1
|
Mukhopadhyay J, Hausner G. Interconnected roles of fungal nuclear- and intron-encoded maturases: at the crossroads of mitochondrial intron splicing. Biochem Cell Biol 2024; 102:351-372. [PMID: 38833723 DOI: 10.1139/bcb-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Group I and II introns are large catalytic RNAs (ribozymes) that are frequently encountered in fungal mitochondrial genomes. The discovery of respiratory mutants linked to intron splicing defects demonstrated that for the efficient removal of organellar introns there appears to be a requirement of protein splicing factors. These splicing factors can be intron-encoded proteins with maturase activities that usually promote the splicing of the introns that encode them (cis-acting) and/or nuclear-encoded factors that can promote the splicing of a range of different introns (trans-acting). Compared to plants organellar introns, fungal mitochondrial intron splicing is still poorly explored, especially in terms of the synergy of nuclear factors with intron-encoded maturases that has direct impact on splicing through their association with intron RNA. In addition, nuclear-encoded accessory factors might drive the splicing impetus through translational activation, mitoribosome assembly, and phosphorylation-mediated RNA turnover. This review explores protein-assisted splicing of introns by nuclear and mitochondrial-encoded maturases as a means of mitonuclear interplay that could respond to environmental and developmental factors promoting phenotypic adaptation and potentially speciation. It also highlights key evolutionary events that have led to changes in structure and ATP-dependence to accommodate the dual functionality of nuclear and organellar splicing factors.
Collapse
Affiliation(s)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Zamora-Avilés N, Orozco-Flores AA, Cavazos-Vallejo T, Romo-Sáenz CI, Cuevas-García DA, Gomez-Flores R, Tamez-Guerra P. Intra-Phenotypic and -Genotypic Variations of Beauveria bassiana (Bals.) Vuill. Strains Infecting Aedes aegypti L. Adults. Int J Mol Sci 2024; 25:8807. [PMID: 39201493 PMCID: PMC11354911 DOI: 10.3390/ijms25168807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Beauveria bassiana has potential for Aedes aegypti biological control. However, its efficacy depends on the strain's geographic location, host susceptibility, and virulence. The present study aimed to evaluate the effectiveness of B. bassiana strain BBPTG4 conidia in controlling Ae. aegypti adults and its detection via introns profile on exposed mosquito corpses. Morphologic characteristics among strains were highly similar. Comprehensive testing of these strains demonstrated that BBPT4 exhibited the ideal biological activity for Ae. aegypti control, with a median lethal time (TL50) of 7.5 d compared to ~3 d and ~10 d for BB01 and BB37 strains, respectively. Infected mosquitoes died after GHA and BBPTG4 exposure, and corpses were analyzed for infecting strains detection. Differences among the seven evaluated strains were determined, assessing five different insertion group I intron profiles in BBTG4, BB01, GHA, BB37, and BB02 strains. Mosquitoes infected by BBPTG4 and non-exposed (negative control) intron profiles were obtained. We detected the presence of introns in the BBPTG4 strain, which were not present in non-exposed mosquitoes. In conclusion, B. bassiana strains showed similarities in terms of their cultural and microscopic morphological characteristics and biologicals virulence level, but different intron profiles. BBPTG4 strain-infected Ae. aegypti adult corpses, showing specific amplicons, enabled us to identify B. bassiana at the strain level among infected mosquitoes. However, monitoring and detection of field-infected insects is essential for further verification.
Collapse
Affiliation(s)
- Norma Zamora-Avilés
- Departamento Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km 2.5, Tapachula 30700, Mexico;
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Alonso A. Orozco-Flores
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Teodora Cavazos-Vallejo
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - César I. Romo-Sáenz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - David A. Cuevas-García
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Ricardo Gomez-Flores
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| | - Patricia Tamez-Guerra
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (A.A.O.-F.); (T.C.-V.); (C.I.R.-S.); (D.A.C.-G.); (R.G.-F.)
| |
Collapse
|
3
|
Žedaveinytė R, Meers C, Le HC, Mortman EE, Tang S, Lampe GD, Pesari SR, Gelsinger DR, Wiegand T, Sternberg SH. Antagonistic conflict between transposon-encoded introns and guide RNAs. Science 2024; 385:eadm8189. [PMID: 38991068 DOI: 10.1126/science.adm8189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 07/13/2024]
Abstract
TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function as programmable RNA-guided homing endonucleases in bacteria, driving transposon maintenance through DNA double-strand break-stimulated homologous recombination. In this work, we uncovered molecular mechanisms of the transposition life cycle of IS607-family elements that, notably, also encode group I introns. We identified specific features for a candidate "IStron" from Clostridium botulinum that allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts evolved an ability to balance competing and mutually exclusive activities that promote selfish transposon spread while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multifunctional utility of transposon-encoded noncoding RNAs.
Collapse
Affiliation(s)
- Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edan E Mortman
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - George D Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sanjana R Pesari
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Diego R Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Žedaveinytė R, Meers C, Le HC, Mortman EE, Tang S, Lampe GD, Pesari SR, Gelsinger DR, Wiegand T, Sternberg SH. Antagonistic conflict between transposon-encoded introns and guide RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567912. [PMID: 38045383 PMCID: PMC10690162 DOI: 10.1101/2023.11.20.567912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life, presumably due to the critical roles they play in transposon proliferation. IS605family TnpB homologs function in bacteria as programmable homing endonucleases by exploiting transposon-encoded guide RNAs to cleave vacant genomic sites, thereby driving transposon maintenance through DSB-stimulated homologous recombination. Whether this pathway is conserved in other genetic contexts, and in association with other transposases, is unknown. Here we uncover molecular mechanisms of transposition and RNA-guided DNA cleavage by IS607-family elements that, remarkably, also encode catalytic, self-splicing group I introns. After reconstituting and systematically investigating each of these biochemical activities for a candidate 'IStron' derived from Clostridium botulinum, we discovered sequence and structural features of the transposon-encoded RNA that satisfy molecular requirements of a group I intron and TnpB guide RNA, while still retaining the ability to be faithfully mobilized at the DNA level by the TnpA transposase. Strikingly, intron splicing was strongly repressed not only by TnpB, but also by the secondary structure of ωRNA alone, allowing the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts have evolved a sensitive equilibrium to balance competing and mutually exclusive activities that promote transposon maintenance while limiting adverse fitness costs on the host. Collectively, this work explains how diverse enzymatic activities emerged during the selfish spread of IS607-family elements and highlights molecular innovation in the multi-functional utility of transposon-encoded noncoding RNAs.
Collapse
Affiliation(s)
- Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Hoang C. Le
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Edan E. Mortman
- Department of Genetics and Development, Columbia University; New York, NY 10032, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Sanjana R. Pesari
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
- Present address: Biochemistry and Molecular Biophysics Program, University of California, San Diego, CA, USA
| | - Diego R. Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University; New York, NY 10032, USA
| |
Collapse
|
5
|
Staneva D, Vasileva B, Podlesniy P, Miloshev G, Georgieva M. Yeast Chromatin Mutants Reveal Altered mtDNA Copy Number and Impaired Mitochondrial Membrane Potential. J Fungi (Basel) 2023; 9:jof9030329. [PMID: 36983497 PMCID: PMC10058930 DOI: 10.3390/jof9030329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondria are multifunctional, dynamic organelles important for stress response, cell longevity, ageing and death. Although the mitochondrion has its genome, nuclear-encoded proteins are essential in regulating mitochondria biogenesis, morphology, dynamics and function. Moreover, chromatin structure and epigenetic mechanisms govern the accessibility to DNA and control gene transcription, indirectly influencing nucleo-mitochondrial communications. Thus, they exert crucial functions in maintaining proper chromatin structure, cell morphology, gene expression, stress resistance and ageing. Here, we present our studies on the mtDNA copy number in Saccharomyces cerevisiae chromatin mutants and investigate the mitochondrial membrane potential throughout their lifespan. The mutants are arp4 (with a point mutation in the ARP4 gene, coding for actin-related protein 4-Arp4p), hho1Δ (lacking the HHO1 gene, coding for the linker histone H1), and the double mutant arp4 hho1Δ cells with the two mutations. Our findings showed that the three chromatin mutants acquired strain-specific changes in the mtDNA copy number. Furthermore, we detected the disrupted mitochondrial membrane potential in their chronological lifespan. In addition, the expression of nuclear genes responsible for regulating mitochondria biogenesis and turnover was changed. The most pronounced were the alterations found in the double mutant arp4 hho1Δ strain, which appeared as the only petite colony-forming mutant, unable to grow on respiratory substrates and with partial depletion of the mitochondrial genome. The results suggest that in the studied chromatin mutants, hho1Δ, arp4 and arp4 hho1Δ, the nucleus-mitochondria communication was disrupted, leading to impaired mitochondrial function and premature ageing phenotype in these mutants, especially in the double mutant.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar Podlesniy
- CiberNed (Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas), 28029 Barcelona, Spain
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Han S, Ding H, Bi D, Zhang S, Yi R, Gao J, Yang J, Ye Y, Wu L, Kan X. Structural Diversities and Phylogenetic Signals in Plastomes of the Early-Divergent Angiosperms: A Case Study in Saxifragales. PLANTS (BASEL, SWITZERLAND) 2022; 11:3544. [PMID: 36559654 PMCID: PMC9787361 DOI: 10.3390/plants11243544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
As representative of the early-divergent groups of angiosperms, Saxifragales is extremely divergent in morphology, comprising 15 families. Within this order, our previous case studies observed significant structural diversities among the plastomes of several lineages, suggesting a possible role in elucidating their deep phylogenetic relationships. Here, we collected 208 available plastomes from 11 constituent families to explore the evolutionary patterns among Saxifragales. With thorough comparisons, the losses of two genes and three introns were found in several groups. Notably, 432 indel events have been observed from the introns of all 17 plastomic intron-containing genes, which could well play an important role in family barcoding. Moreover, numerous heterogeneities and strong intrafamilial phylogenetic implications were revealed in pttRNA (plastomic tRNA) structures, and the unique structural patterns were also determined for five families. Most importantly, based on the well-supported phylogenetic trees, evident phylogenetic signals were detected in combinations with the identified pttRNAs features and intron indels, demonstrating abundant lineage-specific characteristics for Saxifragales. Collectively, the results reported here could not only provide a deeper understanding into the evolutionary patterns of Saxifragales, but also provide a case study for exploring the plastome evolution at a high taxonomic level of angiosperms.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
7
|
Prince S, Munoz C, Filion-Bienvenue F, Rioux P, Sarrasin M, Lang BF. Refining Mitochondrial Intron Classification With ERPIN: Identification Based on Conservation of Sequence Plus Secondary Structure Motifs. Front Microbiol 2022; 13:866187. [PMID: 35369492 PMCID: PMC8971849 DOI: 10.3389/fmicb.2022.866187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial genomes—in particular those of fungi—often encode genes with a large number of Group I and Group II introns that are conserved at both the sequence and the RNA structure level. They provide a rich resource for the investigation of intron and gene structure, self- and protein-guided splicing mechanisms, and intron evolution. Yet, the degree of sequence conservation of introns is limited, and the primary sequence differs considerably among the distinct intron sub-groups. It makes intron identification, classification, structural modeling, and the inference of gene models a most challenging and error-prone task—frequently passed on to an “expert” for manual intervention. To reduce the need for manual curation of intron structures and mitochondrial gene models, computational methods using ERPIN sequence profiles were initially developed in 2007. Here we present a refinement of search models and alignments using the now abundant publicly available fungal mtDNA sequences. In addition, we have tested in how far members of the originally proposed sub-groups are clearly distinguished and validated by our computational approach. We confirm clearly distinct mitochondrial Group I sub-groups IA1, IA3, IB3, IC1, IC2, and ID. Yet, IB1, IB2, and IB4 ERPIN models are overlapping substantially in predictions, and are therefore combined and reported as IB. We have further explored the conversion of our ERPIN profiles into covariance models (CM). Current limitations and prospects of the CM approach will be discussed.
Collapse
|
8
|
Nawimanage R, Yuan Z, Casares M, Joshi R, Lohman JR, Gimble FS. Structure-function studies of two yeast homing endonucleases that evolved to cleave identical targets with dissimilar rates and specificities. J Mol Biol 2022; 434:167550. [DOI: 10.1016/j.jmb.2022.167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
9
|
Hao W. From Genome Variation to Molecular Mechanisms: What we Have Learned From Yeast Mitochondrial Genomes? Front Microbiol 2022; 13:806575. [PMID: 35126340 PMCID: PMC8811140 DOI: 10.3389/fmicb.2022.806575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Analysis of genome variation provides insights into mechanisms in genome evolution. This is increasingly appreciated with the rapid growth of genomic data. Mitochondrial genomes (mitogenomes) are well known to vary substantially in many genomic aspects, such as genome size, sequence context, nucleotide base composition and substitution rate. Such substantial variation makes mitogenomes an excellent model system to study the mechanisms dictating mitogenome variation. Recent sequencing efforts have not only covered a rich number of yeast species but also generated genomes from abundant strains within the same species. The rich yeast genomic data have enabled detailed investigation from genome variation into molecular mechanisms in genome evolution. This mini-review highlights some recent progresses in yeast mitogenome studies.
Collapse
|
10
|
Xiao J, Tian P, Guo F, Yu S, Wang W, Wang X, Niu W. Characterization of the complete mitochondrial genome of Diploastrea heliopora and phylogeny of the scleractinia species which have group I introns in their COI genes. Saudi J Biol Sci 2021; 28:7054-7060. [PMID: 34867006 PMCID: PMC8626255 DOI: 10.1016/j.sjbs.2021.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/04/2022] Open
Abstract
Mitochondrial genome DNA is a powerful marker for resolving phylogenetic relationships among scleractinian corals. Here, we decode the complete mitochondrial genome of Diploastrea heliopora (Lamarck, 1816) for the first time. The general features are 18 363 bp in length, and conventionally, with 13 protein coding genes, two ribosomal RNAs, and two transfer RNAs. Gene arrangement and distribution are similar to other scleractinian corals. Moreover, the COI gene of D. heliopora is broken up into two parts by a complex group I intron. This intron is 1076 bases in length and contains helical structures (P1-P10, except P2) and four conserved regions (P, Q, R, and S). The mitochondrial genome of D. heliopora has asymmetric base composition (13.03% C, 20.29% G, 25.91% A, and 40.77% for T). Based on concatenated protein coding genes, ML and BI trees show similar phylogenetic relationship: D. heliopora clustered closely with Sclerophyllia maxima and Echinophyllia aspera into the robust branch. The data and conclusion in this study are reference for further phylogenetic studies of corals.
Collapse
Affiliation(s)
- Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Feng Guo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuangen Yu
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaolei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
11
|
Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem Pharmacol 2021; 193:114810. [PMID: 34673012 DOI: 10.1016/j.bcp.2021.114810] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.
Collapse
|
12
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
13
|
Bágeľová Poláková S, Lichtner Ž, Szemes T, Smolejová M, Sulo P. Mitochondrial DNA duplication, recombination, and introgression during interspecific hybridization. Sci Rep 2021; 11:12726. [PMID: 34135414 PMCID: PMC8209160 DOI: 10.1038/s41598-021-92125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
mtDNA recombination events in yeasts are known, but altered mitochondrial genomes were not completed. Therefore, we analyzed recombined mtDNAs in six Saccharomyces cerevisiae × Saccharomyces paradoxus hybrids in detail. Assembled molecules contain mostly segments with variable length introgressed to other mtDNA. All recombination sites are in the vicinity of the mobile elements, introns in cox1, cob genes and free standing ORF1, ORF4. The transplaced regions involve co-converted proximal exon regions. Thus, these selfish elements are beneficial to the host if the mother molecule is challenged with another molecule for transmission to the progeny. They trigger mtDNA recombination ensuring the transfer of adjacent regions, into the progeny of recombinant molecules. The recombination of the large segments may result in mitotically stable duplication of several genes.
Collapse
Affiliation(s)
- Silvia Bágeľová Poláková
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia ,grid.419303.c0000 0001 2180 9405Present Address: Department of Membrane Biochemistry, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, 84005 Slovakia
| | - Žaneta Lichtner
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Tomáš Szemes
- grid.7634.60000000109409708Comenius University Science Park, Bratislava, 841 04 Slovakia ,grid.7634.60000000109409708Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, 842 15 Slovakia ,Geneton s.r.o., Galvaniho 7, Bratislava, 821 04 Slovakia
| | - Martina Smolejová
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Pavol Sulo
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| |
Collapse
|
14
|
Mayers CG, Harrington TC, Wai A, Hausner G. Recent and Ongoing Horizontal Transfer of Mitochondrial Introns Between Two Fungal Tree Pathogens. Front Microbiol 2021; 12:656609. [PMID: 34149643 PMCID: PMC8208691 DOI: 10.3389/fmicb.2021.656609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Two recently introduced fungal plant pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) are responsible for Rapid ‘ōhi‘a Death (ROD) in Hawai‘i. Despite being sexually incompatible, the two pathogens often co-occur in diseased ‘ōhi‘a sapwood, where genetic interaction is possible. We sequenced and annotated 33 mitochondrial genomes of the two pathogens and related species, and investigated 35 total Ceratocystis mitogenomes. Ten mtDNA regions [one group I intron, seven group II introns, and two autonomous homing endonuclease (HE) genes] were heterogeneously present in C. lukuohia mitogenomes, which were otherwise identical. Molecular surveys with specific primers showed that the 10 regions had uneven geographic distribution amongst populations of C. lukuohia. Conversely, identical orthologs of each region were present in every studied isolate of C. huliohia regardless of geographical origin. Close relatives of C. lukuohia lacked or, rarely, had few and dissimilar orthologs of the 10 regions, whereas most relatives of C. huliohia had identical or nearly identical orthologs. Each region included or worked in tandem with HE genes or reverse transcriptase/maturases that could facilitate interspecific horizontal transfers from intron-minus to intron-plus alleles. These results suggest that the 10 regions originated in C. huliohia and are actively moving to populations of C. lukuohia, perhaps through transient cytoplasmic contact of hyphal tips (anastomosis) in the wound surface of ‘ōhi‘a trees. Such contact would allow for the transfer of mitochondria followed by mitochondrial fusion or cytoplasmic exchange of intron intermediaries, which suggests that further genomic interaction may also exist between the two pathogens.
Collapse
Affiliation(s)
- Chase G Mayers
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, Shebek KM, Rosin RR, Simpson SD, Tyo KE, Giannone RJ, Hettich RL, Tschaplinski TJ, Leang C, Brown SD, Jewett MC, Köpke M. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annu Rev Chem Biomol Eng 2021; 12:439-470. [PMID: 33872517 DOI: 10.1146/annurev-chembioeng-120120-021122] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
Collapse
Affiliation(s)
- Nick Fackler
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | | | - Blake J Rasor
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Hunter Brown
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Jacob Martin
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Zhuofu Ni
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Rick R Rosin
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Séan D Simpson
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Keith E Tyo
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | | | - Ching Leang
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Steven D Brown
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , , .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Köpke
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| |
Collapse
|
16
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Cinget B, Bélanger RR. Discovery of new group I-D introns leads to creation of subtypes and link to an adaptive response of the mitochondrial genome in fungi. RNA Biol 2020; 17:1252-1260. [PMID: 32449459 PMCID: PMC7595605 DOI: 10.1080/15476286.2020.1763024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Group I catalytic introns are widespread in bacterial, archaeal, viral, organellar, and some eukaryotic genomes, where they are reported to provide regulatory functions. The group I introns are currently divided into five types (A-E), which are themselves distributed into several subtypes, with the exception of group I type D intron (GI-D). GI-D introns belong to the rarest group with only 17 described to date, including only one with a putative role reported in fungi, where it would interfere with an adaptive response in the cytochrome b (COB) gene to quinone outside inhibitor (QoI) fungicide resistance. Using homology search methods taking into account both conserved sequences and RNA secondary structures, we analysed the mitochondrial genomes or COB genes of 169 fungal species, including some frequently under QoI selection pressure. These analyses have led to the identification of 216 novel GI-D introns, and the definition of three distinct subtypes, one of which being linked with a functional activity. We have further uncovered a homing site for this GI-D intron type, which helps refine the accepted model of quinone outside inhibitor resistance, whereby mobility of the intron across fungal mitochondrial genomes, would influence a fungus ability to develop resistance to QoIs.
Collapse
Affiliation(s)
- Benjamin Cinget
- Département de Phytologie, Faculty of Agriculture and Food Sciences, Centre de Recherche en Innovation des Végétaux (CRIV), Université Laval, Québec, Québec, Canada
| | - Richard R. Bélanger
- Département de Phytologie, Faculty of Agriculture and Food Sciences, Centre de Recherche en Innovation des Végétaux (CRIV), Université Laval, Québec, Québec, Canada
| |
Collapse
|
18
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
19
|
Keepers KG, Pogoda CS, White KH, Anderson Stewart CR, Hoffman JR, Ruiz AM, McCain CM, Lendemer JC, Kane NC, Tripp EA. Whole Genome Shotgun Sequencing Detects Greater Lichen Fungal Diversity Than Amplicon-Based Methods in Environmental Samples. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Ding H, Zhu R, Dong J, Bi D, Jiang L, Zeng J, Huang Q, Liu H, Xu W, Wu L, Kan X. Next-Generation Genome Sequencing of Sedum plumbizincicola Sheds Light on the Structural Evolution of Plastid rRNA Operon and Phylogenetic Implications within Saxifragales. PLANTS (BASEL, SWITZERLAND) 2019; 8:E386. [PMID: 31569538 PMCID: PMC6843225 DOI: 10.3390/plants8100386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023]
Abstract
The genus Sedum, with about 470 recognized species, is classified in the family Crassulaceae of the order Saxifragales. Phylogenetic relationships within the Saxifragales are still unresolved and controversial. In this study, the plastome of S. plumbizincicola was firstly presented, with a focus on the structural analysis of rrn operon and phylogenetic implications within the order Saxifragaceae. The assembled complete plastome of S. plumbizincicola is 149,397 bp in size, with a typical circular, double-stranded, and quadripartite structure of angiosperms. It contains 133 genes, including 85 protein-coding genes (PCGs), 36 tRNA genes, 8 rRNA genes, and four pseudogenes (one ycf1, one rps19, and two ycf15). The predicted secondary structure of S. plumbizincicola 16S rRNA includes three main domains organized in 74 helices. Further, our results confirm that 4.5S rRNA of higher plants is associated with fragmentation of 23S rRNA progenitor. Notably, we also found the sequence of putative rrn5 promoter has some evolutionary implications within the order Saxifragales. Moreover, our phylogenetic analyses suggested that S. plumbizincicola had a closer relationship with S. sarmentosum than S. oryzifolium, and supported the taxonomic revision of Phedimus. Our findings of the present study will be useful for further investigation of the evolution of plastid rRNA operon and phylogenetic relationships within Saxifragales.
Collapse
Affiliation(s)
- Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Jinxiu Dong
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - De Bi
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Qingyu Huang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Huan Liu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| |
Collapse
|
21
|
A Double-Strand Break Does Not Promote Neisseria gonorrhoeae Pilin Antigenic Variation. J Bacteriol 2019; 201:JB.00256-19. [PMID: 30988037 DOI: 10.1128/jb.00256-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/20/2022] Open
Abstract
The major subunit of the type IV pilus (T4p) of Neisseria gonorrhoeae undergoes antigenic variation (AV) dependent on a guanine quadruplex (G4) DNA structure located upstream of the pilin gene. Since the presence of G4 DNA induces genome instability in both eukaryotic and prokaryotic chromosomes, we tested whether a double-strand break (DSB) at the site of the pilE G4 sequence could substitute for G4-directed pilin AV. The G4 motif was replaced by an I-SceI cut site, and the cut site was also introduced to locations near the origin of replication and the terminus. Expression of the I-SceI endonuclease from an irrelevant chromosomal site confirmed that the endonuclease functions to induce double-strand breaks at all three locations. No antigenic variants were detected when the G4 was replaced with the I-SceI cut site, but there was a growth defect from having a DSB in the chromosome, and suppressor mutations that were mainly deletions of the cut site and/or the entire pilE gene accumulated. Thus, the pilE G4 does not act to promote pilin AV by generating a DSB but requires either a different type of break, a nick, or more complex interactions with other factors to stimulate this programmed recombination system.IMPORTANCE Neisseria gonorrhoeae, the causative agent of gonorrhea, possesses a DNA recombination system to change one of its surface-exposed antigens. This recombination system, known as antigenic variation, uses an alternate DNA structure to initiate variation. The guanine quadruplex DNA structure is known to cause nicks or breaks in DNA; however, much remains unknown about how this structure functions in cells. We show that inducing a break by different means does not allow antigenic variation, indicating that the DNA structure may have a more complicated role.
Collapse
|
22
|
Myllys L, Lohtander K, Tehler A. β-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 2019. [DOI: 10.1080/00275514.2001.12063165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Leena Myllys
- Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | - Anders Tehler
- Sektionen för kryptogambotanik, Naturhistoriska riksmuseet, Box 50007, S-104 05 Stockholm, Sweden
| |
Collapse
|
23
|
Dujon B. My route to the intimacy of genomes. FEMS Yeast Res 2019; 19:5371124. [PMID: 30844063 DOI: 10.1093/femsyr/foz023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/12/2022] Open
Abstract
Being invited by a prestigious journal to write the retrospective of one's life is first a great honor, and then a chore when starting to do it. These feelings did not spare me. But trying to recall my past to the best of my memory, I learned how lucky I was to have been born to a generation that witnessed so many scientific discoveries. There is little in common between the genetic courses I taught recently and those that I received more than 50 years ago. Thinking that a tiny bit of this fantastic evolution might come from my accidental encountering with yeasts is a stunning experience. I wish the same for the new generation.
Collapse
Affiliation(s)
- Bernard Dujon
- Department Genomes and Genetics, Institut Pasteur, CNRS (UMR3525) and Sorbonne Université (UFR927), 25 rue du Docteur Roux, Paris F-78724 , France
| |
Collapse
|
24
|
Zolotarev N, Georgiev P, Maksimenko O. Removal of extra sequences with I-SceI in combination with CRISPR/Cas9 technique for precise gene editing in Drosophila. Biotechniques 2019; 66:198-201. [DOI: 10.2144/btn-2018-0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The CRISPR/Cas9 system has recently emerged as a powerful tool for functional genomic studies and has been adopted for many organisms, including Drosophila. Previously, an efficient two-step strategy was developed to engineer the fly genome by combining CRISPR/Cas9 with recombinase-mediated cassette exchange (RMCE). This strategy allows the introduction of designed mutations into a gene of interest in vivo. However, the loxP or frt site remains in the edited locus. Here, we propose a modification of this approach for rapid and efficient seamless genome editing with CRISPR/Cas9 and site-specific recombinase-mediated integration (SSRMI) combined with recombination between homologous sequences induced by the rare-cutting endonuclease I-SceI. The induced homological recombination leads to the removal of the remaining extraneous sequences from the target locus.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Group of Molecular Organization of Genome, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| |
Collapse
|
25
|
Wai A, Shen C, Carta A, Dansen A, Crous PW, Hausner G. Intron-encoded ribosomal proteins and N-acetyltransferases within the mitochondrial genomes of fungi: here today, gone tomorrow? Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:573-584. [DOI: 10.1080/24701394.2019.1580272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Chen Shen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrell Carta
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alexandra Dansen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Pedro W. Crous
- The Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, The Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
26
|
Fang X, Jiang Y, Li K, Zeng Q. F-CphI represents a new homing endonuclease family using the Endo VII catalytic motif. Mob DNA 2018; 9:27. [PMID: 30100927 PMCID: PMC6083498 DOI: 10.1186/s13100-018-0132-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Background There are six known families of homing endonucleases, LAGLIDADG, GIY-YIG, HNH, His-Cys box, PD-(D/E)-XK, and EDxHD, which are characterized by their conserved residues. Previously, we discovered a novel homing endonuclease F-CphI encoded by ORF177 of cyanophage S-PM2. F-CphI does not resemble any characterized homing endonucleases. Instead, the C-terminus of F-CphI aligns well with the N-terminal catalytic domain of a Holliday junction DNA resolvase, phage T4 endonuclease VII (Endo VII). Results A PSI-BLAST search resulted in a total of 313 Endo VII motif–containing sequences in sequenced genomes. Multiple sequence alignment showed that the catalytically important residues of T4 Endo VII were all well conserved in these proteins. Our site-directed mutagenesis studies further confirmed that the catalytically important residues of T4 Endo VII were also essential for F-CphI activity, and thus F-CphI might use a similar protein fold as Endo VII for DNA cleavage. A phylogenetic tree of the Endo VII motif–containing sequences showed that putative resolvases grouped into one clade while putative homing endonucleases and restriction endonucleases grouped into another clade. Conclusions Based on the unique conserved residues, we proposed that F-CphI represents a new homing endonuclease family, which was named the DHHRN family. Our phylogenetic analysis could be used to predict the functions of many previously unknown proteins. Electronic supplementary material The online version of this article (10.1186/s13100-018-0132-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoting Fang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - YongLiang Jiang
- 2School of Life Sciences, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Kim Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
27
|
Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet 2018; 65:17-28. [DOI: 10.1007/s00294-018-0865-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
|
28
|
Abboud TG, Zubaer A, Wai A, Hausner G. The complete mitochondrial genome of the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. Can J Microbiol 2018; 64:339-348. [DOI: 10.1139/cjm-2017-0605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ophiostoma novo-ulmi, a member of the Ophiostomatales (Ascomycota), is the causal agent of the current Dutch elm disease pandemic in Europe and North America. The complete mitochondrial genome (mtDNA) of Ophiostoma novo-ulmi subsp. novo-ulmi, the European component of O. novo-ulmi, has been sequenced and annotated. Gene order (synteny) among the currently available members of the Ophiostomatales was examined and appears to be conserved, and mtDNA size variability among the Ophiostomatales is due in part to the presence of introns and their encoded open reading frames. Phylogenetic analysis of concatenated mitochondrial protein-coding genes yielded phylogenetic estimates for various members of the Ophiostomatales, with strong statistical support showing that mtDNA analysis may provide valuable insights into the evolution of the Ophiostomatales.
Collapse
Affiliation(s)
- Talal George Abboud
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
29
|
Rudan M, Bou Dib P, Musa M, Kanunnikau M, Sobočanec S, Rueda D, Warnecke T, Kriško A. Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing. eLife 2018; 7:35330. [PMID: 29570052 PMCID: PMC5898908 DOI: 10.7554/elife.35330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Self-splicing introns are mobile elements that have invaded a number of highly conserved genes in prokaryotic and organellar genomes. Here, we show that deletion of these selfish elements from the Saccharomyces cerevisiae mitochondrial genome is stressful to the host. A strain without mitochondrial introns displays hallmarks of the retrograde response, with altered mitochondrial morphology, gene expression and metabolism impacting growth and lifespan. Deletion of the complete suite of mitochondrial introns is phenocopied by overexpression of the splicing factor Mss116. We show that, in both cases, abnormally efficient transcript maturation results in excess levels of mature cob and cox1 host mRNA. Thus, inefficient splicing has become an integral part of normal mitochondrial gene expression. We propose that the persistence of S. cerevisiae self-splicing introns has been facilitated by an evolutionary lock-in event, where the host genome adapted to primordial invasion in a way that incidentally rendered subsequent intron loss deleterious.
Collapse
Affiliation(s)
- Marina Rudan
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Peter Bou Dib
- Institut für Zellbiochemie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | | | - Sandra Sobočanec
- Division of Molecular Medicine, Rudjer Boškovic Institute, Bijenička, Zagreb, Croatia
| | - David Rueda
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Molecular Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anita Kriško
- Mediterranean Institute for Life Sciences, Split, Croatia
| |
Collapse
|
30
|
Abstract
Drive is a process of accelerated inheritance from one generation to the next that allows some genes to spread rapidly through populations even if they do not contribute to-or indeed even if they detract from-organismal survival and reproduction. Genetic elements that can spread by drive include gametic and zygotic killers, meiotic drivers, homing endonuclease genes, B chromosomes, and transposable elements. The fact that gene drive can lead to the spread of fitness-reducing traits (including lethality and sterility) makes it an attractive process to consider exploiting to control disease vectors and other pests. There are a number of efforts to develop synthetic gene drive systems, particularly focused on the mosquito-borne diseases that continue to plague us.
Collapse
Affiliation(s)
- Austin Burt
- Life Sciences, Imperial College, Silwood Park, Ascot, SL5
7PY, United Kingdom
| | - Andrea Crisanti
- Life Sciences, Imperial College, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
31
|
Del Hoyo A, Álvarez R, Gasulla F, Casano LM, Del Campo EM. Origin and evolution of chloroplast group I introns in lichen algae. JOURNAL OF PHYCOLOGY 2018; 54:66-78. [PMID: 29057470 DOI: 10.1111/jpy.12600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
The history of group I introns is characterized by repeated horizontal transfers, even among phylogenetically distant species. The symbiogenetic thalli of lichens are good candidates for the horizontal transfer of genetic material among distantly related organisms, such as fungi and green algae. The main goal of this study was to determine whether there were different trends in intron distribution and properties among Chlorophyte algae based on their phylogenetic relationships and living conditions. Therefore, we investigated the occurrence, distribution and properties of group I introns within the chloroplast LSU rDNA in 87 Chlorophyte algae including lichen and free-living Trebouxiophyceae compared to free-living non-Trebouxiophyceae species. Overall, our findings showed that there was high diversity of group I introns and homing endonucleases (HEs) between Trebouxiophyceae and non-Trebouxiophyceae Chlorophyte algae, with divergence in their distribution patterns, frequencies and properties. However, the differences between lichen Trebouxiophyceae and free-living Trebouxiophyceae were smaller. An exception was the cL2449 intron, which was closely related to ω elements in yeasts. Such introns seem to occur more frequently in lichen Trebouxiophyceae compared to free-living Trebouxiophyceae. Our data suggest that lichenization and maintenance of lichen symbiosis for millions of years of evolution may have facilitated horizontal transfers of specific introns/HEs between symbionts. The data also suggest that sequencing of more chloroplast genes harboring group I introns in diverse algal groups may help us to understand the group I intron/HE transmission process within these organisms.
Collapse
Affiliation(s)
- Alicia Del Hoyo
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Raquel Álvarez
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Francisco Gasulla
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Leonardo Mario Casano
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Eva María Del Campo
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
32
|
Mohanta TK, Syed AS, Ameen F, Bae H. Novel Genomic and Evolutionary Perspective of Cyanobacterial tRNAs. Front Genet 2017; 8:200. [PMID: 29321793 PMCID: PMC5733544 DOI: 10.3389/fgene.2017.00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/21/2017] [Indexed: 11/30/2022] Open
Abstract
Transfer RNA (tRNA) plays a central role in protein synthesis and acts as an adaptor molecule between an mRNA and an amino acid. A tRNA has an L-shaped clover leaf-like structure and contains an acceptor arm, D-arm, D-loop, anti-codon arm, anti-codon loop, variable loop, Ψ-arm and Ψ-loop. All of these arms and loops are important in protein translation. Here, we aimed to delineate the genomic architecture of these arms and loops in cyanobacterial tRNA. Studies from tRNA sequences from 61 cyanobacterial species showed that, except for few tRNAs (tRNAAsn, tRNALeu, tRNAGln, and tRNAMet), all contained a G nucleotide at the 1st position in the acceptor arm. tRNALeu and tRNAMet did not contain any conserved nucleotides at the 1st position whereas tRNAAsn and tRNAGln contained a conserved U1 nucleotide. In several tRNA families, the variable region also contained conserved nucleotides. Except for tRNAMet and tRNAGlu, all other tRNAs contained a conserved A nucleotide at the 1st position in the D-loop. The Ψ-loop contained a conserved U1-U2-C3-x-A5-x-U7 sequence, except for tRNAGly, tRNAAla, tRNAVal, tRNAPhe, tRNAThr, and tRNAGln in which the U7 nucleotide was not conserved. However, in tRNAAsp, the U7 nucleotide was substituted with a C7 nucleotide. Additionally, tRNAArg, tRNAGly, and tRNALys of cyanobacteria contained a group I intron within the anti-codon loop region. Maximum composite likelihood study on the transition/transversion of cyanobacterial tRNA revealed that the rate of transition was higher than the rate of transversion. An evolutionary tree was constructed to understand the evolution of cyanobacterial tRNA and analyses revealed that cyanobacterial tRNA may have evolved polyphyletically with high rate of gene loss.
Collapse
Affiliation(s)
- Tapan K Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Asad S Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
33
|
Guha TK, Wai A, Mullineux ST, Hausner G. The intron landscape of the mtDNA cytb gene among the Ascomycota: introns and intron-encoded open reading frames. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:1015-1024. [DOI: 10.1080/24701394.2017.1404042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tuhin K. Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
34
|
Abstract
In this issue of Structure, Lambert et al. (2016) describe extensive structural and functional work on meganucleases, the group of homing endonucleases most commonly adapted to genome engineering applications. The data are of interest to structural biologists, evolutionary biologists, protein designers, and genome engineers.
Collapse
Affiliation(s)
- Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
35
|
Downie SR, Olmstead RG, Zurawski G, Soltis DE, Soltis PS, Watson JC, Palmer JD. SIX INDEPENDENT LOSSES OF THE CHLOROPLAST DNA rpl2 INTRON IN DICOTYLEDONS: MOLECULAR AND PHYLOGENETIC IMPLICATIONS. Evolution 2017; 45:1245-1259. [PMID: 28564183 DOI: 10.1111/j.1558-5646.1991.tb04390.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1990] [Accepted: 12/20/1990] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that in several angiosperms and the liverwort Marchantia the chloroplast gene rpl2, encoding ribosomal protein L2, is interrupted by an intron, but that in spinach (Spinacia oleracea, Caryophyllales) this intron has been lost. We have determined the distribution of the rpl2 intron for 390 species representing 116 angiosperm families. Filter hybridizations reveal that the intron is absent from the chloroplast genomes of all examined families of the Caryophyllales, suggesting that the intron was lost in the common ancestor of the order. Sequencing of the rpl2 gene in five genera of the Caryophyllales and in Rumex (Polygonales) not only confirms the filter hybridization results, but also shows that for all taxa lacking the intron, the rpl2 gene has undergone a precise deletion of the intron. In all cases, it is the original rpl2 gene that has sustained loss of its intron. This implies that in chloroplast DNA, integration of exogenous genes (e.g., a reverse transcript of a spliced mRNA) occurs mainly by homologous, replacement recombination, rather than by illegitimate recombination elsewhere in the genome. Filter hybridizations also reveal that the rpl2 intron was lost independently in the common ancestors of at least five other lineages of dicotyledons: Saxifragaceae (s.s.), Convolvulaceae (including Cuscuta), Menyanthaceae, two genera of Geraniaceae, and one genus of Droseraceae. The molecular and phylogenetic implications of these independent intron losses are discussed.
Collapse
Affiliation(s)
- Stephen R Downie
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Gerard Zurawski
- Department of Molecular Biology, DNAX Research Institute, 901 California Avenue, Palo Alto, CA, 94304, USA
| | - Douglas E Soltis
- Department of Botany, Washington State University, Pullman, WA, 99164, USA
| | - Pamela S Soltis
- Department of Botany, Washington State University, Pullman, WA, 99164, USA
| | - John C Watson
- Department of Botany, University of Maryland, College Park, MD, 20742, USA
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
36
|
Loss and Gain of Group I Introns in the Mitochondrial Cox1 Gene of the Scleractinia (Cnidaria; Anthozoa). Zool Stud 2017; 56:e9. [PMID: 31966208 DOI: 10.6620/zs.2017.56-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 01/21/2023]
Abstract
Yaoyang Chuang, Marcelo Kitahara, Hironobu Fukami, Dianne Tracey, David J. Miller, and Chaolun Allen Chen (2017) Group I introns encoding a homing endonuclease gene (HEG) that is potentially capable of sponsoring mobility are present in the cytochrome oxidase subunit 1 (cox1) gene of some Hexacorallia, including a number of scleractinians assigned to the "robust" coral clade. In an e ort to infer the evolutionary history of this cox1 group I intron, DNA sequences were determined for 12 representative "basal" and "complex" corals and for 11 members of the Corallimorpharia, a sister order of the Scleractinia. Comparisons of insertion sites, secondary structures, and amino acid sequences of the HEG implied a common origin for cox1 introns of corallimorpharians, and basal and complex corals, but cox1 introns of robust corals were highly divergent, most likely reflecting independent acquisition. Phylogenetic analyses with a calibrated molecular clock suggested that cox1 introns of scleractinians and corallimorpharians have persisted at the same insertion site as that in the common ancestor 552 million years ago (mya). This ancestral intron was probably lost in complex corals around 213 to 190 mya at the junction between the Trassic and Jurassic. The coral cox1 gene remained intronless until new introns, probably from sponges or fungi, reinvaded different positions of the cox1 gene in robust corals around 135 mya in the Cretaceous, and then it subsequently began to lose them around 65.5 mya in some robust coral lineages coincident with the later Maastrichtian extinction at the Cretaceous-Tertiary boundary.
Collapse
|
37
|
Bilto IM, Guha TK, Wai A, Hausner G. Three new active members of the I-OnuI family of homing endonucleases. Can J Microbiol 2017; 63:671-681. [PMID: 28414922 DOI: 10.1139/cjm-2017-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vitro characterization of 3 LAGLIDADG-type homing endonucleases (HEs) (I-CcaI, I-CcaII, and I-AstI) that belong to the I-OnuI family showed that they are functional HEs that cleave their respective cognate target sites. These endonucleases are encoded within group ID introns and appear to be orthologues that have inserted into 3 different mitochondrial genes: rns, rnl, and cox3. The endonuclease activity of I-CcaI was tested using various substrates, and its minimum DNA recognition sequence was estimated to be 26 nt. This set of HEs may provide some insight into how these types of mobile elements can migrate into new locations. This study provides additional endonucleases that can be added to the catalog of currently available HEs that may have various biotechnology applications.
Collapse
Affiliation(s)
- Iman M Bilto
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tuhin K Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
38
|
Zhou QM, Guo SY, Huang MR, Wei JC. A study of the genetic variability ofRhizoplaca chrysoleucausing DNA sequences and secondary metabolic substances. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Jiang-Chun Wei
- Systematic Mycology & Lichenology Laboratory, Institute of Microbiology, Academia Sinica, Bei-yi-tiao No. 13, Zhong-guan-cun, Beijing, 100080, P.R. China
| |
Collapse
|
39
|
Skliros D, Kalatzis PG, Katharios P, Flemetakis E. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell. Front Microbiol 2016; 7:1807. [PMID: 27895630 PMCID: PMC5107563 DOI: 10.3389/fmicb.2016.01807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage–host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the “schizoT4like” clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| | - Panos G Kalatzis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HeraklionCrete, Greece; Marine Biological Section, University of CopenhagenHelsingør, Denmark
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion Crete, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| |
Collapse
|
40
|
Grottesi A, Cecconi S, Molina R, D'abramo M. Effect of DNA on the conformational dynamics of the endonucleases I-DmoI as provided by molecular dynamics simulations. Biopolymers 2016; 105:898-904. [DOI: 10.1002/bip.22933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Alessandro Grottesi
- SuperComputing Applications and Innovations; CINECA; via dei Tizii 6 Rome 00185 Italy
| | - Simone Cecconi
- Department of Chemistry; Sapienza University of Rome; P.le A. Moro, 5 Rome 00185 Italy
| | - Rafael Molina
- Department of Crystallography and Structural Biology; Inst. Química-Física “Rocasolano”, CSIC; Serrano 119 Madrid 28006 Spain
| | - Marco D'abramo
- Department of Chemistry; Sapienza University of Rome; P.le A. Moro, 5 Rome 00185 Italy
| |
Collapse
|
41
|
Bilto IM, Hausner G. The diversity of mtDNA rns introns among strains of Ophiostoma piliferum, Ophiostoma pluriannulatum and related species. SPRINGERPLUS 2016; 5:1408. [PMID: 27610327 PMCID: PMC4995192 DOI: 10.1186/s40064-016-3076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 02/08/2023]
Abstract
Background Based on previous studies, it was suspected that the mitochondrial rns gene within the Ophiostomatales is rich in introns. This study focused on a collection of strains representing Ophiostoma piliferum, Ophiostoma pluriannulatum and related species that cause blue-stain; these fungi colonize the sapwood of trees and impart a dark stain. This reduces the value of the lumber. The goal was to examine the mtDNA rns intron landscape for these important blue stain fungi in order to facilitate future annotation of mitochondrial genomes (mtDNA) and to potentially identify mtDNA introns that can encode homing endonucleases which may have applications in biotechnology. Results Comparative sequence analysis identified five intron insertion sites among the ophiostomatoid fungi examined. Positions mS379 and mS952 harbor group II introns, the mS379 intron encodes a reverse transcriptase, and the mS952 intron encodes a potential homing endonuclease. Positions mS569, mS1224, and mS1247 have group I introns inserted and these encode intact or eroded homing endonuclease open reading frames (ORF). Phylogenetic analysis of the intron ORFs showed that they can be found in the same insertion site in closely and distantly related species. Conclusions Based on the molecular markers examined (rDNA internal transcribed spacers and rns introns), strains representing O. pilifera, O. pluriannulatum and Ophiostoma novae-zelandiae could not be resolved. Phylogenetic studies suggest that introns are gained and lost and that horizontal transfer could explain the presence of related intron in distantly related fungi. With regard to the mS379 group II intron, this study shows that mitochondrial group II introns and their reverse transcriptases may also follow the life cycle previously proposed for group I introns and their homing endonucleases. This consists of intron invasion, decay of intron ORF, loss of intron, and possible reinvasion. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-3076-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iman M Bilto
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
42
|
Warrier I, Walter MC, Frangoulidis D, Raghavan R, Hicks LD, Minnick MF. The Intervening Sequence of Coxiella burnetii: Characterization and Evolution. Front Cell Infect Microbiol 2016; 6:83. [PMID: 27595093 PMCID: PMC4990558 DOI: 10.3389/fcimb.2016.00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022] Open
Abstract
The intervening sequence (IVS) of Coxiella burnetii, the agent of Q fever, is a 428-nt selfish genetic element located in helix 45 of the precursor 23S rRNA. The IVS element, in turn, contains an ORF that encodes a hypothetical ribosomal S23 protein (S23p). Although S23p can be synthesized in vitro in the presence of an engineered E. coli promoter and ribosome binding site, results suggest that the protein is not synthesized in vivo. In spite of a high degree of IVS conservation among different strains of C. burnetii, the region immediately upstream of the S23p start codon is prone to change, and the S23p-encoding ORF is evidently undergoing reductive evolution. We determined that IVS excision from 23S rRNA was mediated by RNase III, and IVS RNA was rapidly degraded, thereafter. Levels of the resulting 23S rRNA fragments that flank the IVS, F1 (~1.2 kb) and F2 (~1.7 kb), were quantified over C. burnetii's logarithmic growth phase (1–5 d). Results showed that 23S F1 quantities were consistently higher than those of F2 and 16S rRNA. The disparity between levels of the two 23S rRNA fragments following excision of IVS is an interesting phenomenon of unknown significance. Based upon phylogenetic analyses, IVS was acquired through horizontal transfer after C. burnetii's divergence from an ancestral bacterium and has been subsequently maintained by vertical transfer. The widespread occurrence, maintenance and conservation of the IVS in C. burnetii imply that it plays an adaptive role or has a neutral effect on fitness.
Collapse
Affiliation(s)
- Indu Warrier
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana Missoula, MT, USA
| | | | | | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | - Linda D Hicks
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana Missoula, MT, USA
| | - Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana Missoula, MT, USA
| |
Collapse
|
43
|
Gu C, Tembrock LR, Johnson NG, Simmons MP, Wu Z. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae). PLoS One 2016; 11:e0150752. [PMID: 26950701 PMCID: PMC4780714 DOI: 10.1371/journal.pone.0150752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022] Open
Abstract
Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications.
Collapse
Affiliation(s)
- Cuihua Gu
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, P.R. China
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Luke R. Tembrock
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Nels G. Johnson
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, 37996, Tennessee, United States of America
| | - Mark P. Simmons
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| |
Collapse
|
44
|
Monachello D, Michel F, Costa M. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron. RNA (NEW YORK, N.Y.) 2016; 22:443-455. [PMID: 26769855 PMCID: PMC4748821 DOI: 10.1261/rna.054643.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
When assayed in vitro, group IIC self-splicing introns, which target bacterial Rho-independent transcription terminators, generally fail to yield branched products during splicing despite their possessing a seemingly normal branchpoint. Starting with intron O.i.I1 from Oceanobacillus iheyensis, whose crystallographically determined structure lacks branchpoint-containing domain VI, we attempted to determine what makes this intron unfit for in vitro branch formation. A major factor was found to be the length of the helix at the base of domain VI: 4 base pairs (bp) are required for efficient branching, even though a majority of group IIC introns have a 3-bp helix. Equally important for lariat formation is the removal of interactions between ribozyme domains II and VI, which are specific to the second step of splicing. Conversely, mismatching of domain VI and its proposed first-step receptor in subdomain IC1 was found to be detrimental; these data suggest that the intron-encoded protein may promote branch formation partly by modulating the equilibrium between conformations specific to the first and second steps of splicing. As a practical application, we show that by making just two changes to the O.i.I1 ribozyme, it is possible to generate sufficient amounts of lariat intron for the latter to be purified and used in kinetic assays in which folding and reaction are uncoupled.
Collapse
Affiliation(s)
- Dario Monachello
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 - CNRS, CEA, University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - François Michel
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 - CNRS, CEA, University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Maria Costa
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 - CNRS, CEA, University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
45
|
Guha TK, Hausner G. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease. PLoS One 2016; 11:e0150097. [PMID: 26909494 PMCID: PMC4801052 DOI: 10.1371/journal.pone.0150097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/09/2016] [Indexed: 01/09/2023] Open
Abstract
In Chaetomium thermophilum (DSM 1495) within the mitochondrial DNA (mtDNA) small ribosomal subunit (rns) gene a group IIA1 intron interrupts an open reading frame (ORF) encoded within a group I intron (mS1247). This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase). Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo) in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2) stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2) to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
46
|
Kolondra A, Labedzka-Dmoch K, Wenda JM, Drzewicka K, Golik P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics 2015; 16:827. [PMID: 26487099 PMCID: PMC4618339 DOI: 10.1186/s12864-015-2078-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. Methods We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. Results The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2–3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. Conclusions The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as “booster” promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2078-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Katarzyna Drzewicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Pawel Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
47
|
Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0230-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Hu MJ, Grabke A, Dowling ME, Holstein HJ, Schnabel G. Resistance in Colletotrichum siamense From Peach and Blueberry to Thiophanate-Methyl and Azoxystrobin. PLANT DISEASE 2015; 99:806-814. [PMID: 30699530 DOI: 10.1094/pdis-10-14-1077-re] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Anthracnose fruit rot was observed in some late-season peach cultivars in South Carolina in the 2012 and 2013 production seasons as well as increased anthracnose leaf spot of blueberry in a commercial operation of the same state in 2012. Single-spore isolates of Colletotrichum siamense were either sensitive or resistant to both thiophanate-methyl and azoxystrobin with the concentration of the fungicide at which fungal development is inhibited by 50% of ≥100 μg/ml. Resistant isolates revealed the E198A mutation in β-tubulin and the G143A mutation in cytochrome b. Nucleotide sequence analysis of the complete CYTB gene from genomic DNA of C. siamense isolates revealed an intronless genotype (CsI) and a genotype revealing two introns (CsII) at amino acid positions 131 and 164. Resistance to thiophanate-methyl or azoxystrobin was not found in isolates of C. fructicola collected from peach fruit. The CYTB gene of isolates of this species was of the CfII genotype or revealed a unique CfIIa genotype. Phylogenetic analysis of C. siamense isolates from different locations and different crops showed that the resistant isolates were genetically closer to each other than to sensitive isolates, suggesting that field resistance to thiophanate-methyl and azoxystrobin fungicides is derived from a common ancestor.
Collapse
Affiliation(s)
- Meng-Jun Hu
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Anja Grabke
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Madeline E Dowling
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Helen J Holstein
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Guido Schnabel
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
49
|
Freel KC, Friedrich A, Schacherer J. Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Res 2015; 15:fov023. [PMID: 25969454 DOI: 10.1093/femsyr/fov023] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are important organelles that harbor their own genomes encoding a key set of proteins that ensure respiration and provide the eukaryotic cell with energy. Recent advances in high-throughput sequencing technologies present a unique opportunity to explore mitochondrial (mt) genome evolution. The Saccharomycotina yeasts have proven to be the leading organisms for mt comparative and population genomics. In fact, the explosion of complete yeast mt genome sequences has allowed for a broader view of the mt diversity across this incredibly diverse subphylum, both within and between closely related species. Here, we summarize the present state of yeast mitogenomics, including the currently available data and what it reveals concerning the diversity of content, organization, structure and evolution of mt genomes.
Collapse
Affiliation(s)
- Kelle C Freel
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Anne Friedrich
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| |
Collapse
|
50
|
Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin. Trends Genet 2015; 31:187-94. [PMID: 25795412 DOI: 10.1016/j.tig.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/03/2023]
Abstract
Programmed translational bypassing enables ribosomes to 'ignore' a precise mRNA interval of several dozen nucleotides. Well-characterized bypassed sequences include hop and byp elements, present in bacteriophage T4 and mitochondria of the yeast Magnusiomyces capitatus, respectively. The bypassing mechanism of byps is probably similar to that of hop, yet the former appears more effective and less constrained as to sequence context. Furthermore, both elements are mobile but hop moves as part of a cassette including a homing endonuclease, whereas byps seem to spread like miniature DNA transposable elements known as GC clusters. Here, we argue that hop and byps arose independently by convergent evolution, and that byps evolved in magnusiomycete mitochondria due to (as yet unknown) alterations of the mitochondrial translation machinery.
Collapse
|