Our markers constitute a tool to get insights into the genomic makeup of Saccharomyces interspecies hybrids. We also make a proposal to name those hybrids that may also be applicable to other fungal hybrids.
Collapse
Affiliation(s)
- Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Haase MAB, Kominek J, Langdon QK, Kurtzman CP, Hittinger CT. Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis. FEMS Yeast Res 2018; 17:3737663. [PMID: 28419220 DOI: 10.1093/femsyr/fox019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
Xylose fermentation is a rare trait that is immensely important to the cellulosic biofuel industry, and Candida tenuis is one of the few yeasts that has been reported with this trait. Here we report the isolation of two strains representing a candidate sister species to C. tenuis. Integrated analysis of genome sequence and physiology suggested the genetic basis of a number of traits, including variation between the novel species and C. tenuis in lactose metabolism due to the loss of genes encoding lactose permease and β-galactosidase in the former. Surprisingly, physiological characterization revealed that neither the type strain of C. tenuis nor this novel species fermented xylose in traditional assays. We reexamined three xylose-fermenting strains previously identified as C. tenuis and found that these strains belong to the genus Scheffersomyces and are not C. tenuis. We propose Yamadazyma laniorum f.a. sp. nov. to accommodate our new strains and designate its type strain as yHMH7 (=CBS 14780 = NRRL Y-63967T). Furthermore, we propose the transfer of Candida tenuis to the genus Yamadazyma as Yamadazyma tenuis comb. nov. This approach provides a roadmap for how integrated genome sequence and physiological analysis can yield insight into the mechanisms that generate yeast biodiversity.
Collapse
Affiliation(s)
- Max A B Haase
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Quinn K Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cletus P Kurtzman
- National Center for Agricultural Utilization Research, ARS-USDA, 1815 North University St., Peoria, IL 61604, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Casey GP, Xiao W, Rank GH. Construction of α-Galactosidase-Positive Strains of Industrial Baker's (Saccharomyces Cerevisiae)Yeasts. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-46-0067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Gregory P. Casey
- Department of Applied Microbiology and Food Science (Food Biotechnology Group), University of Saskatchewan, Saskatoon, Canada S7N 0W0
| | - Wei Xiao
- Department of Biology, University of Saskatchewan, Saskatoon, Canada S7N 0W0
| | | |
Collapse
|
7
|
Dulermo R, Legras JL, Brunel F, Devillers H, Sarilar V, Neuvéglise C, Nguyen HV. Truncation of Gal4p explains the inactivation of the GAL/MEL regulon in both Saccharomyces bayanus and some Saccharomyces cerevisiae wine strains. FEMS Yeast Res 2016; 16:fow070. [PMID: 27589939 DOI: 10.1093/femsyr/fow070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/29/2022] Open
Abstract
In the past, the galactose-negative (Gal(-)) phenotype was a key physiological character used to distinguish Saccharomyces bayanus from S. cerevisiae In this work, we investigated the inactivation of GAL gene networks in S. bayanus, which is an S. uvarum/S. eubayanus hybrid, and in S. cerevisiae wine strains erroneously labelled 'S. bayanus'. We made an inventory of their GAL genes using genomes that were either available publicly, re-sequenced by us, or assembled from public data and completed with targeted sequencing. In the S. eubayanus/S. uvarum CBS 380(T) hybrid, the GAL/MEL network is composed of genes from both parents: from S. uvarum, an otherwise complete set that lacks GAL4, and from S. eubayanus, a truncated version of GAL4 and an additional copy of GAL3 and GAL80 Similarly, two different truncated GAL4 alleles were found in S. cerevisiae wine strains EC1118 and LalvinQA23. The lack of GAL4 activity in these strains was corrected by introducing a full-length copy of S. cerevisiae GAL4 on a CEN4/ARS plasmid. Transformation with this plasmid restored galactose utilisation in Gal(-) strains, and melibiose fermentation in strain CBS 380(T) The melibiose fermentation phenotype, formerly regarded as characteristic of S. uvarum, turned out to be widespread among Saccharomyces species.
Collapse
Affiliation(s)
- Rémi Dulermo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Luc Legras
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - François Brunel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Véronique Sarilar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
8
|
Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:11-31. [PMID: 26721269 DOI: 10.1007/978-3-319-25304-6_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.
Collapse
|
9
|
Bakunina IY, Balabanova LA, Pennacchio A, Trincone A. Hooked on α-d-galactosidases: from biomedicine to enzymatic synthesis. Crit Rev Biotechnol 2015; 36:233-45. [PMID: 25394540 DOI: 10.3109/07388551.2014.949618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-d-Galactosidases (EC 3.2.1.22) are enzymes employed in a number of useful bio-based applications. We have depicted a comprehensive general survey of α-d-galactosidases from different origin with special emphasis on marine example(s). The structures of natural α-galactosyl containing compounds are described. In addition to 3D structures and mechanisms of action of α-d-galactosidases, different sources, natural function and genetic regulation are also covered. Finally, hydrolytic and synthetic exploitations as free or immobilized biocatalysts are reviewed. Interest in the synthetic aspects during the next years is anticipated for access to important small molecules by green technology with an emphasis on alternative selectivity of this class of enzymes from different sources.
Collapse
Affiliation(s)
- Irina Yu Bakunina
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok , Russia and
| | - Larissa A Balabanova
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok , Russia and
| | - Angela Pennacchio
- b Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Pozzuoli , Napoli , Italy
| | - Antonio Trincone
- b Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Pozzuoli , Napoli , Italy
| |
Collapse
|
10
|
Fernández-Leiro R, Pereira-Rodríguez Á, Cerdán ME, Becerra M, Sanz-Aparicio J. Structural analysis of Saccharomyces cerevisiae alpha-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases. J Biol Chem 2010; 285:28020-33. [PMID: 20592022 PMCID: PMC2934667 DOI: 10.1074/jbc.m110.144584] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/17/2010] [Indexed: 11/06/2022] Open
Abstract
Alpha-galactosidases catalyze the hydrolysis of terminal alpha-1,6-galactosyl units from galacto-oligosaccharides and polymeric galactomannans. The crystal structures of tetrameric Saccharomyces cerevisiae alpha-galactosidase and its complexes with the substrates melibiose and raffinose have been determined to 1.95, 2.40, and 2.70 A resolution. The monomer folds into a catalytic (alpha/beta)(8) barrel and a C-terminal beta-sandwich domain with unassigned function. This pattern is conserved with other family 27 glycosidases, but this enzyme presents a unique 45-residue insertion in the beta-sandwich domain that folds over the barrel protecting it from the solvent and likely explaining its high stability. The structure of the complexes and the mutational analysis show that oligomerization is a key factor in substrate binding, as the substrates are located in a deep cavity making direct interactions with the adjacent subunit. Furthermore, docking analysis suggests that the supplementary domain could be involved in binding sugar units distal from the scissile bond, therefore ascribing a role in fine-tuning substrate specificity to this domain. It may also have a role in promoting association with the polymeric substrate because of the ordered arrangement that the four domains present in one face of the tetramer. Our analysis extends to other family 27 glycosidases, where some traits regarding specificity and oligomerization can be formulated on the basis of their sequence and the structures available. These results improve our knowledge on the activity of this important family of enzymes and give a deeper insight into the structural features that rule modularity and protein-carbohydrate interactions.
Collapse
Affiliation(s)
- Rafael Fernández-Leiro
- From the Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071-A Coruña and
- the Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Ángel Pereira-Rodríguez
- From the Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071-A Coruña and
| | - M. Esperanza Cerdán
- From the Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071-A Coruña and
| | - Manuel Becerra
- From the Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071-A Coruña and
| | - Juliana Sanz-Aparicio
- the Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
11
|
Curry C, Gilkes N, O'neill G, Miller RC, Skipper N. Expression and Secretion of a Cellulomonas fimi Exoglucanase in Saccharomyces cerevisiae. Appl Environ Microbiol 2010; 54:476-84. [PMID: 16347562 PMCID: PMC202476 DOI: 10.1128/aem.54.2.476-484.1988] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used the yeast MEL1 gene for secreted alpha-galactosidase to construct cartridges for the regulated expression of foreign proteins from Saccharomyces cerevisiae. The gene for a Cellulomonas fimi beta-1,4-exoglucanase was inserted into one cartridge to create a fusion of the alpha-galactosidase signal peptide to the exoglucanase. Yeast transformed with plasmids containing this construction produced active extracellular exoglucanase when grown under conditions appropriate to MEL1 promoter function. The cells also produced active intracellular enzyme. The secreted exoglucanase was N-glycosylated and was produced continuously during culture growth. It hydrolyzed xylan, carboxymethyl cellulose, 4-methylumbelliferyl-beta-d-cellobiose, and p-nitrophenyl-beta-d-cellobiose. A comparison of the recombinant S. cerevisiae enzyme with the native C. fimi enzyme showed the yeast version to have an identical K(m) and pH optimum but to be more thermostable.
Collapse
Affiliation(s)
- C Curry
- Allelix Inc., Mississauga, Ontario L4V 1P1, and Department of Microbiology, University of British Columbia, Vancouver, British Columbia V6T 1W5, Canada
| | | | | | | | | |
Collapse
|
12
|
Domingues L, Guimarães PMR, Oliveira C. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng Bugs 2009; 1:164-71. [PMID: 21326922 DOI: 10.4161/bbug.1.3.10619] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022] Open
Abstract
Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity.
Collapse
Affiliation(s)
- Lucília Domingues
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | | | | |
Collapse
|
13
|
Reiser J, Glumoff V, Kälin M, Ochsner U. Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 43:75-102. [PMID: 2291442 DOI: 10.1007/bfb0009080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past few years, yeasts other than those belonging to the genus Saccharomyces have become increasingly important for industrial applications. Species such as Pichia pastoris, Hansenula polymorpha, Schizosaccharomyces pombe, Yarrowia lipolytica and Kluyveromyces lactis have been modified genetically and used for the production of heterologous proteins. For a number of additional yeasts such as Schwanniomyces occidentalis, Zygosaccharomyces rouxii, Trichosporon cutaneum, Pachysolen tannophilus, Pichia guilliermondii and members of the genus Candida genetic transformation systems have been worked out. Transformation was achieved using either dominant selection markers based on antibiotic resistance genes or auxotrophic markers in conjunction with cloned biosynthetic genes involved in amino acid or nucleotide metabolism.
Collapse
Affiliation(s)
- J Reiser
- Institut für Biotechnologie, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
14
|
Kim WD, Kobayashi O, Kaneko S, Sakakibara Y, Park GG, Kusakabe I, Tanaka H, Kobayashi H. alpha-Galactosidase from cultured rice (Oryza sativa L. var. Nipponbare) cells. PHYTOCHEMISTRY 2002; 61:621-630. [PMID: 12423882 DOI: 10.1016/s0031-9422(02)00368-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The alpha-galactosidase from rice cell suspension cultures was purified to homogeneity by different techniques including affinity chromatography using N-epsilon-aminocaproyl-alpha-D-galactopyranosylamine as the ligand. From 11 l of culture filtrate, 28.7 mg of purified enzyme was obtained with an overall yield of 51.9%. The cDNA coding for the alpha-galactosidase was cloned and sequenced. The enzyme was found to contain 417 amino acid residues composed of a 55 amino acid signal sequence and 362 amino acid mature alpha-galactosidase; the molecular weight of the mature enzyme was thus calculated to be 39,950. Seven cysteine residues were also found but no putative N-glycosylation sites were present. The observed homology between the deduced amino acid sequences of the mature enzyme and alpha-galactosidases from coffee (Coffea arabica), guar (Cyamopsis tetragonolooba), and Mortierella vinacea alpha-galactosidase II were over 73, 72, and 45%, respectively. The enzyme displayed maximum activity at 45 degrees C when p-nitrophenyl-alpha-D-galactopyranoside was used as substrate. The rice alpha-galactosidase and Mortierella vinacea alpha-galactosidase II acted on both the terminal alpha-galactosyl residue and the side-chain alpha-galactosyl residue of the galactomanno-oligosaccharides.
Collapse
Affiliation(s)
- Wook-Dong Kim
- Institute of Applied Biochemistry, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ishiguro M, Kaneko S, Kuno A, Koyama Y, Yoshida S, Park GG, Sakakibara Y, Kusakabe I, Kobayashi H. Purification and characterization of the recombinant Thermus sp. strain T2 alpha-galactosidase expressed in Escherichia coli. Appl Environ Microbiol 2001; 67:1601-6. [PMID: 11282611 PMCID: PMC92775 DOI: 10.1128/aem.67.4.1601-1616.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of the Thermus sp. strain T2 DNA coding for a thermostable alpha-galactosidase was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 474 amino acids (M(r), 53,514). The observed homology between the deduced amino acid sequences of the enzyme and alpha-galactosidase from Thermus brockianus was over 70%. Thermus sp. strain T2 alpha-galactosidase was expressed in its active form in Escherichia coli and purified. Native polyacrylamide gel electrophoresis and gel filtration chromatography data suggest that the enzyme is octameric. The enzyme was most active at 75 degrees C for p-nitrophenyl-alpha-D-galactopyranoside hydrolysis, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C. The enzyme was extremely stable over a broad range of pH (pH 6 to 13) after treatment at 40 degrees C for 1 h. The enzyme acted on the terminal alpha-galactosyl residue, not on the side chain residue, of the galactomanno-oligosaccharides as well as those of yeasts and Mortierella vinacea alpha-galactosidase I. The enzyme has only one Cys residue in the molecule. para-Chloromercuribenzoic acid completely inhibited the enzyme but did not affect the mutant enzyme which contained Ala instead of Cys, indicating that this Cys residue is not responsible for its catalytic function.
Collapse
Affiliation(s)
- M Ishiguro
- Institute of Applied Biochemistry, University of Tsukuba, Ibaraki 305-0006, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Miller ES, Parker N, Liebl W, Lam D, Callen W, Snead MA, Mathur EJ, Short JM, Kelly RM. Alpha-D-galactosidases from Thermotoga species. Methods Enzymol 2001; 330:246-60. [PMID: 11210503 DOI: 10.1016/s0076-6879(01)30380-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- E S Miller
- DuPont Central Research and Development Experimental Station, Wilmington, Delaware 19880-0328, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ostergaard S, Roca C, Rønnow B, Nielsen J, Olsson L. Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene. Biotechnol Bioeng 2000; 68:252-9. [PMID: 10745193 DOI: 10.1002/(sici)1097-0290(20000505)68:3<252::aid-bit3>3.0.co;2-k] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physiological studies of Saccharomyces cerevisiae strains harboring the MEL1 gene were carried out in aerobic batch cultivations on glucose-galactose mixtures and on the disaccharide melibiose, which is hydrolyzed by the enzyme melibiase (Mel1, EC 3.2.1.22) into a glucose and a galactose moiety. The strains examined (T200, T256, M24, and TH1) were all derived from the bakers' and distillers' strain of S. cerevisiae, DGI 342. All the strains showed a significant higher ethanol yield when growing on glucose, and half the biomass yield, compared with growth on galactose. The maximum specific uptake rates were 2.5-3.3-fold higher on glucose than on galactose for all the strains examined, and hence, ethanol production was pronounced on glucose due to respiro-fermentative metabolism. The T256 strain and the T200 strain having the MEL1 gene inserted in the HXK2 locus and the LEU2 locus, respectively, hydrolyzed melibiose with low specific hydrolysis rates of 0.03 C-mol/g/h and 0.04 C-mol/g/h, respectively. This resulted in high biomass yields on melibiose in the order of 10 g/C-mol compared with 3.7 g/C-mol for M24 and 1.6 g/C-mol for TH1. The M24 strain, constructed by classical breeding, and the mig1/gal80 disrupted and melibiase-producing strain TH1, were superior in their ability to hydrolyze melibiose into glucose and galactose showing specific melibiose hydrolysis rates of 0.17 C-mol/g/h and 0.24 C-mol/g/h, respectively. Hence, high ethanol yields on melibiose were obtained with these two strains. Growth on the glucose-galactose mixtures showed a reduction of glucose control successfully obtained in the M24 strain and the TH1 strain.
Collapse
Affiliation(s)
- S Ostergaard
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
18
|
Sil AK, Xin P, Hopper JE. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins. Protein Expr Purif 2000; 18:202-12. [PMID: 10686151 DOI: 10.1006/prep.1999.1177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Gal4, Gal80, and Gal3 proteins of Saccharomyces cerevisiae constitute a galactose-responsive regulatory switch for GAL gene promoters. The low cellular levels of these proteins have hampered mechanistic studies and limit the utility of the GAL gene promoters for high-yield production of endogenous and exogenous proteins. We have constructed two new vectors, pMEGA2 and pMEGA2-DeltaURA3, that increase the level of the Gal4p-Gal80p-Gal3p switch proteins under conditions that preserve the Gal3p-Gal80p-Gal4p stoichiometries required for normal switch function. Cells carrying pMEGA2 show 15- to 20-fold more Gal4p and 30- to 40-fold more Gal3p and Gal80p than cells lacking pMEGA2. These high levels of Gal4p, Gal80p, and Gal3p do not perturb the integrity of galactose-inducible regulation. Cells that carry pMEGA2 exhibit normal galactose-induction kinetics for the chromosomal MEL1 gene expression and normal, albeit slower, log-phase growth. Insertion of the MEL1 gene into pMEGA2 provides a 24- to 30-fold increase in the Mel1 protein. Cells carrying a 2-microm-based URA3-selectable plasmid containing a GAL1pro:lacZ reporter gene and a second plasmid, pMEGA2-DeltaURA3, produce 12-fold more beta-galactosidase than cells carrying only the GAL1pro:lacZ reporter plasmid. The performance of the MEGA plasmids in providing amplified production of the Gal3, Gal80, and Gal4 proteins should prove useful in investigations of the mechanistic aspects of these transcription switch proteins and in work aimed at achieving high-level, galactose-regulatable production of proteins in yeast.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
19
|
Hakamata W, Nishio T, Oku T. Hydrolytic activity of alpha-galactosidases against deoxy derivatives of p-nitrophenyl alpha-D-galactopyranoside. Carbohydr Res 2000; 324:107-15. [PMID: 10702877 DOI: 10.1016/s0008-6215(99)00281-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four possible monodeoxy derivatives of p-nitrophenyl (PNP) alpha-D-galactopyranoside were synthesized, and hydrolytic activities of the alpha-galactosidase of green coffee bean, Mortierella vinacea and Aspergillus niger against them were elucidated. The 2- and 6-deoxy substrates were hydrolyzed by the enzymes from green coffee bean and M. vinacea, while they scarcely acted on the 3- and 4-deoxy compounds. On the other hand, A. niger alpha-galactosidase hydrolyzed only the 2-deoxy compound in these deoxy substrates, and the activity was very high. These results indicate that the presence of two hydroxyl groups (OH-3 and -4) is essential for the compounds to act as substrates for the enzymes of green coffee bean and M. vinacea, while the three hydroxyl groups (OH-3, -4, and -6) are necessary for the activity of the A. niger enzyme. The kinetic parameters (K(m) and Vmax) of the enzymes for the hydrolysis of PNP alpha-D-galactopyranoside and its deoxy derivatives were obtained from kinetic studies.
Collapse
Affiliation(s)
- W Hakamata
- Laboratory of Bio-organic Chemistry, College of Bioresource Sciences, Nihon University, Tokyo, Japan
| | | | | |
Collapse
|
20
|
BAIK SANGHO, SAITO KATSUICHI, YOKOTA ATSUSHI, ASANO KOZO, TOMITA FUSAO. Molecular Cloning and High-Level Expression in Escherichia coli of Fungal .ALPHA.-Galactosidase from Absidia corymbifera IFO 8084. J Biosci Bioeng 2000. [DOI: 10.1263/jbb.90.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Baik SH, Saito K, Yokota A, Asano K, Tomita F. Molecular cloning and high-level expression in Escherichia coli of fungal α-galactosidase from Absidia corymbifera IFO 8084. J Biosci Bioeng 2000; 90:168-73. [PMID: 16232837 DOI: 10.1016/s1389-1723(00)80105-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2000] [Accepted: 05/12/2000] [Indexed: 11/17/2022]
Abstract
A cDNA encoding the alpha-galactosidase of Absidia corymbifera IFO 8084 was cloned and sequenced. The cloned DNA has a single open-reading frame consisting of 2190 base pairs, and the deduced amino acid sequence revealed that the mature enzyme consisted of 730 amino acid residues with a molecular mass of 82,712 Da. The native structure of the alpha-galactosidase of A. corymbifera IFO 8084 was determined to be a tetramer. Comparison with amino acid sequences of other alpha-galactosidase showed high homology with sequences of members of family 36. An expression vector, pET32Trx/galalpha, was constructed by introducing the cDNA coding region into a thioredoxin fusion system, pET32-Ek/LIC. The resulting transformant, pET32Trx/galalpha, overproduced the active enzyme as a thioredoxin fused form in the host Escherichia coli. By using His-binding metal affinity chromatography, recombinant alpha-galactosidase was purified to homogeneity in a single step. The purified recombinant fusion alpha-galactosidase showed properties very similar to the native alpha-galactosidase from A. corymbifera IFO 8084.
Collapse
Affiliation(s)
- S H Baik
- Laboratory of Applied Microbiology, Graduate School of Agriculture, Hokkaido University, North 9 West 9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
22
|
Shibuya H, Nagasaki H, Kaneko S, Yoshida S, Park GG, Kusakabe I, Kobayashi H. Cloning and high-level expression of alpha-galactosidase cDNA from Penicillium purpurogenum. Appl Environ Microbiol 1998; 64:4489-94. [PMID: 9797312 PMCID: PMC106674 DOI: 10.1128/aem.64.11.4489-4494.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cDNA coding for Penicillium purpurogenum alpha-galactosidase (alphaGal) was cloned and sequenced. The deduced amino acid sequence of the alpha-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic alphaGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides.
Collapse
Affiliation(s)
- H Shibuya
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Luonteri E, Tenkanen M, Viikari L. Substrate specificities of Penicillium simplicissimum alpha-galactosidases. Enzyme Microb Technol 1998; 22:192-8. [PMID: 9463945 DOI: 10.1016/s0141-0229(97)00170-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The substrate specificities of three Penicillium simplicissimum alpha-galactosidases, AGLI, AGLII, and AGLIII, were determined by using various isolated galactose-containing oligosaccharides and polymeric galacto(gluco)mannans. AGLI released galactose from melibiose and raffinose-family oligosaccharides but the amount of galactose released was decreased from 96% to 35% by the increasing chain length of the substrate from raffinose to verbascose. It was able to release galactose linked to the nonreducing end and less efficiently to the internal residues of the galactomanno-oligomers. AGLI was able to hydrolyze 60-92% of galactose from polymeric galacto(gluco)mannans alone but its action was facilitated by mannanase and beta-mannosidase. In addition, it was able to release about 10% of the galactose from softwood kraft pulp alone and about 22% in combination with mannanase. AGLII was highly specific toward small galactose-containing oligosaccharides in which the galactose is linked to the nonreducing end of the substrate. It released 90-100% of galactose present in melibiose, raffinose, stachyose, and verbascose; however, it was able to degrade polymeric substrates only in combination with mannanase and beta-mannosidase. AGLIII had only low activity toward the oligomeric substrates tested. It was able to release some galactose from the polymeric galacto(gluco)mannans alone, but its action was clearly enhanced by the backbone degrading enzymes.
Collapse
Affiliation(s)
- E Luonteri
- VTT Biotechnology and Food Research, Espoo, Finland
| | | | | |
Collapse
|
24
|
Klein CJL, Olsson L, Nielsen J. Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 1):13-24. [PMID: 9467897 DOI: 10.1099/00221287-144-1-13] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christopher J L Klein
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Lisbeth Olsson
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jens Nielsen
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
25
|
Aho S, Arffman A, Pummi T, Uitto J. A novel reporter gene MEL1 for the yeast two-hybrid system. Anal Biochem 1997; 253:270-2. [PMID: 9367516 DOI: 10.1006/abio.1997.2394] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S Aho
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | | | | | | |
Collapse
|
26
|
Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M. Three alpha-galactosidase genes of Trichoderma reesei cloned by expression in yeast. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:104-11. [PMID: 8797842 DOI: 10.1111/j.1432-1033.1996.0104h.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three alpha-galactosidase genes, agl1, agl2 and agl3, were isolated from a cDNA expression library of Trichoderma reesei RutC-30 constructed in the yeast Saccharomyces cerevisiae by screening the library on plates containing the substrate 5-bromo-4-chloro-3-indolyl-alpha-D-galactopyranoside. The genes agl1, agl2 and agl3 encode 444, 746 and 624 amino acids, respectively, including the signal sequences. The deduced amino acid sequences of AGLI and AGLIII showed similarity with the alpha-galactosidases of plant, animal, yeast and filamentous fungal origin classified into family 27 of glycosyl hydrolases whereas the deduced amino acid sequence of AGLII showed similarity with the bacterial alpha-galactosidases of family 36. The enzymes produced by yeast were analysed for enzymatic activity against different substrates. AGLI, AGLII and AGLIII were able to hydrolyse the synthetic substrate p-nitrophenyl-alpha-D-galactopyranoside and the small galactose-containing oligosaccharides, melibiose and raffinose. They liberated galactose from polymeric galacto(gluco)mannan with different efficiencies. The action of AGLI towards polymeric substrates was enhanced by the presence of the endo-1,4-beta-mannanase of T. reesei. AGLII and AGLIII showed synergy in galacto(gluco)mannan hydrolysis with the endo-1,4-beta-mannanase of T. reesei and a beta-mannosidase of Aspergillus niger. The calculated molecular mass and the hydrolytic properties of AGLI indicate that it corresponds to the alpha-galactosidase previously purified from T. reesei.
Collapse
|
27
|
Bell PJ, Bissinger PH, Evans RJ, Dawes IW. A two-reporter gene system for the analysis of bi-directional transcription from the divergent MAL6T-MAL6S promoter in Saccharomyces cerevisiae. Curr Genet 1995; 28:441-6. [PMID: 8575017 DOI: 10.1007/bf00310813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many sets of genes in Saccharomyces cerevisiae are divergently transcribed, but at present there are no vectors generally available for the simultaneous analysis of divergent transcription from these promoters. In the present study MEL1 and lacZ were used to construct a vector capable of measuring the divergent expression initiated by the MAL6T-MAL6S bi-directional promoter. Our observations demonstrate that the expression of both reporter genes was regulated in a similar fashion to the native MAL6T and MAL6S genes, and that induction was dependent upon the presence of a functional MALR activator gene. The results confirmed that the MAL6T-MAL6S promoter was co-ordinately regulated, repressed by glucose, induced by maltose, and that basal expression was more active in the MAL6S direction than in the MAL6T direction.
Collapse
Affiliation(s)
- P J Bell
- C.R.C. for Food Industry Innovation, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
28
|
Kachurin AM, Golubev AM, Geisow MM, Veselkina OS, Isaeva-Ivanova LS, Neustroev KN. Role of methionine in the active site of alpha-galactosidase from Trichoderma reesei. Biochem J 1995; 308 ( Pt 3):955-64. [PMID: 8948456 PMCID: PMC1136816 DOI: 10.1042/bj3080955] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha-Galactosidase from Trichoderma reesei when treated with H2O2 shows a 12-fold increase in activity towards p-nitrophenyl alpha-D-galactopyranoside. A similar effect is produced by the treatment of alpha-galactosidase with other non-specific oxidants: NaIO4, KMnO4 and K4S4O8. In addition to the increase in activity, the Michaelis constant rises from 0.2 to 1.4 mM, the temperature coefficient decreases by a factor of 1.5 and the pH-activity curve falls off sharply with increasing pH. Galactose (a competitive inhibitor of alpha-galactosidase; Ki 0.09 mM for the native enzyme at pH 4.4) effectively inhibits oxidative activation of the enzyme, because the observed activity changes are related to oxidation of the catalytically important methionine in the active site. NMR measurements and amino acid analysis show that oxidation to methionine sulphoxide of one of five methionines is sufficient to activate alpha-galactosidase. Binding of galactose prevents this. Oxidative activation does not lead to conversion of other H2O2-sensitive amino acid residues, such as histidine, tyrosine, tryptophan and cysteine. The catalytically important cysteine thiol group is quantitatively titrated after protein oxidative activation. Further oxidation of methionines (up to four of five residues) can be achieved by increasing the oxidation time and/or by prior denaturation of the protein. Obviously, a methionine located in the active site of alpha-galactosidase is more accessible. The oxidative-activation phenomenon can be explained by a conformational change in the active site as a result of conversion of non-polar methionine into polar methionine sulphoxide.
Collapse
Affiliation(s)
- A M Kachurin
- Department of Molecular and Radiation Biophysics, St. Petersburg Nuclear Physics Institute, Gatchina, Russia
| | | | | | | | | | | |
Collapse
|
29
|
Turakainen H, Kristo P, Korhola M. Consideration of the evolution of the Saccharomyces cerevisiae MEL gene family on the basis of the nucleotide sequences of the genes and their flanking regions. Yeast 1994; 10:1559-68. [PMID: 7725791 DOI: 10.1002/yea.320101205] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Analysis of the DNA sequences of new members of the Saccharomyces cerevisiae MEL1-MEL10 gene family showed high homology between the members. The MEL gene family, alpha-galactosidase-coding sequences, have diverged into two groups; one consisting of MEL1 and MEL2 and the other of MEL3-MEL10. In two S. cerevisiae strains containing five or seven MEL genes each, all the genes are nearly identical, suggesting very rapid distribution of the gene to separate chromosomes. The sequence homology and the abrupt change to sequence heterogeneity at the centromere-proximal 3' end of the MEL genes suggest that the distribution of the genes to new chromosomal locations has occurred partly by reciprocal recombination at solo delta sequences. We identified a new open reading frame sufficient to code for a 554 amino acid long protein of unknown function. The new open reading frame (Accession number Z37509) is located in the 3' non-coding region of MEL3-MEL10 genes in opposite orientation to the MEL genes (Accession numbers Z37508, Z37510, Z37511). Northern analysis of total RNA showed no hybridization to a homologous probe, suggesting that the gene is not expressed efficiently if at all.
Collapse
Affiliation(s)
- H Turakainen
- Department of Genetics, University of Helsinki, Finland
| | | | | |
Collapse
|
30
|
Davis MO, Hata DJ, Smith D, Walker JC. Cloning and sequence of a chicken alpha-N-acetylgalactosaminidase gene. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:296-8. [PMID: 8241271 DOI: 10.1016/0167-4781(93)90158-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A cDNA clone encoding the mature polypeptide for the chicken liver alpha-N-acetylgalactosaminidase enzyme was isolated by screening a cDNA library with a synthetic sequence derived from the human alpha-N-acetylgalactosaminidase gene. The deduced amino acid sequence of the chicken liver clone was identical to the amino-terminal and cyanogen bromide derived peptide sequences obtained from the purified enzyme. The chicken enzyme has 75% identity with the human alpha-N-acetylgalactosaminidase and 56-33% identity with alpha-galactosidases from several sources.
Collapse
Affiliation(s)
- M O Davis
- Division of Biological Sciences, University of Missouri-Columbia 65211
| | | | | | | |
Collapse
|
31
|
Abstract
In Saccharomyces spp. the ability to use melibiose depends on the presence of a MEL gene encoding alpha-galactosidase. We used two cloned MEL genes as probes to characterize the physical structure and chromosomal location of the MEL genes in several industrial and natural Mel+ strains of Saccharomyces cerevisiae, Saccharomyces pastorianus, and Saccharomyces bayanus. Electrokaryotyping showed that all of the S. pastorianus strains and most of the S. bayanus strains studied had one MEL locus. The MEL gene in S. bayanus strains was similar but not identical to the S. pastorianus MEL gene. Mel+ S. cerevisiae strains had one to seven loci containing MEL sequences. The MEL genes of these strains could be divided into two categories on the basis of hybridization to MEL1, one group exhibiting strong hybridization to MEL1 and the other group exhibiting weak hybridization to MEL1. In S. pastorianus and S. bayanus strains, the MEL gene was expressed as a single 1.5-kb transcript, and the expression was galactose inducible. In some S. cerevisiae strains, the MEL genes were expressed even without induction at fairly high levels. Expression was usually further induced by galactose. In two strains, CBS 5378 and CBS 4903, expression of the MEL genes was at the same level without induction as it was in most other strains with induction. In all S. cerevisiae strains, irrespective of the number of MEL genes, mRNA of only one size (1.6 kb) was observed.
Collapse
Affiliation(s)
- H Turakainen
- Department of Genetics, University of Helsinki, Finland
| | | | | |
Collapse
|
32
|
Rossini D, Porro D, Brambilla L, Venturini M, Ranzi BM, Vanoni M, Alberghina L. In Saccharomyces cerevisiae, protein secretion into the growth medium depends on environmental factors. Yeast 1993; 9:77-84. [PMID: 8382891 DOI: 10.1002/yea.320090110] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the budding yeast Saccharomyces cerevisiae the cell wall, mainly composed of mannoproteins and glucans, constitutes a barrier to protein excretion in the growth medium. In this paper we have studied the effects of different environmental parameters on excretion of Escherichia coli beta-galactosidase obtained by exploiting the glucoamylase II signal sequence. Excretion of the unglycosylated beta-galactosidase was detectable only in cells grown in rich medium, was affected by temperature (36 degrees C > 30 degrees C >> 24 degrees C) and slightly stimulated by reducing agents. On the contrary, glycosylated proteins, such as alpha-galactosidase and glucoamylase II, were excreted to a good extent under all tested conditions of medium composition, growth temperature and pH. These data indicate that optimization of environmental parameters may help the excretion of heterologous proteins, offering advantages for protein purification.
Collapse
Affiliation(s)
- D Rossini
- Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Lyness CA, Jones CR, Meaden PG. The STA2 and MEL1 genes of Saccharomyces cerevisiae are idiomorphic. Curr Genet 1993; 23:92-4. [PMID: 8381338 DOI: 10.1007/bf00336753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The STA2 (glucoamylase) gene of Saccharomyces cerevisiae has been mapped close to the end of the left arm of chromosome II. Meiotic analysis of a cross between a haploid strain containing STA2, and another strain carrying the melibiase gene MEL1 (which is known to be at the end of the left arm of chromosome II) produced parental ditype tetrads only. Since there is no significant DNA sequence similarity between the STA2 and MEL1 genes, or their respective flanking regions, we conclude that these two genes are carried by separate non-hybridizing sequences of chromosomal DNA, either of which can reside at the end of the left arm of chromosome II. By analogy with the mating-type locus of Neurospora crassa, we suggest that the STA2 and MEL1 genes are idiomorphs with respect to one another.
Collapse
Affiliation(s)
- C A Lyness
- International Centre for Brewing and Distilling, Heriot-Watt University, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
34
|
Nielsen JB, Foor F, Siekierka JJ, Hsu MJ, Ramadan N, Morin N, Shafiee A, Dahl AM, Brizuela L, Chrebet G. Yeast FKBP-13 is a membrane-associated FK506-binding protein encoded by the nonessential gene FKB2. Proc Natl Acad Sci U S A 1992; 89:7471-5. [PMID: 1380159 PMCID: PMC49732 DOI: 10.1073/pnas.89.16.7471] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The immunosuppressants FK506 and rapamycin prevent T-cell activation and also inhibit the growth of certain strains of the yeast Saccharomyces cerevisiae. It has previously been shown that yeast contains a 12-kDa cytosolic FK506-binding protein (yFKBP-12), which also possesses peptidylprolyl cis-trans isomerase activity, and that fkb1 strains lacking yFKBP-12 are resistant to rapamycin and sensitive to FK506. The absence of yFKBP-12 permitted the detection and isolation of a second FK506- and rapamycin-binding protein, which is about 13 kDa in size (yFKBP-13) and membrane-associated. Purified yFKBP-13 binds FK506 with 15-fold lower affinity than yFKBP-12 and has peptidylprolyl cis-trans isomerase activity with a similar substrate profile. The sequence of the first 37 N-terminal amino acids was determined, and the yFKBP-13 gene (FKB2) was cloned and sequenced. A hydrophobic putative signal sequence precedes the N terminus of the mature protein. yFKBP-13 most closely resembles the membrane-associated human FKBP-13, which also possesses a signal peptide, whereas yFKBP-12 most closely resembles human FKBP-12. fkb2 and fkb1 fkb2 mutants are viable and unaltered in their sensitivity to FK506, suggesting that yeast possesses an additional target for this drug. Furthermore, fkb2 null mutations confer no change in rapamycin sensitivity. These findings show that yFKBP-13 and yFKBP-12 have distinct functions within the cell.
Collapse
Affiliation(s)
- J B Nielsen
- Merck Research Laboratories, Rahway, NJ 07065
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
den Herder IF, Rosell AM, van Zuilen CM, Punt PJ, van den Hondel CA. Cloning and expression of a member of the Aspergillus niger gene family encoding alpha-galactosidase. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:404-10. [PMID: 1320186 DOI: 10.1007/bf00265437] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An enzyme with alpha-galactosidase activity and an apparent molecular weight of 82 kDa was purified from culture medium of Aspergillus niger. The N-terminal amino acid sequence of the purified protein shows similarity to the N-terminal amino acid sequence of alpha-galactosidases from several other organisms. Oligonucleotides, based on the N-terminal amino acid sequence, were used as probes to clone the corresponding gene from a lambda EMBL3 gene library of A. niger. The cloned gene (aglA) was shown to be functional by demonstrating that the 82 kDa alpha-galactosidase is absent from a strain with a disruption of the aglA gene, and is over-produced in strains containing multiple copies of the aglA gene. Enzyme activity assays revealed that the 82 kDa alpha-galactosidase A represents a minor extracellular alpha-galactosidase activity in A. niger.
Collapse
Affiliation(s)
- I F den Herder
- TNO Medical Biological Laboratory, AA Rijswijk, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Hofmann KJ, Schultz LD. Mutations of the alpha-galactosidase signal peptide which greatly enhance secretion of heterologous proteins by yeast. Gene 1991; 101:105-11. [PMID: 1648007 DOI: 10.1016/0378-1119(91)90230-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Saccharomyces carlsbergensis MEL1 gene encodes alpha-galactosidase (melibiase; MEL1) which is readily secreted by yeast cells into the culture medium. To evaluate the utility of the MEL1 signal peptide (sp) for the secretion of heterologous proteins by Saccharomyces cerevisiae, an expression vector was constructed which contains the MEL1 promoter and MEL1 sp coding sequence (MEL1sp). The coding sequences for echistatin (Echis) and human plasminogen activator inhibitor type 1 (PAI-1) were inserted in-frame with the MEL1sp. S. cerevisiae transformants containing the resulting expression vectors secreted negligible amounts of either Echis or PAI-1. Using site-directed mutagenesis, several mutations were introduced into the MEL1sp. Two mutations were identified which dramatically increased the secretion of both Echis and PAI-1 to levels similar to those achieved when using the yeast MF alpha 1 pre-pro secretory leader. In particular, increasing the hydrophobicity of the core region plus the addition of a positive charge to the N-terminal domain of the MEL1 sp resulted in the greatest increase in the secretion levels of those two proteins.
Collapse
Affiliation(s)
- K J Hofmann
- Department of Cellular and Molecular Biology, Merck Sharp and Dohme Research Laboratories, West Point, PA 19486
| | | |
Collapse
|
37
|
Turakainen H, Korhola M, Aho S. Cloning, sequence and chromosomal location of a MEL gene from Saccharomyces carlsbergensis NCYC396. Gene 1991; 101:97-104. [PMID: 1711992 DOI: 10.1016/0378-1119(91)90229-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Yeast strains producing alpha-galactosidase (alpha Gal) are able to use melibiose as a carbon source during growth or fermentation. We cloned a MEL gene from Saccharomyces carlsbergensis NCYC396 through hybridization to the MEL1 gene cloned earlier from Saccharomyces cerevisiae var. uvarum. The alpha Gal encoded by the newly cloned gene was galactose-inducible as is the alpha Gal encoded by MEL1. A probable GAL4-protein recognition sequence was found in the upstream region of the NCYC396 MEL gene. The gene was transcribed to a 1.5-kb mRNA which, according to the nucleotide sequence, encodes a protein of 471 amino acids (aa) with an Mr of 52,006. The first 18 aa fulfilled the criteria for the signal sequence, but lacked positively charged aa residues, except the initiating methionine. The enzyme activity was found exclusively in the cellular fraction of the cultures. The deduced aa sequence was compared to the aa sequences of other alpha Gal enzymes. It showed 83% identity with the S. cerevisiae enzyme, but only 35% with the plant enzyme, 30% with the human enzyme and 17% with the Escherichia coli enzyme. With pulsed-field electrophoresis, the MEL gene was located on chromosome X of S. carlsbergensis, whereas the S. cerevisiae var. uvarum MEL1 gene is located on chromosome II.
Collapse
Affiliation(s)
- H Turakainen
- Department of Genetics, University of Helsinki, Finland
| | | | | |
Collapse
|
38
|
A new family of polymorphic genes in Saccharomyces cerevisiae: alpha-galactosidase genes MEL1-MEL7. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:119-28. [PMID: 1980522 DOI: 10.1007/bf00259458] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using genetic hybridization analysis we identified seven polymorphic genes for the fermentation of melibiose in different Mel+ strains of Saccharomyces cerevisiae. Four laboratory strains (1453-3A, 303-49, N2, C.B.11) contained only the MEL1 gene and a wild strain (VKM Y-1830) had only the MEL2 gene. Another wild strain (CBS 4411) contained five genes: MEL3, MEL4, MEL5, MEL6 and MEL7. MEL3-MEL7 were isolated and identified by backcrosses with Mel- parents (X2180-1A, S288C). A cloned MEL1 gene was used as a probe to investigate the physical structure and chromosomal location of the MEL gene family and to check the segregation of MEL genes from CBS 4411 in six complete tetrads. Restriction and Southern hybridization analyses showed that all seven genes are physically very similar. By electrokaryotyping we found that all seven genes are located on different chromosomes: MEL1 on chromosome II as shown previously by Voll-rath et al. (1988), MEL2 on VII, MEL3 on XVI, MEL4 on XI, MEL5 on IV. MEL6 on XIII, and MEL7 on VI. Molecular analysis of the segregation of MEL genes from strain CBS 4411 gave results identical to those from the genetic analyses. The homology in the physical structure of this MEL gene family suggests that the MEL loci have evolved by transposition of an ancestral gene to specific locations within the genome.
Collapse
|
39
|
Wong TY. Melibiose is hydrolyzed exocellularly by an inducible exo-alpha-galactosidase in Azotobacter vinelandii. Appl Environ Microbiol 1990; 56:2271-3. [PMID: 2167631 PMCID: PMC184599 DOI: 10.1128/aem.56.7.2271-2273.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Azotobacter vinelandii hydrolyzed melibiose exocellularly, leading to an accumulation of free glucose and galactose in the medium. This enzyme could also be induced by galactose, raffinose, and stachyose. The alpha-galactosidase activity could be detected quantitatively by using p-nitrophenyl-alpha-galactopyranoside as a substrate for intact cells. Chloramphenicol totally inhibited the induction of this enzyme. However, benzyl alcohol inhibited the secretion of this enzyme but did not inhibit the biosynthesis of the enzyme.
Collapse
Affiliation(s)
- T Y Wong
- Department of Biology, Memphis State University, Tennessee 38152
| |
Collapse
|
40
|
Zhou KM, Bai YL, Kohlhaw GB. Yeast regulatory protein LEU3: a structure-function analysis. Nucleic Acids Res 1990; 18:291-8. [PMID: 2183176 PMCID: PMC330266 DOI: 10.1093/nar/18.2.291] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eleven mutations resulting in partially deleted or truncated LEU3 protein were generated by linker insertion or other modifications at restriction sites, deletion of restriction fragments, or oligonucleotide-directed mutagenesis. Functional studies of these mutants showed the following: (i) A specific DNA binding region is contained within the 173 N-terminal residues, but other regions of the protein are required for optimal binding. (ii) Activation of LEU2 expression depends on the C-terminal 113 residues of the LEU3 protein. (iii) Deletion of part or all of a central section of LEU3 eliminates the ability of the LEU3 protein to respond to the co-activator alpha-isopropylmalate, i.e. creates an unmodulated activator. (iv) Overproduction of unmodulated activator slows down cell growth. (v) Specific deletion of two short acidic regions, including one with net charge - 19, has only minor effects on activation and modulation.
Collapse
Affiliation(s)
- K M Zhou
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
41
|
Aslanidis C, Schmid K, Schmitt R. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J Bacteriol 1989; 171:6753-63. [PMID: 2556373 PMCID: PMC210573 DOI: 10.1128/jb.171.12.6753-6763.1989] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The plasmid-borne raf operon encodes functions required for inducible uptake and utilization of raffinose by Escherichia coli. Raf functions include active transport (Raf permease), alpha-galactosidase, and sucrose hydrolase, which are negatively controlled by the Raf repressor. We have defined the order and extent of the three structural genes, rafA, rafB, and rafD; these are contained in a 5,284-base-pair nucleotide sequence. By comparisons of derived primary structures with known subunit molecular weights and an N-terminal peptide sequence, rafA was assigned to alpha-galactosidase (708 amino acids), rafB was assigned to Raf permease (425 amino acids), and rafD was assigned to sucrose hydrolase (476 amino acids). Transcription was shown to initiate 13 nucleotides upstream of rafA; a putative promoter, a ribosome-binding site, and a transcription termination signal were identified. Striking similarities between Raf permease and lacY-encoded lactose permease, revealed by high sequence conservation (76%), overlapping substrate specificities, and similar transport kinetics, suggest a common origin of these transport systems. alpha-Galactosidase and sucrose hydrolase are not related to host enzymes but have their counterparts in other species. We propose a modular origin of the raf operon and discuss selective forces that favored the given gene organization also found in the E. coli lac operon.
Collapse
Affiliation(s)
- C Aslanidis
- Lehrstuhl für Genetik, Universität Regensburg, Federal Republic of Germany
| | | | | |
Collapse
|
42
|
|
43
|
Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol 1989. [PMID: 3062381 DOI: 10.1128/mcb.8.8.3439] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GAL3 gene expression is required for rapid GAL4-mediated galactose induction of the galactose-melibiose regulon genes in Saccharomyces cerevisiae. Here we show by Northern (RNA) blot analysis that GAL3 gene expression is itself galactose inducible. Like the GAL1, GAL7, GAL10, and MEL1 genes, the GAL3 gene is severely glucose repressed. Like the MEL1 gene, but in contrast to the GAL1, GAL7, and GAL10 genes, GAL3 is expressed at readily detectable basal levels in cells grown in noninducing, nonrepressing media. We determined the sequence of the S. cerevisiae GAL3 gene and its 5'-noncoding region. Within the 5'-noncoding region of the GAL3 gene, we found two sequences similar to the UASGal elements of the other galactose-melibiose regulon genes. Deletion analysis indicated that only the most ATG proximal of these sequences is required for GAL3 expression. The coding region of GAL3 consists of a 1,275-base-pair open reading frame in the direction of transcription. A comparison of the deduced 425-amino-acid sequence with the protein data bank revealed three regions of striking similarity between the GAL3 protein and the GAL1-specified galactokinase of Saccharomyces carlsbergensis. One of these regions also showed striking similarity to sequences within the galactokinase protein of Escherichia coli. On the basis of these protein sequence similarities, we propose that the GAL3 protein binds a molecule identical to or structurally related to one of the substrates or products of the galactokinase-catalyzed reaction.
Collapse
|
44
|
Nagahora H, Fujisawa H, Jigami Y. Alterations in the cleavage site of the signal sequence for the secretion of human lysozyme by Saccharomyces cerevisiae. FEBS Lett 1988; 238:329-32. [PMID: 3049161 DOI: 10.1016/0014-5793(88)80506-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amino acids corresponding to the cleavage site of a hybrid preprotein containing a chicken lysozyme signal and a mature portion of human lysozyme were altered. The processing of mutant signals of -3Pro and -3Asp/-1Ala decreased remarkably, while that of -2Pro was 75% of that of the native signal. The major cleavage site of -3Pro was the same as that of the native signal, but that of the -2Pro and -3Asp/-1Ala signals was shifted one residue closer to the N-terminal side than the original site. The cleavage of the -2Pro signal, which was identical to the native processing of pheasant prelysozyme, suggested that the signal peptidases in yeast and bird are similar.
Collapse
Affiliation(s)
- H Nagahora
- Bioorganic Chemistry Division, National Chemical Laboratory for Industry, Ibaraki, Japan
| | | | | |
Collapse
|
45
|
Bajwa W, Torchia TE, Hopper JE. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol 1988; 8:3439-47. [PMID: 3062381 PMCID: PMC363581 DOI: 10.1128/mcb.8.8.3439-3447.1988] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GAL3 gene expression is required for rapid GAL4-mediated galactose induction of the galactose-melibiose regulon genes in Saccharomyces cerevisiae. Here we show by Northern (RNA) blot analysis that GAL3 gene expression is itself galactose inducible. Like the GAL1, GAL7, GAL10, and MEL1 genes, the GAL3 gene is severely glucose repressed. Like the MEL1 gene, but in contrast to the GAL1, GAL7, and GAL10 genes, GAL3 is expressed at readily detectable basal levels in cells grown in noninducing, nonrepressing media. We determined the sequence of the S. cerevisiae GAL3 gene and its 5'-noncoding region. Within the 5'-noncoding region of the GAL3 gene, we found two sequences similar to the UASGal elements of the other galactose-melibiose regulon genes. Deletion analysis indicated that only the most ATG proximal of these sequences is required for GAL3 expression. The coding region of GAL3 consists of a 1,275-base-pair open reading frame in the direction of transcription. A comparison of the deduced 425-amino-acid sequence with the protein data bank revealed three regions of striking similarity between the GAL3 protein and the GAL1-specified galactokinase of Saccharomyces carlsbergensis. One of these regions also showed striking similarity to sequences within the galactokinase protein of Escherichia coli. On the basis of these protein sequence similarities, we propose that the GAL3 protein binds a molecule identical to or structurally related to one of the substrates or products of the galactokinase-catalyzed reaction.
Collapse
Affiliation(s)
- W Bajwa
- Department of Biological Chemistry, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | |
Collapse
|
46
|
Wood Hydrolysis by Cellulomonas Fimi Endoglucanase and Exogiucanase Coexpressed as Secreted Enzymes in Saccharomyces Cerevisiae. Nat Biotechnol 1988. [DOI: 10.1038/nbt0688-713] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol 1988. [PMID: 3325823 DOI: 10.1128/mcb.7.12.4390] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRB1 gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, greater than 69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence.
Collapse
|
48
|
|
49
|
|
50
|
Moehle CM, Tizard R, Lemmon SK, Smart J, Jones EW. Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol 1987; 7:4390-9. [PMID: 3325823 PMCID: PMC368122 DOI: 10.1128/mcb.7.12.4390-4399.1987] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRB1 gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, greater than 69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence.
Collapse
Affiliation(s)
- C M Moehle
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | | | | | | | |
Collapse
|