1
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Cho JS, Oh HJ, Jang YE, Kim HJ, Kim A, Song J, Lee EJ, Lee J. Synthetic pro-peptide design to enhance the secretion of heterologous proteins by Saccharomyces cerevisiae. Microbiologyopen 2022; 11:e1300. [PMID: 35765186 PMCID: PMC9178654 DOI: 10.1002/mbo3.1300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Heterologous protein production in Saccharomyces cerevisiae is a useful and effective strategy with many advantages, including the secretion of proteins that require posttranslational processing. However, heterologous proteins in S. cerevisiae are often secreted at comparatively low levels. To improve the production of the heterologous protein, human granulocyte colony-stimulating factor (hG-CSF) in S. cerevisiae, a secretion-enhancing peptide cassette including an hIL-1β-derived pro-peptide, was added and used as a secretion enhancer to alleviate specific bottlenecks in the yeast secretory pathway. The effects of three key parameters-N-glycosylation, net negative charge balance, and glycine-rich flexible linker-were investigated in batch cultures of S. cerevisiae. Using a three-stage design involving screening, selection, and optimization, the production and secretion of hG-CSF by S. cerevisiae were significantly increased. The amount of extracellular mature hG-CSF produced by the optimized pro-peptide after the final stage increased by 190% compared to that of the original pro-peptide. Although hG-CSF was used as the model protein in the current study, this strategy is applicable to the enhanced production of other heterologous proteins, using S. cerevisiae as the host.
Collapse
Affiliation(s)
- Ji Sung Cho
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Hye Ji Oh
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Young Eun Jang
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Hyun Jin Kim
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Areum Kim
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Jong‐Am Song
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical EngineeringKyungpook National UniversityDaeguKorea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| |
Collapse
|
3
|
Das PK, Sahoo A, Dasu VV. Current status, and the developments of hosts and expression systems for the production of recombinant human cytokines. Biotechnol Adv 2022; 59:107969. [PMID: 35525478 DOI: 10.1016/j.biotechadv.2022.107969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
Cytokines consist of peptides, proteins and glycoproteins, which are biological signaling molecules, and boost cell-cell communication in immune reactions to stimulate cellular movements in the place of trauma, inflammation and infection. Recombinant cytokines are designed in such a way that they have generalized immunostimulation action or stimulate specific immune cells when the body encounters immunosuppressive signals from exogenous pathogens or other tumor microenvironments. Recombinant cytokines have improved the treatment processes for numerous diseases. They are also beneficial against novel toxicities that arise due to pharmacologic immunostimulators that lead to an imbalance in the regulation of cytokine. So, the production and use of recombinant human cytokines as therapeutic proteins are significant for medical treatment purposes. For the improved production of recombinant human cytokines, the development of host cells such as bacteria, yeast, fungi, insect, mammal and transgenic plants, and the specific expression systems for individual hosts is necessary. The recent advancements in the field of genetic engineering are beneficial for easy and efficient genetic manipulations for hosts as well as expression cassettes. The use of metabolic engineering and systems biology approaches have tremendous applications in recombinant protein production by generating mathematical models, and analyzing complex biological networks and metabolic pathways via simulations to understand the interconnections between metabolites and genetic behaviors. Further, the bioprocess developments and the optimization of cell culture conditions would enhance recombinant cytokines productivity on large scales.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Kuduğ Ceylan H, Erden Tayhan S, Gökçe İ. Secretory Expression of Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis and Characterization of Its Biological Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10227-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
6
|
Lee J, Ye Y. The Roles of Endo-Lysosomes in Unconventional Protein Secretion. Cells 2018; 7:cells7110198. [PMID: 30400277 PMCID: PMC6262434 DOI: 10.3390/cells7110198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Protein secretion in general depends on signal sequence (also named leader sequence), a hydrophobic segment located at or close to the NH2-terminus of a secretory or membrane protein. This sequence guides the entry of nascent polypeptides into the lumen or membranes of the endoplasmic reticulum (ER) for folding, assembly, and export. However, evidence accumulated in recent years has suggested the existence of a collection of unconventional protein secretion (UPS) mechanisms that are independent of the canonical vesicular trafficking route between the ER and the plasma membrane (PM). These UPS mechanisms export soluble proteins bearing no signal sequence. The list of UPS cargos is rapidly expanding, along with the implicated biological functions, but molecular mechanisms accountable for the secretion of leaderless proteins are still poorly defined. This review summarizes our current understanding of UPS mechanisms with an emphasis on the emerging role of endo-lysosomes in this process.
Collapse
Affiliation(s)
- Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Pandey R, Kumar N, Prabhu AA, Veeranki VD. Application of medium optimization tools for improving recombinant human interferon gamma production from Kluyveromyces lactis. Prep Biochem Biotechnol 2018; 48:279-287. [DOI: 10.1080/10826068.2018.1425714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rajat Pandey
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Nitin Kumar
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashish A. Prabhu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
8
|
Pandey R, Veeranki VD. Optimizing secretory expression of recombinant human interferon gamma from Kluyveromyces lactis. Prep Biochem Biotechnol 2018; 48:202-212. [DOI: 10.1080/10826068.2018.1425706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rajat Pandey
- Biochemical Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
9
|
Cardarelli S, Giorgi M, Naro F, Malatesta F, Biagioni S, Saliola M. Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis. Microb Cell Fact 2017; 16:159. [PMID: 28938916 PMCID: PMC5610471 DOI: 10.1186/s12934-017-0779-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. RESULTS Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying Km, Vmax and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. CONCLUSIONS To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic, and Orthopaedic Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Francesco Malatesta
- Department of Biochemical Sciences “Rossi Fanelli”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Daniels MJD, Brough D. Unconventional Pathways of Secretion Contribute to Inflammation. Int J Mol Sci 2017; 18:E102. [PMID: 28067797 PMCID: PMC5297736 DOI: 10.3390/ijms18010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
In the conventional pathway of protein secretion, leader sequence-containing proteins leave the cell following processing through the endoplasmic reticulum (ER) and Golgi body. However, leaderless proteins also enter the extracellular space through mechanisms collectively known as unconventional secretion. Unconventionally secreted proteins often have vital roles in cell and organism function such as inflammation. Amongst the best-studied inflammatory unconventionally secreted proteins are interleukin (IL)-1β, IL-1α, IL-33 and high-mobility group box 1 (HMGB1). In this review we discuss the current understanding of the unconventional secretion of these proteins and highlight future areas of research such as the role of nuclear localisation.
Collapse
Affiliation(s)
- Michael J D Daniels
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
11
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
12
|
Madhavan A, Sukumaran RK. Secreted expression of an active human interferon‐beta (HuIFNβ) in
Kluyveromyces lactis. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Aravind Madhavan
- Centre for Biofuels, Biotechnology Division CSIR‐National Institute for Interdisciplinary Science and Technology Trivandrum India
| | - Rajeev Kumar Sukumaran
- Centre for Biofuels, Biotechnology Division CSIR‐National Institute for Interdisciplinary Science and Technology Trivandrum India
| |
Collapse
|
13
|
Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. J Biotechnol 2016; 222:104-16. [DOI: 10.1016/j.jbiotec.2016.02.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
|
14
|
Wang H, Zhang L, Shi G. Secretory expression of a phospholipase A2 from Lactobacillus casei DSM20011 in Kluyveromyces lactis. J Biosci Bioeng 2015; 120:601-7. [DOI: 10.1016/j.jbiosc.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/09/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
|
15
|
Construction of a Kluyveromyces lactis ku80 − Host Strain for Recombinant Protein Production: Extracellular Secretion of Pectin Lyase and a Streptavidin–Pectin Lyase Chimera. Mol Biotechnol 2014; 56:319-28. [DOI: 10.1007/s12033-013-9711-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
17
|
Martínez JL, Liu L, Petranovic D, Nielsen J. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 2012; 23:965-71. [PMID: 22503236 DOI: 10.1016/j.copbio.2012.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 11/25/2022]
Abstract
Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis techniques (the so-called-omics approaches) and integrative approaches (systems biology) allow the development of novel microbial cell factories as valuable platforms for large scale production of therapeutic proteins. This review summarizes the main achievements and the current situation in the field of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and discusses the future potential of this platform for production of blood proteins and substitutes.
Collapse
Affiliation(s)
- José L Martínez
- Novo Nordisk Center for Biosustainability, Department of Chemical & Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | | | | | | |
Collapse
|
18
|
Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 2010; 88:849-57. [PMID: 20803138 DOI: 10.1007/s00253-010-2850-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
Yeast, such as Saccharomyces cerevisiae or Kluyveromyces lactis is appropriate strain for ethanol production or some useful compounds production. Cellulases expressing yeast can ferment ethanol from cellulosic materials; however, the productivity should be increase more and more. To improve and engineer the productivity, the target gene(s) were introduced into yeast genome. Generally, using genetic engineering, increasing integrated gene numbers are increased, the expressed protein ability such as enzymatic activities are also increased. In this mini-review, we focused on the effect of integrated gene copy number and the polyploidy on the productivity such as enzymatic activity and/or product yield.
Collapse
|
19
|
Paciello L, Andrès I, Zueco J, Bianchi MM, de Alteriis E, Parascandola P. Expression of human interleukin-1β in Saccharomyces cerevisiae using PIR4 as fusion partner and production in aerated fed-batch reactor. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0122-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Dato L, Branduardi P, Passolunghi S, Cattaneo D, Riboldi L, Frascotti G, Valli M, Porro D. Advances in molecular tools for the use of Zygosaccharomyces bailii as host for biotechnological productions and construction of the first auxotrophic mutant. FEMS Yeast Res 2010; 10:894-908. [DOI: 10.1111/j.1567-1364.2010.00668.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Glucoamylase by recombinant Kluyveromyces lactis cells: production and modelling of a fed batch bioreactor. Bioprocess Biosyst Eng 2009; 33:525-32. [DOI: 10.1007/s00449-009-0364-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
22
|
Sugiki T, Shimada I, Takahashi H. Stable isotope labeling of protein by Kluyveromyces lactis for NMR study. JOURNAL OF BIOMOLECULAR NMR 2008; 42:159-162. [PMID: 18827973 DOI: 10.1007/s10858-008-9276-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/09/2008] [Indexed: 05/26/2023]
Abstract
Stable isotope labeling for proteins of interest is an important technique in structural analyses of proteins by NMR spectroscopy. Escherichia coli is one of the most useful protein expression systems for stable isotope labeling because of its high-level protein expression and low costs for isotope-labeling. However, for the expression of proteins with numerous disulfide-bonds and/or post-translational modifications, E. coli systems are not necessarily appropriate. Instead, eukaryotic cells, such as yeast Pichia pastoris, have great potential for successful production of these proteins. The hemiascomycete yeast Kluyveromyces lactis is superior to the methylotrophic yeast P. pastoris in some respects: simple and rapid transformation, good reproducibility of protein expression induction and easy scale-up of culture. In the present study, we established a protein expression system using K. lactis, which enabled the preparation of labeled proteins using glucose and ammonium chloride as a stable isotope source.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Japan Biological Informatics Consortium (JBiC), Aomi, Tokyo, 135-0064, Japan
| | | | | |
Collapse
|
23
|
Abstract
Recombinant protein expression has become a standard laboratory tool, and a wide variety of systems and techniques are now in use. Because there are so many systems to choose from, the investigator has to be careful to use the combination that will give the best results for the protein being studied. This overview unit discusses expression and production choices, including post-translational modifications (e.g., glycosylation, acylation, sulfation, and removal of N-terminal methionine), in vivo and in vitro folding, and influence of downstream elements on expression.
Collapse
Affiliation(s)
- D Gray
- Chiron Corporation, Emeryville, California, USA
| | | |
Collapse
|
24
|
Camattari A, Bianchi MM, Branduardi P, Porro D, Brambilla L. Induction by hypoxia of heterologous-protein production with the KlPDC1 promoter in yeasts. Appl Environ Microbiol 2007; 73:922-9. [PMID: 17142360 PMCID: PMC1800783 DOI: 10.1128/aem.01764-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 11/24/2006] [Indexed: 11/20/2022] Open
Abstract
The control of promoter activity by oxygen availability appears to be an intriguing system for heterologous protein production. In fact, during cell growth in a bioreactor, an oxygen shortage is easily obtained simply by interrupting the air supply. The purpose of our work was to explore the possible use of hypoxic induction of the KlPDC1 promoter to direct heterologous gene expression in yeast. In the present study, an expression system based on the KlPDC1 promoter was developed and characterized. Several heterologous proteins, differing in size, origin, localization, and posttranslational modification, were successfully expressed in Kluyveromyces lactis under the control of the wild type or a modified promoter sequence, with a production ratio between 4 and more than 100. Yields were further optimized by a more accurate control of hypoxic physiological conditions. Production of as high as 180 mg/liter of human interleukin-1beta was obtained, representing the highest value obtained with yeasts in a lab-scale bioreactor to date. Moreover, the transferability of our system to related yeasts was assessed. The lacZ gene from Escherichia coli was cloned downstream of the KlPDC1 promoter in order to get beta-galactosidase activity in response to induction of the promoter. A centromeric vector harboring this expression cassette was introduced in Saccharomyces cerevisiae and in Zygosaccharomyces bailii, and effects of hypoxic induction were measured and compared to those already observed in K. lactis cells. Interestingly, we found that the induction still worked in Z. bailii; thus, this promotor constitutes a possible inducible system for this new nonconventional host.
Collapse
Affiliation(s)
- Andrea Camattari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
25
|
Rodríguez ÁP, Leiro RF, Trillo MC, Cerdán ME, Siso MIG, Becerra M. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger beta-galactosidase. Microb Cell Fact 2006; 5:41. [PMID: 17176477 PMCID: PMC1764428 DOI: 10.1186/1475-2859-5-41] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 12/18/2006] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The beta-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the beta-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. RESULTS The highest levels of intracellular and extracellular beta-galactosidase were obtained when the segment corresponding to the five domain of K. lactis beta-galactosidase was replaced by the corresponding five domain of the A. niger beta-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5) and temperature (40 degrees C) for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the beta-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence of Ni2+. The affinity for synthetic (ONPG) or natural (lactose) substrates was higher in the hybrid than in the native K. lactis beta-galactosidase. Finally, a structural-model of the hybrid protein was obtained by homology modelling and the experimentally determined properties of the protein were discussed in relation to it. CONCLUSION A hybrid protein between K. lactis and A. niger beta-galactosidases was constructed that increases the yield of the protein released to the growth medium. Modifications introduced in the construction, besides to improve secretion, conferred to the protein biochemical characteristics of biotechnological interest.
Collapse
Affiliation(s)
- Ángel Pereira Rodríguez
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - Rafael Fernández Leiro
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Cristina Trillo
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Esperanza Cerdán
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Isabel González Siso
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - Manuel Becerra
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| |
Collapse
|
26
|
van Ooyen AJJ, Dekker P, Huang M, Olsthoorn MMA, Jacobs DI, Colussi PA, Taron CH. Heterologous protein production in the yeastKluyveromyces lactis. FEMS Yeast Res 2006; 6:381-92. [PMID: 16630278 DOI: 10.1111/j.1567-1364.2006.00049.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression.
Collapse
|
27
|
Waché Y, Husson F, Feron G, Belin JM. Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances. Antonie van Leeuwenhoek 2006; 89:405-16. [PMID: 16779636 DOI: 10.1007/s10482-005-9049-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 11/29/2022]
Abstract
Responding to consumer' demand for natural products, biotechnology is constantly seeking new biocatalysts. In the field of hydrophobic substrate degradation, some yeast species known some years ago as non-conventional, have acquired their right to be considered as good biocatalysts. These Candida, Yarrowia, Sporobolomyces ... are now used for themselves or for their lipases in processes to produce flavours and fragrances. In this paper we present some examples of use of these biocatalysts to generate high-value compounds and discuss the new trends related to progress in the development of molecular tools or the mastering of the redox characteristics of the medium.
Collapse
Affiliation(s)
- Y Waché
- Laboratoire de Microbiologie UMR UB-INRA, ENSBANA, 1 esplanade Erasme, 21000, Dijon, France.
| | | | | | | |
Collapse
|
28
|
Rubio-Texeira M. Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 2006; 24:212-25. [PMID: 16289464 DOI: 10.1016/j.biotechadv.2005.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 10/04/2005] [Indexed: 11/20/2022]
Abstract
Most microorganisms adapted to life in milk owe their ability to thrive in this habitat to the evolution of mechanisms for the use of the most abundant sugar present on it, lactose, as a carbon source. Because of their lactose-assimilating ability, Kluyveromyces yeasts have long been used in industrial processes involved in the elimination of this sugar. The identification of the genes conferring Kluyveromyces with a system for permeabilization and intracellular hydrolysis of lactose (LAC genes), along with the current possibilities for their transfer into alternative organisms through genetic engineering, has significantly broadened the industrial profitability of lactic yeasts. This review provides an updated overview of the general properties of Kluyveromyces LAC genes, and the multiple techniques involving their biotechnological utilization. Emphasis is also made on the potential that some of the latest technologies, such as the generation of transgenics, will have for a further benefit in the use of these and related genes.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- 68-541, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA.
| |
Collapse
|
29
|
Colussi PA, Taron CH. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 2005; 71:7092-8. [PMID: 16269745 PMCID: PMC1287696 DOI: 10.1128/aem.71.11.7092-7098.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strong LAC4 promoter (P(LAC4)) from Kluyveromyces lactis has been extensively used to drive expression of heterologous proteins in this industrially important yeast. A drawback of this expression method is the serendipitous ability of P(LAC4) to promote gene expression in Escherichia coli. This can interfere with the process of assembling expression constructs in E. coli cells prior to their introduction into yeast cells, especially if the cloned gene encodes a protein that is detrimental to bacteria. In this study, we created a series of P(LAC4) variants by targeted mutagenesis of three DNA sequences (PBI, PBII, and PBIII) that resemble the E. coli Pribnow box element of bacterial promoters and that reside immediately upstream of two E. coli transcription initiation sites associated with P(LAC4). Mutation of PBI reduced the bacterial expression of a reporter protein (green fluorescent protein [GFP]) by approximately 87%, whereas mutation of PBII and PBIII had little effect on GFP expression. Deletion of all three sequences completely eliminated GFP expression. Additionally, each promoter variant expressed human serum albumin in K. lactis cells to levels comparable to wild-type P(LAC4). We created a novel integrative expression vector (pKLAC1) containing the P(LAC4) variant lacking PBI and used it to successfully clone and express the catalytic subunit of bovine enterokinase, a protease that has historically been problematic in E. coli cells. The pKLAC1 vector should aid in the cloning of other potentially toxic genes in E. coli prior to their expression in K. lactis.
Collapse
Affiliation(s)
- Paul A Colussi
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
30
|
Lodi T, Neglia B, Donnini C. Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1. Appl Environ Microbiol 2005; 71:4359-63. [PMID: 16085825 PMCID: PMC1183311 DOI: 10.1128/aem.71.8.4359-4363.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of protein conformation during translocation through the endoplasmic reticulum is often a bottleneck for heterologous protein production. The core pathway of the oxidative folding machinery includes two conserved proteins: Pdi1p and Ero1p. We increased the dosage of the genes encoding these proteins in the yeast Kluyveromyces lactis and evaluated the secretion of heterologous proteins. KlERO1, an orthologue of Saccharomyces cerevisiae ERO1, was cloned by functional complementation of the ts phenotype of an Scero1 mutant. The expression of KlERO1 was induced by treatment of the cells with dithiothreitol and by overexpression of human serum albumin (HSA), a disulfide bond-rich protein. Duplication of either PDI1 or ERO1 led to a similar increase in HSA yield. Duplication of both genes accelerated the secretion of HSA and improved cell growth rate and yield. Increasing the dosage of KlERO1 did not affect the production of human interleukin 1beta, a protein that has no disulfide bridges. The results confirm that the ERO1 genes of S. cerevisiae and K. lactis are functionally similar even though portions of their coding sequence are quite different and the phenotypes of mutants overexpressing the genes differ. The marked effects of KlERO1 copy number on the expression of heterologous proteins with a high number of disulfide bridges suggests that control of KlERO1 and KlPDI1 is important for the production of high levels of heterologous proteins of this type.
Collapse
Affiliation(s)
- Tiziana Lodi
- Department of Genetics, Anthropology, and Evolution, University of Parma, Parco Area delle Scienze 11/A, I-43100 Parma, Italy
| | | | | |
Collapse
|
31
|
Salani F, Bianchi MM. Production of glucoamylase in pyruvate decarboxylase deletion mutants of the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 2005; 69:564-72. [PMID: 16175368 DOI: 10.1007/s00253-005-0148-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Yeasts are widely used as hosts for the production of diverse heterologous proteins ranging from laboratory scale to industrial scale. The aim of this work is to provide new tools for the production of heterologous proteins in the yeast Kluyveromyces lactis. The promoter of the single gene (KlPDC1) encoding pyruvate decarboxylase is strong, inducible, and responsive to the presence of fermentable sugars and anoxic conditions in this yeast. Expression of KlPDC1 is repressed by ethanol and by autoregulation, a mechanism that involves protein KlPdc1. We constructed a heterologous gene expression cassette for a secreted protein (glucoamylase, GAM) under the control of the KlPDC1 promoter on a stable multicopy plasmid. GAM production by wild-type transformed strains was compared with that of klpdc1-deleted transformants. We obtained higher GAM production in the latter strains, which was due to continued expression of the GAM gene during the stationary phase rather than due to GAM transcription levels higher than the wild-type strains during growth phase. This finding opens new perspectives on the physiology of the stationary phase in K. lactis and suggests the possibility of using high-cell-density approaches for the efficient production of heterologous proteins with this yeast.
Collapse
Affiliation(s)
- Francesca Salani
- Centre of Excellence in Molecular Biology and Medicine, University of Rome La Sapienza, Rome, 00185, Italy
| | | |
Collapse
|
32
|
Colussi PA, Specht CA, Taron CH. Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis. Appl Environ Microbiol 2005; 71:2862-9. [PMID: 15932978 PMCID: PMC1151841 DOI: 10.1128/aem.71.6.2862-2869.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/18/2004] [Indexed: 11/20/2022] Open
Abstract
Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin.
Collapse
Affiliation(s)
- Paul A Colussi
- New England Biolabs, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|
33
|
Vega-Hernández MC, Gómez-Coello A, Villar J, Claverie-Martín F. Molecular cloning and expression in yeast of caprine prochymosin. J Biotechnol 2005; 114:69-79. [PMID: 15464600 DOI: 10.1016/j.jbiotec.2004.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
We cloned and characterized a preprochymosin cDNA from the abomasum of milk-fed kid goats. This cDNA contained an open reading frame that predicts a polypeptide of 381 amino acid residues, with a signal peptide and a proenzyme region of 16 and 42 amino acids, respectively. Comparison of the caprine preprochymosin sequence with the corresponding sequences of lamb and calf revealed 99 and 94% identity at the amino acid level. The cDNA fragment encoding the mature portion of caprine prochymosin was fused in frame both to the killer toxin signal sequence and to the alpha-factor signal sequence-FLAG in two different yeast expression vectors. The recombinant plasmids were transformed into Kluyveromyces lactis and Saccharomyces cerevisiae cells, respectively. Culture supernatants of both yeast transformants showed milk-clotting activity after activation at acid pH. The FLAG-prochymosin fusion was purified from S. cerevisiae culture supernatants by affinity chromatography. Proteolytic activity assayed toward casein fractions indicated that the recombinant caprine chymosin specifically hydrolysed kappa-casein.
Collapse
Affiliation(s)
- Maria C Vega-Hernández
- Molecular Biology Laboratory, Research Unit, Nuestra Señora de Candelaria University Hospital, 38010, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
34
|
Cai XP, Zhang J, Yuan HY, Fang ZA, Li YY. Secretory expression of heterologous protein in Kluyveromyces cicerisporus. Appl Microbiol Biotechnol 2004; 67:364-9. [PMID: 15614561 DOI: 10.1007/s00253-004-1834-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/02/2004] [Accepted: 11/06/2004] [Indexed: 10/26/2022]
Abstract
To explore the potential of heterologous protein expression in Kluyveromyces cicerisporus, three expression plasmids, pUK1-PIT, pUKD-PIT and pUKD-S-PIT, based on the vector pUK1 or pUKD were constructed and transformed, respectively, into yeast strain K. cicerisporus Y179U. Human interferon alpha-2a, used as an example protein, was successfully expressed and secreted by transformant Y179U/pUKD-PIT and Y179U/pUKD-S-PIT. In the flask culture, strain Y179U/pUKD-S-PIT could express interferon at 60 mg/l. The stability of plasmid pUKD-S-PIT in the host was higher than that of pUKD-PIT. This was consistent with their expression levels of interferon. There were two interferon-related bands found by Western blotting analysis. The possible reason for this is discussed.
Collapse
Affiliation(s)
- X P Cai
- Institute of Genetics, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
35
|
Bartkeviciūte D, Sasnauskas K. Disruption of the gene enhances protein secretion in and. FEMS Yeast Res 2004; 4:833-40. [PMID: 15450190 DOI: 10.1016/j.femsyr.2004.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/01/2004] [Accepted: 03/13/2004] [Indexed: 11/26/2022] Open
Abstract
Screening for genes affecting super-secreting phenotype of the over-secreting mutant of Kluyveromyces lactis resulted in isolation of the gene named KlMNN10, sharing high homology with Saccharomyces cerevisiae MNN10. The disruption of the KlMNN10 in Kluyveromyces lactis, as well as of MNN10 and MNN11 in Saccharomyces cerevisiae, conferred the super-secreting phenotype. MNN10 isolated from Saccharomyces cerevisiae suppressed the super-secretion phenotype in Kluyveromyces lactis klmnn10, as did the homologous KlMNN10. The genes MNN10 and MNN11 of Saccharomyces cerevisiae encode mannosyltransferases responsible for the majority of the alpha-1,6-polymerizing activity of the mannosyltransferase complex. These data agree with the view that the structure of glycoproteins in a yeast cell wall strongly influences the release of homologous and heterologous proteins in the medium. The set of genes namely the suppressors of the over-secreting phenotype, could be attractive for further analysis of gene functions, over-secreting mechanisms and for construction of new strains optimized for heterologous protein secretion. KlMNN10 has EMBL accession no. AJ575132.
Collapse
|
36
|
Fatty acid hydroperoxide lyase of green bell pepper: cloning in Yarrowia lipolytica and biogenesis of volatile aldehydes. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Donnini C, Farina F, Neglia B, Compagno MC, Uccelletti D, Goffrini P, Palleschi C. Improved production of heterologous proteins by a glucose repression-defective mutant of Kluyveromyces lactis. Appl Environ Microbiol 2004; 70:2632-8. [PMID: 15128512 PMCID: PMC404430 DOI: 10.1128/aem.70.5.2632-2638.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secreted production of heterologous proteins in Kluyveromyces lactis was studied. A glucoamylase (GAA) from the yeast Arxula adeninivorans was used as a reporter protein for the study of the secretion efficiencies of several wild-type and mutant strains of K. lactis. The expression of the reporter protein was placed under the control of the strong promoter of the glyceraldehyde-3-phosphate dehydrogenase of Saccharomyces cerevisiae. Among the laboratory strains tested, strain JA6 was the best producer of GAA. Since this strain is known to be highly sensitive to glucose repression and since this is an undesired trait for biomass-oriented applications, we examined heterologous protein production by using glucose repression-defective mutants isolated from this strain. One of them, a mutant carrying a dgr151-1 mutation, showed a significantly improved capability of producing heterologous proteins such as GAA, human serum albumin, and human interleukin-1beta compared to the parent strain. dgr151-1 is an allele of RAG5, the gene encoding the only hexokinase present in K. lactis (a homologue of S. cerevisiae HXK2). The mutation in this strain was mapped to nucleotide position +527, resulting in a change from glycine to aspartic acid within the highly conserved kinase domain. Cells carrying the dgr151-1 allele also showed a reduction in N- and O-glycosylation. Therefore, the dgr151 strain may be a promising host for the production of heterologous proteins, especially when the hyperglycosylation of recombinant proteins must be avoided.
Collapse
Affiliation(s)
- Claudia Donnini
- Department of Genetics Anthropology Evolution, University of Parma, Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Schmidt FR. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 2004; 65:363-72. [PMID: 15480623 DOI: 10.1007/s00253-004-1656-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/05/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
In terms of downstream processing efficiency, secretory expression systems offer potential advantages for the production of recombinant proteins, compared with inclusion body forming cytosolic systems. However, for high-volume therapeutics like insulin, the product yields of the majority of the potentially available secretory systems is not yet fully competitive. Current strategies to improve productivity and secretion efficiency comprise: (1) enhancement of gene expression rates, (2) optimization of secretion signal sequences, (3) coexpression of chaperones and foldases, (4) creation of protease deficient mutants to avoid premature product degradation and (5) subsequent breeding and mutagenesis. For the production of non-glycosylated proteins and proteins, which are natively glycosylated but are also pharmacologically active without glycosylation, prokaryotes, which usually lack metabolic pathways for glycosylation, are theoretically the most suitable organisms and offer two alternatives: either Escherichia coli strains are conditioned to be efficient secreters or efficient native secreters like Bacillus species are accordingly developed. To fully exploit the secretory capacity of fungal species, a deeper understanding of their posttranslational modification physiology will be necessary to steer the degree and pattern of glycosylation, which influences both folding and secretion efficiency. Insect and mammalian cells display posttranslational modification patterns very similar or identical to humans, but in view of the entailed expenditures, their employment can only be justified if their modification machinery is required to ensure a desired pharmacological activity.
Collapse
Affiliation(s)
- F R Schmidt
- Aventis Pharma Deutschland, Biocenter H 780, Industriepark Höchst, 65926, Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Panuwatsuk W, Da Silva NA. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Biotechnol Bioeng 2003; 81:712-8. [PMID: 12529885 DOI: 10.1002/bit.10518] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A gratuitous induction system in the yeast Kluyveromyces lactis was evaluated for the expression of intracellular and extracellular products during fed-batch culture. The Escherichia coli lacZ gene (beta-galactosidase; intracellular) and MFalpha1 leader-BPTI cassette (bovine pancreatic trypsin inhibitor; extracellular) were placed under the control of the inducible K. lactis LAC4 promotor, inserted into partial-pKD1 plasmids, and transformed into a ga1-209 K. lactis strain. To obtain a high level of production, culture conditions for growth and expression were initially evaluated in tube cultures. A selective medium containing 5 g/L glucose (as carbon source) and 0.5 g/L galactose (as inducer) demonstrated the maximum activity of both beta-galactosidase and secreted BPTI. This level of expression had no significant effect on the growth of the recombinant cells; growth rate dropped by approximately 11%, whereas final biomass concentrations remained the same. In shake-flask culture, biomass concentration, beta-galactosidase activity, and BPTI secreted activity were 4 g/L, 7664 U/g dry cell, and 0.32 mg/L, respectively. Fed-batch culture (with a high glucose concentration and a low galactose [inducer] concentration feed) resulted in a 6.5-fold increase in biomass, a 23-fold increase in beta-galactosidase activity, and a 3-fold increase in BPTI secreted activity. The results demonstrate the success of gratuitous induction during high-cell-density fed-batch culture of K. lactis. A very low concentration of galactose feed was sufficient for a high production level.
Collapse
Affiliation(s)
- Wannana Panuwatsuk
- Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, California 92697-2575, USA
| | | |
Collapse
|
40
|
Bartkeviciute D, Sasnauskas K. Studies of yeast Kluyveromyces lactis mutations conferring super-secretion of recombinant proteins. Yeast 2003; 20:1-11. [PMID: 12489121 DOI: 10.1002/yea.935] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated mutants responsible for a super-secretion phenotype in Kluyveromyces lactis using the gene coding for a Bacillus amyloliquefaciens alpha-amylase as a marker for secretion. These mutations defined two groups, dominant and recessive. The recessive mutant strain, which secreted the heterologous protein in five-fold excess compared to the wild-type strain, was used for the cloning of genes, restraining the super-secreting phenotype. In screening for genes affecting super-secreting phenotype, we found that multiple copies of 10 different independently isolated DNA sequences suppressed the super-secreting phenotype. The first among the genes characterized, named KlSEL1 ('secretion lowering') showed homology to Saccharomyces cerevisiae ORF YML013w. The KlSEL1 gene is predicted to encode a polypeptide of 620 amino acid residues containing a putative transmembrane domain and UBX domain, characteristic for the ubiquitin-regulatory proteins. We demonstrated that the disruption of the SEL1 orthologues in K. lactis and S. cerevisiae conferred the super-secreting phenotype. SEL1 isolated from S. cerevisiae suppressed the super-secretion phenotype in K. lactis klsel1 strain, likewise homologous KlSEL1. No other phenotypic features for strains lacking the SEL1 gene were noticed except for the S. cerevisiae mutant growth being notably slower than in a wt strain. No growth changes were observed in the K. lactis klsel1 mutant. The set of genes (suppressors of over-secreting phenotype) could be attractive for further analysis of gene functions, super-secreting mechanisms and construction of new strains. This collection could be useful for the expedient construction of reduced yeast genomes, optimized for heterologous protein secretion.
Collapse
|
41
|
Abstract
The KlLYS2 gene, encoding the alpha-aminoadipate reductase of Kluyveromyces lactis, was isolated by complementation of a lysA1 mutant. The deduced amino acid sequence shared an identity of 73% with the LYS2 product of Saccharomyces cerevisiae. Despite the high sequence homology of the alpha-aminoadipate reductase genes, the two yeast species differently responded to the presence of alpha-aminoadipate in the medium. Wild-type S. cerevisiae is known to be sensitive to alpha-aminoadipate, but becomes resistant when mutated to lys2. In contrast, K. lactis strains were found to be naturally resistant to alpha-aminoadipate. Therefore, the positive selection procedure for the isolation of lys2 mutants on alpha-aminoadipate, as practised in S. cerevisiae, cannot be applied to K. lactis. A possible reason of this difference may be that the catalytic rate of the alpha-aminoadipate reductase differs in the two yeasts. The EMBL/Genbank Accession No. for the KlLYS2 gene is AJ504405.
Collapse
Affiliation(s)
- Adriana Alberti
- Dipartimento di Genetica Antropologia Evoluzione, University of Parma, Italy
| | | | | |
Collapse
|
42
|
Uccelletti D, De Jaco A, Farina F, Mancini P, Augusti-Tocco G, Biagioni S, Palleschi C. Cell surface expression of a GPI-anchored form of mouse acetylcholinesterase in Klpmr1Delta cells of Kluyveromyces lactis. Biochem Biophys Res Commun 2002; 298:559-65. [PMID: 12408988 DOI: 10.1016/s0006-291x(02)02513-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mouse acetylcholinesterase AChE(H) was expressed in the yeast Kluyveromyces lactis. The AChE(H) activity was detectable in intact cells whereas it was absent in the culture media. Glucanase treatment and immunoelectron microscopy data indicated that AChE(H) is anchored to plasma membrane and that the mouse GPI-signaling is compatible with the K. lactis targeting machinery. The AChE(H) was also expressed in a K. lactis strain carrying an inactivated allele of KlPMR1, the gene coding for a P-type Ca(2+)-ATPase of the Golgi apparatus. This mutant displays changes in protein glycosylation and cell wall structure. The AChE(H) activity detected in Klpmr1Delta cells was more than twofold higher than that observed in wild-type cells. The combination of AChE expression and anchoring with the characteristics of Klpmr1Delta strain of K. lactis resulted in yeast cells displaying high AChE activity. This could be regarded as a novel sensing unit to be employed for detecting AChE inhibitors as pesticides.
Collapse
Affiliation(s)
- Daniela Uccelletti
- Department of Developmental and Cell Biology, University of Rome La Sapienza, Piazza Aldo More 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Mazzoni C, Falcone C. Isolation and study of KlLSM4, a Kluyveromyces lactis gene homologous to the essential gene LSM4 of Saccharomyces cerevisiae. Yeast 2001; 18:1249-56. [PMID: 11561292 DOI: 10.1002/yea.772] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have isolated the KlLSM4 gene as a multicopy suppressor of a Kluyveromyces lactis mutant which shows a rag(-) phenotype (resistance to antimycin A on glucose). This gene is homologous to the ScLSM4 of Saccharomyces cerevisiae, which codes for an essential 187 amino acid protein containing Sm-like domains. These motifs are present in the evolutionarily conserved family of the Sm-like proteins, which are involved in a large number of cellular processes, including pre-mRNA splicing and mRNA decapping. We demonstrated that the first 72 amino acids of KlLsm4p, which contain the Sm-like domains, can restore cell viability in both K. lactis and S. cerevisiae cells lacking the wild-type protein. However, the absence of the carboxy-terminal region resulted in a remarkable loss of cell viability in the stationary phase. The KlLSM4 sequence has been deposited in the EMBL Data library under Accession No. AJ311719.
Collapse
Affiliation(s)
- C Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, Piazzale A. Moro, 00185 Rome, Italy.
| | | |
Collapse
|
44
|
Bao WG, Fukuhara H. Secretion of human proteins from yeast: stimulation by duplication of polyubiquitin and protein disulfide isomerase genes in Kluyveromyces lactis. Gene 2001; 272:103-10. [PMID: 11470515 DOI: 10.1016/s0378-1119(01)00564-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The efficiency of secreted production of mammalian proteins from yeasts remains unpredictably variable, depending on each protein. On the hypothesis that the control of protein conformation during protein translocation is the bottleneck in many cases, we examined the effects of an increased dosage of the genes coding for protein disulfide isomerase and of polyubiquitin on the secretion of two human proteins, serumalbumin and interleukin 1 beta. The yeast Kluyveromyces lactis was used as a production host. Duplication of either one of these genes had a strong stimulating effect on the production of the highly disulfide-bonded serumalbumin, but not of interleukin 1 beta.
Collapse
Affiliation(s)
- W G Bao
- Institut Curie, Section de Recherche, UMR 2027, Bâtiment 110, Centre Universitaire Paris XI, Orsay 91405, France
| | | |
Collapse
|
45
|
Becerra M, Prado SD, Siso MI, Cerdán ME. New secretory strategies for Kluyveromyces lactis beta-galactosidase. PROTEIN ENGINEERING 2001; 14:379-86. [PMID: 11438761 DOI: 10.1093/protein/14.5.379] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined several strategies for the secretion of Kluyveromyces lactis beta-galactosidase into the culture medium, in order to facilitate the downstream processing and purification of this intracellular enzyme of great industrial interest. We constructed plasmids by fusing the LAC4 gene or engineered variants to the secretion signal of the K.lactis killer toxin or to the secretion signal of the Saccharomyces cerevisiae alpha-factor. With these plasmids we transformed strains of the yeasts K.lactis and S.cerevisiae, respectively and tested beta-galactosidase extracellular activity in different culture media. We achieved partial secretion of beta-galactosidase in the culture medium since the high molecular weight and oligomeric nature of the enzyme, among other factors, preclude full secretion. The percentage of secretion was improved by directed mutagenesis of the N-terminus of the protein. We developed several deletion mutants which helped us to propose structure-function relationships by comparison with the available data on the homologous Escherichia coli beta-galactosidase. The influence of the culture conditions on heterologous beta-galactosidase secretion was also studied.
Collapse
Affiliation(s)
- M Becerra
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Campus da Zapateira s/n, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|
46
|
Bergquist PL, Gibbs MD, Morris DD, Thompson DR, Uhl AM, Daniel RM. Hyperthermophilic xylanases. Methods Enzymol 2001; 330:301-19. [PMID: 11210509 DOI: 10.1016/s0076-6879(01)30384-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- P L Bergquist
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Bolotin-Fukuhara M, Toffano-Nioche C, Artiguenave F, Duchateau-Nguyen G, Lemaire M, Marmeisse R, Montrocher R, Robert C, Termier M, Wincker P, Wésolowski-Louvel M. Genomic exploration of the hemiascomycetous yeasts: 11. Kluyveromyces lactis. FEBS Lett 2000; 487:66-70. [PMID: 11152886 DOI: 10.1016/s0014-5793(00)02282-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Random sequencing of the Kluyveromyces lactis genome allowed the identification of 2235-2601 open reading frames (ORFs) homologous to S. cerevisiae ORFs, 51 ORFs which were homologous to genes from other species, 64 tRNAs, the complete rDNA repeat, and a few Ty1- and Ty2-like sequences. In addition, the complete sequence of plasmid pKD1 and a large coverage of the mitochondrial genome were obtained. The global distribution into general functional categories found in Saccharomyces cerevisiae and as defined by MIPS is well conserved in K. lactis. However, detailed examination of certain subcategories revealed a small excess of genes involved in amino acid metabolism in K. lactis. The sequences are deposited at EMBL under the accession numbers AL424881-AL430960.
Collapse
Affiliation(s)
- M Bolotin-Fukuhara
- Laboratoire de Génétique et Microbiologie, IGM, Centre Universitaire, Orsay, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Morlino GB, Tizzani L, Fleer R, Frontali L, Bianchi MM. Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis. Appl Environ Microbiol 1999; 65:4808-13. [PMID: 10543790 PMCID: PMC91648 DOI: 10.1128/aem.65.11.4808-4813.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterologous protein production can be doubled by increasing the copy number of the corresponding heterologous gene. We constructed a host-vector system in the yeast Kluyveromyces lactis that was able to induce copy number amplification of pKD1 plasmid-based vectors upon expression of an integrated copy of the plasmid recombinase gene. We increased the production and secretion of two heterologous proteins, glucoamylase from the yeast Arxula adeninivorans and mammalian interleukin-1beta, following gene dosage amplification when the heterologous genes were carried by pKD1-based vectors. The choice of the promoters for expression of the integrated recombinase gene and of the episomal heterologous genes are critical for the mitotic stability of the host-vector system.
Collapse
Affiliation(s)
- G B Morlino
- Department of Cell and Developmental Biology, University of Rome "La Sapienza," Rome 00185, Italy
| | | | | | | | | |
Collapse
|
49
|
Bai X, Larsen M, Meinhardt F. The URA5 gene encoding orotate-phosphoribosyl transferase of the yeast Kluyveromyces lactis: cloning, sequencing and use as a selectable marker. Yeast 1999; 15:1393-8. [PMID: 10509020 DOI: 10.1002/(sici)1097-0061(19990930)15:13<1393::aid-yea452>3.0.co;2-f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A pair of degenerate primers was used for amplification and cloning of an internal fragment of the K. lactis URA5 gene. Primers were designed on the basis of highly conserved motifs within protein sequences predicted for URA5 genes from several microorganisms. Using the amplified fragment as a probe, we finally cloned and sequenced a 1.9 kb chromosomal fragment containing the orotate-phosphoribosyltransferase-encoding URA5 gene and an incomplete open reading frame strikingly similar to SEC65 of Saccharomyces cerevisiae and other yeasts, in which the gene encodes a subunit of the signal recognition particle. Uracil-requiring mutants of K. lactis CBS 683 were selected on media containing 5-fluoro-orotic acid and used as recipients in transformation experiments using K. lactis URA5 as the selectable marker, thereby proving functionality of the cloned gene.
Collapse
Affiliation(s)
- X Bai
- Westfälische Wilhelms-Universität Münster, Institut für Mikrobiologie, Corrensstrasse 3, D-48149 Münster, Germany
| | | | | |
Collapse
|
50
|
Abstract
A novel P-type Ca(2+)-ATPase gene has been cloned and sequenced in the yeast Kluyveromyces lactis. The gene has been named KlPMR1 and is localized on chromosome I. The putative gene product contains 936 residues and has a calculated molecular weight of 102,437 Da. Analysis of deduced amino acid sequence (KlPmr1p) indicated that the encoded protein retains all the highly conserved domains characterizing the P-type ATPases. KlPmr1p shares 71% amino acid identity with Pmr1p of S. cerevisiae, 62% with HpPmr1p of Hansenula polymorpha, 56% with Y1Pmr1p of Yarrowia lipolytica and 52% with the Ca(2+)-ATPase encoded for by the SPCA1 gene of Rattus norvegicus; these similarities place KlPmr1p in the SPCA group (secretory pathway Ca(2+)-ATPase) of the P-type ATPases. The K. lactis strain harbouring the Klpmr1 disrupted gene is not able to grow in presence of low calcium concentrations and shows hypersensitivity to high concentrations of EGTA in the medium. These defects are relieved by PMR1 of S. cerevisiae on a centromeric plasmid, demonstrating that KlPMR1 encodes for a functional Pmr1p homologue.
Collapse
Affiliation(s)
- D Uccelletti
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, Italy
| | | | | |
Collapse
|