1
|
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11:210002. [PMID: 33715390 PMCID: PMC8061763 DOI: 10.1098/rsob.210002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Douillet DC, Pinson B, Ceschin J, Hürlimann HC, Saint-Marc C, Laporte D, Claverol S, Konrad M, Bonneu M, Daignan-Fornier B. Metabolomics and proteomics identify the toxic form and the associated cellular binding targets of the anti-proliferative drug AICAR. J Biol Chem 2018; 294:805-815. [PMID: 30478173 DOI: 10.1074/jbc.ra118.004964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR, or acadesine) is a precursor of the monophosphate derivative 5-amino-4-imidazole carboxamide ribonucleoside 5'-phosphate (ZMP), an intermediate in de novo purine biosynthesis. AICAR proved to have promising anti-proliferative properties, although the molecular basis of its toxicity is poorly understood. To exert cytotoxicity, AICAR needs to be metabolized, but the AICAR-derived toxic metabolite was not identified. Here, we show that ZMP is the major toxic derivative of AICAR in yeast and establish that its metabolization to succinyl-ZMP, ZDP, or ZTP (di- and triphosphate derivatives of AICAR) strongly reduced its toxicity. Affinity chromatography identified 74 ZMP-binding proteins, including 41 that were found neither as AMP nor as AICAR or succinyl-ZMP binders. Overexpression of karyopherin-β Kap123, one of the ZMP-specific binders, partially rescued AICAR toxicity. Quantitative proteomic analyses revealed 57 proteins significantly less abundant on nuclei-enriched fractions from AICAR-fed cells, this effect being compensated by overexpression of KAP123 for 15 of them. These results reveal nuclear protein trafficking as a function affected by AICAR.
Collapse
Affiliation(s)
- Delphine C Douillet
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Johanna Ceschin
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Hans C Hürlimann
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Damien Laporte
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Stéphane Claverol
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Manfred Konrad
- the Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Marc Bonneu
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France, .,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| |
Collapse
|
3
|
Dikicioglu D, Dunn WB, Kell DB, Kirdar B, Oliver SG. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment. MOLECULAR BIOSYSTEMS 2012; 8:1760-74. [PMID: 22491778 DOI: 10.1039/c2mb05443d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quantitative data on the dynamic changes in the transcriptome and the metabolome of yeast in response to an impulse-like perturbation in nutrient availability was integrated with the metabolic pathway information in order to elucidate the long-term dynamic re-organization of the cells. This study revealed that, in addition to the dynamic re-organization of the de novo biosynthetic pathways, salvage pathways were also re-organized in a time-dependent manner upon catabolite repression. The transcriptional and the metabolic responses observed for nitrogen catabolite repression were not as severe as those observed for carbon catabolite repression. Selective up- or down regulation of a single member of a paralogous gene pair during the response to the relaxation from nutritional limitation was identified indicating a differentiation of functions among paralogs. Our study highlighted the role of inosine accumulation and recycling in energy homeostasis and indicated possible bottlenecks in the process.
Collapse
Affiliation(s)
- Duygu Dikicioglu
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
4
|
Cheng X, Xu Z, Wang J, Zhai Y, Lu Y, Liang C. ATP-dependent pre-replicative complex assembly is facilitated by Adk1p in budding yeast. J Biol Chem 2010; 285:29974-80. [PMID: 20659900 PMCID: PMC2943264 DOI: 10.1074/jbc.m110.161455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 07/16/2010] [Indexed: 01/30/2023] Open
Abstract
Pre-replicative complex (pre-RC) assembly is a critical part of the mechanism that controls the initiation of DNA replication, and ATP binding and hydrolysis by multiple pre-RC proteins are essential for pre-RC assembly and activation. Here, we demonstrate that Adk1p (adenylate kinase 1 protein) plays an important role in pre-RC assembly in Saccharomyces cerevisiae. Isolated from a genetic screen, adk1(G20S) cells with a mutation within the nucleotide-binding site were defective in replication initiation. adk1Δ cells were viable at 25 °C but not at 37°C. Flow cytometry indicated that both the adk1-td (temperature-inducible degron) and adk1(G20S) mutants were defective in S phase entry. Furthermore, Adk1p bound to chromatin throughout the cell cycle and physically interacted with Orc3p, whereas the Adk1(G20S) protein had a reduced ability to bind chromatin and Orc3p without affecting the cellular ATP level. In addition, Adk1p associated with replication origins by ChIP assay. Finally, Adk1-td protein depletion prevented pre-RC assembly during the M-to-G(1) transition. We suggest that Adk1p regulates ATP metabolism on pre-RC proteins to promote pre-RC assembly and activation.
Collapse
Affiliation(s)
- Xue Cheng
- From the Section of Biochemistry and Cell Biology, Division of Life Science, and the Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| | - Zhen Xu
- From the Section of Biochemistry and Cell Biology, Division of Life Science, and the Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| | - Jiafeng Wang
- From the Section of Biochemistry and Cell Biology, Division of Life Science, and the Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
- the School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanliang Zhai
- From the Section of Biochemistry and Cell Biology, Division of Life Science, and the Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
| | - Yongjun Lu
- the School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chun Liang
- From the Section of Biochemistry and Cell Biology, Division of Life Science, and the Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and
- the School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Walther T, Novo M, Rössger K, Létisse F, Loret MO, Portais JC, François JM. Control of ATP homeostasis during the respiro-fermentative transition in yeast. Mol Syst Biol 2010; 6:344. [PMID: 20087341 PMCID: PMC2824524 DOI: 10.1038/msb.2009.100] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 11/07/2009] [Indexed: 11/09/2022] Open
Abstract
Respiring Saccharomyces cerevisiae cells respond to a sudden increase in glucose concentration by a pronounced drop of their adenine nucleotide content ([ATP]+[ADP]+[AMP]=[AXP]). The unknown fate of 'lost' AXP nucleotides represented a long-standing problem for the understanding of the yeast's physiological response to changing growth conditions. Transient accumulation of the purine salvage pathway intermediate, inosine, accounted for the apparent loss of adenine nucleotides. Conversion of AXPs into inosine was facilitated by AMP deaminase, Amd1, and IMP-specific 5'-nucleotidase, Isn1. Inosine recycling into the AXP pool was facilitated by purine nucleoside phosphorylase, Pnp1, and joint action of the phosphoribosyltransferases, Hpt1 and Xpt1. Analysis of changes in 24 intracellular metabolite pools during the respiro-fermentative growth transition in wild-type, amd1, isn1, and pnp1 strains revealed that only the amd1 mutant exhibited significant deviations from the wild-type behavior. Moreover, mutants that were blocked in inosine production exhibited delayed growth acceleration after glucose addition. It is proposed that interconversion of adenine nucleotides and inosine facilitates rapid and energy-cost efficient adaptation of the AXP pool size to changing environmental conditions.
Collapse
Affiliation(s)
- Thomas Walther
- Université de Toulouse, INSA, UPS, INP, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B. Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol 2008; 68:1583-94. [PMID: 18433446 DOI: 10.1111/j.1365-2958.2008.06261.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylate kinase (Adk1p) is a pivotal enzyme in both energetic and adenylic nucleotide metabolisms. In this paper, using a transcriptomic analysis, we show that the lack of Adk1p strongly induced expression of the PHO and ADE genes involved in phosphate utilization and AMP de novo biosynthesis respectively. Isolation and characterization of adk1 point mutants affecting PHO5 expression revealed that all these mutations also severely affected Adk1p catalytic activity, as well as PHO84 and ADE1 transcription. Furthermore, overexpression of distantly related enzymes such as human adenylate kinase or yeast UMP kinase was sufficient to restore regulation. These results demonstrate that adenylate kinase catalytic activity is critical for proper regulation of the PHO and ADE pathways. We also establish that adk1 deletion and purine limitation have similar effects on both adenylic nucleotide pool and PHO84 or ADE17 expression. Finally, we show that, in the adk1 mutant, upregulation of ADE1 depends on synthesis of the previously described effector(s) (S)AICAR ((N-succinyl)-5-aminoimidazol-4-carboxamide ribotide), while upregulation of PHO84 necessitates the Spl2p positive regulator. This work reveals that adenylic nucleotide availability is a key signal used by yeast to co-ordinate phosphate utilization and purine synthesis.
Collapse
Affiliation(s)
- Sébastien Gauthier
- Université Victor Segalen/Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gu Y, Gordon DM, Amutha B, Pain D. A GTP:AMP phosphotransferase, Adk2p, in Saccharomyces cerevisiae. Role of the C terminus in protein folding/stabilization, thermal tolerance, and enzymatic activity. J Biol Chem 2005; 280:18604-9. [PMID: 15753074 DOI: 10.1074/jbc.m500847200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinases participate in maintaining the homeostasis of cellular nucleotides. Depending on the yeast strains, the GTP:AMP phosphotransferase is encoded by the nuclear gene ADK2 with or without a single base pair deletion/insertion near the 3' end of the open reading frame, and the corresponding protein exists as either Adk2p (short) or Adk2p (long) in the mitochondrial matrix. These two forms are identical except that the three C-terminal residues of Adk2p (short) are changed in Adk2p (long), and the latter contains an additional nine amino acids at the C terminus of the protein. The short form of Adk2p has so far been considered to be inactive (Schricker, R., Magdolen, V., Strobel, G., Bogengruber, E., Breitenbach, M., and Bandlow, W. (1995) J. Biol. Chem. 270, 31103-31110). Using purified proteins, we show that at the physiological temperature for yeast growth (30 degrees C), both short and long forms of Adk2p are enzymatically active. However, in contrast to the short form, Adk2p (long) is quite resistant to thermal inactivation, urea denaturation, and degradation by trypsin. Unfolding of the long form by high concentrations of urea greatly stimulated its import into isolated mitochondria. Using an integration-based gene-swapping approach, we found that regardless of the yeast strains used, the steady state levels of endogenous Adk2p (long) in mitochondria were 5-10-fold lower compared with those of Adk2p (short). Together, these results suggest that the modified C-terminal domain in Adk2p (long) is not essential for enzyme activity, but it contributes to and strengthens protein folding and/or stability and is particularly important for maintaining enzyme activity under stress conditions.
Collapse
Affiliation(s)
- Yajuan Gu
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103-1709, USA
| | | | | | | |
Collapse
|
8
|
Ginger ML, Ngazoa ES, Pereira CA, Pullen TJ, Kabiri M, Becker K, Gull K, Steverding D. Intracellular Positioning of Isoforms Explains an Unusually Large Adenylate Kinase Gene Family in the Parasite Trypanosoma brucei. J Biol Chem 2005; 280:11781-9. [PMID: 15657034 DOI: 10.1074/jbc.m413821200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinases occur classically as cytoplasmic and mitochondrial enzymes, but the expression of seven adenylate kinases in the flagellated protozoan parasite Trypanosoma brucei (order, Kinetoplastida; family, Trypanosomatidae) easily exceeds the number of isoforms previously observed within a single cell and raises questions as to their location and function. We show that a requirement to target adenylate kinase into glycosomes, which are unique kinetoplastid-specific microbodies of the peroxisome class in which many reactions of carbohydrate metabolism are compartmentalized, and two different flagellar structures as well as cytoplasm and mitochondrion explains the expansion of this gene family in trypanosomes. The three isoforms that are selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, which is essential for motility, all contain long N-terminal extensions. Biochemical analysis of the only short form trypanosome adenylate kinase revealed that this enzyme catalyzes phosphotransfer of gamma-phosphate from ATP to AMP, CMP, and UMP acceptors; its high activity and specificity toward CMP is likely to reflect an adaptation to very low intracellular cytidine nucleotide pools. Analysis of some of the phosphotransfer network using RNA interference suggests considerable complexity within the homeostasis of cellular energetics. The anchoring of specific adenylate kinases within two distinct flagellar structures provides a paradigm for metabolic organization and efficiency in other flagellates.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ulschmid JK, Rahlfs S, Schirmer RH, Becker K. Adenylate kinase and GTP:AMP phosphotransferase of the malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 2004; 136:211-20. [PMID: 15478799 DOI: 10.1016/j.molbiopara.2004.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For coping with energetic and synthetic challenges, parasites require high activities of adenylate kinase (AK; ATP + AMP <==> 2 ADP) and GTP:AMP phosphotransferase (GAK; GTP + AMP <==> GDP + ADP). These enzymes were identified in erythrocytic stages of Plasmodium falciparum. The genes encoding PfAK and PfGAK are located on chromosomes 10 and 4, respectively. Molecular cloning and heterologous expression in E. coli yielded enzymatically active proteins of 28.9 (PfAK) and 28.0 kDa (PfGAK). Recombinant PfAK resembles authentic PfAK in its biochemical characteristics including the possible association with a stabilizing protein and the high specificity for AMP as the mononucleotide substrate. Specificity is less stringent for the triphosphate, with ATP as the best substrate (75 U/mg; kcat = 2160 min(-1) at 25 degrees C). PfAK contains the sequence of the amphiphatic helix that is known to mediate translocation of the cytosolic protein into the mitochondrial intermembrane space. PfGAK exhibits substrate preference for GTP and AMP (100 U/mg; kcat = 2800 min(-1) at 25 degrees C); notably, there is no detectable activity with ATP. In contrast to its human orthologue (AK3), PfGAK contains a zinc finger motif and binds ionic iron. The dinucleoside pentaphosphate compounds AP5A and GP5A inhibited PfAK and PfGAK, respectively, with Ki values of approximately 0.2 microM which is more than 250-fold lower than the KM values determined for the nucleotide substrates. The disubstrate inhibitors are useful for studying the enzymatic mechanism of PfAK and PfGAK as well as their function in adenine nucleotide homeostasis; in addition, the chimeric inhibitors represent interesting lead compounds for developing nucleosides to be used as antiparasitic agents.
Collapse
Affiliation(s)
- Julia K Ulschmid
- Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
10
|
Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333:781-815. [PMID: 14568537 DOI: 10.1016/j.jmb.2003.08.040] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences and structures of all P-loop-fold proteins were compared with the aim of reconstructing the principal events in the evolution of P-loop-containing kinases. It is shown that kinases and some related proteins comprise a monophyletic assemblage within the P-loop NTPase fold. An evolutionary classification of these proteins was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of approximately 40 distinct protein families within the P-loop kinase class. Most of these enzymes phosphorylate nucleosides and nucleotides, as well as sugars, coenzyme precursors, adenosine 5'-phosphosulfate and polynucleotides. In addition, the class includes sulfotransferases, amide bond ligases, pyrimidine and dihydrofolate reductases, and several other families of enzymes that have acquired new catalytic capabilities distinct from the ancestral kinase reaction. Our reconstruction of the early history of the P-loop NTPase fold includes the initial split into the common ancestor of the kinase and the GTPase classes, and the common ancestor of ATPases. This was followed by the divergence of the kinases, which primarily phosphorylated nucleoside monophosphates (NMP), but could have had broader specificity. We provide evidence for the presence of at least two to four distinct P-loop kinases, including distinct forms specific for dNMP and rNMP, and related enzymes in the last universal common ancestor of all extant life forms. Subsequent evolution of kinases seems to have been dominated by the emergence of new bacterial and, to a lesser extent, archaeal families. Some of these enzymes retained their kinase activity but evolved new substrate specificities, whereas others acquired new activities, such as sulfate transfer and reduction. Eukaryotes appear to have acquired most of their kinases via horizontal gene transfer from Bacteria, partly from the mitochondrial and chloroplast endosymbionts and partly at later stages of evolution. A distinct superfamily of kinases, which we designated DxTN after its sequence signature, appears to have evolved in selfish replicons, such as bacteriophages, and was subsequently widely recruited by eukaryotes for multiple functions related to nucleic acid processing and general metabolism. In the course of this analysis, several previously undetected groups of predicted kinases were identified, including widespread archaeo-eukaryotic and archaeal families. The results could serve as a framework for systematic experimental characterization of new biochemical and biological functions of kinases.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
11
|
Schricker R, Angermayr M, Strobel G, Klinke S, Korber D, Bandlow W. Redundant mitochondrial targeting signals in yeast adenylate kinase. J Biol Chem 2002; 277:28757-64. [PMID: 12045196 DOI: 10.1074/jbc.m201561200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast adenylate kinase (Aky2p, Adk1p) occurs simultaneously in cytoplasm and mitochondrial intermembrane space. It has no cleavable mitochondrial targeting sequence, and the signal for mitochondrial import and submitochondrial sorting is largely unknown. The extreme N terminus of Aky2p is able to direct cytoplasmic passengers to mitochondria. However, an Aky2 mutant lacking this sequence is imported with about the same efficiency as the wild type. To identify possible import-relevant information in the interior, parts of Aky2p were exchanged by homologous in vitro recombination for the respective segments of the purely cytoplasmic isozyme, Ura6p. Import studies revealed an internal region of about 40 amino acids, which was sufficient to direct the chimera to mitochondria but not for correct submitochondrial sorting. The respective Ura6p hybrid was arrested in the mitochondrial membrane at a position where it was inaccessible to protease but was released by alkaline extraction, suggesting that it had entered an import channel and passed the initial steps of recognition and uptake. Site-specific mutations within the presumptive address-specifying segment identified the amphipathic helix 5. A Ura6 mutant protein in which helix 5 had been replaced with the respective sequence from Aky2p was imported, and this address sequence cooperates with the N terminus in the respective double mutant in a synergistic fashion.
Collapse
Affiliation(s)
- Roland Schricker
- Department Biologie I, Bereich Genetik, Ludwig Maximilians Universität München, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Strobel G, Zollner A, Angermayr M, Bandlow W. Competition of spontaneous protein folding and mitochondrial import causes dual subcellular location of major adenylate kinase. Mol Biol Cell 2002; 13:1439-48. [PMID: 12006643 PMCID: PMC111117 DOI: 10.1091/mbc.01-08-0396] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sorting of cytoplasmically synthesized proteins to their target compartments usually is highly efficient so that cytoplasmic precursor pools are negligible and a particular gene product occurs at one subcellular location only. Yeast major adenylate kinase (Adk1p/Aky2p) is one prominent exception to this rule. In contrast to most mitochondrial proteins, only a minor fraction (6-8%) is taken up into the mitochondrial intermembrane space, whereas the bulk of the protein remains in the cytosol in sequence-identical form. We demonstrate that Adk1p/Aky2p uses a novel mechanism for subcellular partitioning between cytoplasm and mitochondria, which is based on competition between spontaneous protein folding and mitochondrial targeting and import. Folding is spontaneous and rapid and can dispense with molecular chaperons. After denaturation, enzymatic activity of Adk1p/Aky2p returns within a few minutes and, once folded, the protein is thermally and proteolytically very stable. In an uncoupled cell-free organellar import system, uptake of Adk1p/Aky2p is negligible, but can be improved by previous chaotropic denaturation. Import ensues independently of Hsp70 or membrane potential. Thus, nascent Adk1p/Aky2p has two options: either it is synthesized to completion and folds into an enzymatically active import-incompetent conformation that remains in the cytosol; or, during synthesis and before commencement of significant tertiary structure formation, it reaches a mitochondrial surface receptor and is internalized.
Collapse
Affiliation(s)
- Gertrud Strobel
- Institut für Genetik und Mikrobiologie der Universität München, D-80638 Munich, Germany
| | | | | | | |
Collapse
|
13
|
Angermayr M, Strobel G, Zollner A, Korber D, Bandlow W. Two parameters improve efficiency of mitochondrial uptake of adenylate kinase: decreased folding velocity and increased propensity of N-terminal alpha-helix formation. FEBS Lett 2001; 508:427-32. [PMID: 11728466 DOI: 10.1016/s0014-5793(01)03122-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The long isoform of eukaryotic adenylate kinase has a dual subcellular location in the cytoplasm and in the mitochondrial intermembrane space. Protein sequences and modifications are identical in both locations. In yeast, the bulk of the major form of adenylate kinase (Aky2p) is in the cytoplasm and, in the steady state, only 5-8% is sorted to the mitochondrial intermembrane space. Since the reasons for exclusion from mitochondrial import are unclear, we have constructed aky2 mutants with elevated mitochondrial uptake efficiency of Aky2p in vivo and in vitro. We have analyzed the effect of the mutations on secondary structure prediction in silico and have tested folding velocity and folding stability. One type of mutants displayed decreased proteolytic stability and retarded renaturation kinetics after chaotropic denaturation implying that deterioration of folding leads to prolonged presentation of target information to mitochondrial import receptors, thereby effecting improved uptake. In a second type of mutants, increased import efficiency was correlated with an increased probability of formation of an alpha-helix with increased amphipathic moment at the N-terminus suggesting that targeting interactions with mitochondrial import receptors had been improved at the level of binding affinity.
Collapse
Affiliation(s)
- M Angermayr
- Institut für Genetik und Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638, Munich, Germany
| | | | | | | | | |
Collapse
|
14
|
Angermayr M, Strobel G, Müller G, Bandlow W. Stable plasma membrane expression of the soluble domain of the human insulin receptor in yeast. FEBS Lett 2000; 481:8-12. [PMID: 10984606 DOI: 10.1016/s0014-5793(00)01960-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The soluble cytoplasmic kinase domain of the human insulin receptor was N-terminally equipped with either an N-acetylation or a dual-acylation motif (MGC box, to allow myristoylation/palmitoylation) and expressed in yeast cells under the control of the inducible CUP1 promoter. Although the cellular concentration was about the same in both instances (reflecting similar stability against proteolysis), only the myristoylated protein was capable of autophosphorylation to a significant extent and was active to phosphorylate endogenous yeast proteins at tyrosine residues in vivo. Cellular subfractionation showed that the insulin receptor was associated with plasma membranes, from where it was not extractable with high salt or alkali, but a significant fraction was also localized in the nuclear fraction. The myristoylated protein is absent from the cytoplasm. No effect of expression of either the acetylated or the myristoylated version on growth and respiration on various carbon sources was detected, suggesting a failure of the active insulin receptor kinase domain to couple to yeast (glucose) signalling cascades.
Collapse
Affiliation(s)
- M Angermayr
- Institut für Genetik und Mikrobiologie, Maria-Ward-Strasse 1a, Munich, Germany
| | | | | | | |
Collapse
|
15
|
Juhnke H, Charizanis C, Latifi F, Krems B, Entian KD. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 2000; 35:936-48. [PMID: 10692169 DOI: 10.1046/j.1365-2958.2000.01768.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pos9 (Skn7) is an important transcription factor that, together with Yap1, induces the expression of oxidative stress target genes in Saccharomyces cerevisiae. The activation of Pos9 upon an oxidative stress signal occurs post-translationally. In a mutant screen for factors involved in the activation of a Pos9-dependent reporter gene upon oxidative stress, we identified the mutant fap7-1 (for factor activating Pos9). This point mutant failed to activate a Gal4-Pos9 hybrid transcription factor, assayed by hydrogen peroxide-induced GAL1-lacZ reporter gene activities. Additionally, the fap7-1 mutant strain was sensitive to oxidative stress and revealed slow growth on glucose compared with the wild type. The fap7-1 mutation also affected the induction of the Pos9 target gene TPX1 and of a synthetic promoter previously identified to be regulated in a Yap1- and Pos9-dependent manner. This lack of induction was specific as the fap7-1 mutant response to other stresses such as sodium chloride or co-application of both hydrogen peroxide and sodium chloride was not affected, as tested with the Pos9-independent expression pattern of a TPS2-lacZ reporter system. We identified the gene YDL166c to be allelic to the FAP7 gene and to be essential. Fluorescence microscopy of Fap7-GFP fusion proteins indicated a nuclear localization of the Fap7 protein. Our data suggest that Fap7 is a nuclear factor important for Pos9-dependent target gene transcription upon oxidative stress.
Collapse
Affiliation(s)
- H Juhnke
- Institut für Mikrobiologie der Johann Wolfgang Goethe-Universität Frankfurt, Biozentrum, Niederursel, Marie-Curie-Strasse 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
16
|
Van Rompay AR, Johansson M, Karlsson A. Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme. Mol Pharmacol 1999; 56:562-9. [PMID: 10462544 DOI: 10.1124/mol.56.3.562] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of deoxycytidine analogs by cellular enzymes is a prerequisite for the activity of these compounds. We have investigated the kinetic parameters for the phosphorylation of 1-beta-D-arabinofuranosylcytosine (araC) and 2', 2'-difluorodeoxycytidine (dFdC) to their diphosphate forms catalyzed by human UMP-CMP kinase. We cloned the cDNA of this enzyme to enable characterization of the recombinant protein, determine its expression in different tissues, and determine the chromosome location of the gene. We showed that the recombinant UMP-CMP kinase phosphorylated CMP, dCMP, and UMP with highest efficiency and dUMP, AMP, and dAMP with lower efficiency. The monophosphates of araC and dFdC were shown to be phosphorylated with similar efficiency as dCMP and CMP. We further showed, in a combined enzymatic assay, that human deoxycytidine kinase and UMP-CMP kinase together phosphorylated araC, dFdC, and 2',3'-dideoxycytidine to their diphosphate forms. Northern blot analysis showed that the UMP-CMP kinase mRNA was ubiquitously present in human tissues as a 3.9-kb transcript with highest levels in pancreas, skeletal muscle, and liver. The human UMP-CMP kinase gene was localized to chromosome 1p34.1-1p33 by radiation hybrid analysis. We further expressed the UMP-CMP kinase as a fusion protein to the green fluorescent protein in Chinese hamster ovary cells, and showed that the fusion protein was located in the cytosol and nucleus.
Collapse
Affiliation(s)
- A R Van Rompay
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Donzeau M, Bandlow W. The yeast trimeric guanine nucleotide-binding protein alpha subunit, Gpa2p, controls the meiosis-specific kinase Ime2p activity in response to nutrients. Mol Cell Biol 1999; 19:6110-9. [PMID: 10454558 PMCID: PMC84533 DOI: 10.1128/mcb.19.9.6110] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae Gpa2p, the alpha subunit of a heterotrimeric guanine nucleotide-binding protein (G protein), is involved in the regulation of vegetative growth and pseudohyphal development. Here we report that Gpa2p also controls sporulation by interacting with the regulatory domain of Ime2p (Sme1p), a protein kinase essential for entrance of meiosis and sporulation. Protein-protein interactions between Gpa2p and Ime2p depend on the GTP-bound state of Gpa2p and correlate with down-regulation of Ime2p kinase activity in vitro. Overexpression of Ime2p inhibits pseudohyphal development and enables diploid cells to sporulate even in the presence of glucose or nitrogen. In contrast, overexpression of Gpa2p in cells simultaneously overproducing Ime2p results in a drastic reduction of sporulation efficiency, demonstrating an inhibitory effect of Gpa2p on Ime2p function. Furthermore, deletion of GPA2 accelerates sporulation on low-nitrogen medium. These observations are consistent with the following model. In glucose-containing medium, diploid cells do not sporulate because Ime2p is inactive or expressed at low levels. Upon starvation, expression of Gpa2p and Ime2p is induced but sporulation is prevented as long as nitrogen is present in the medium. The negative control of Ime2p kinase activity is exerted at least in part through the activated form of Gpa2p and is released as soon as nutrients are exhausted. This model attributes a switch function to Gpa2p in the meiosis-pseudohyphal growth decision.
Collapse
Affiliation(s)
- M Donzeau
- Institut für Genetik und Mikrobiologie, Ludwig-Maximilians-Universität München, D-80638 Munich, Germany
| | | |
Collapse
|
18
|
Van Rompay AR, Johansson M, Karlsson A. Identification of a novel human adenylate kinase. cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:509-17. [PMID: 10215863 DOI: 10.1046/j.1432-1327.1999.00294.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenylate kinases have an important role in the synthesis of adenine nucleotides that are required for cellular metabolism. We report the cDNA cloning of a novel 22-kDa human enzyme that is sequence related to the human adenylate kinases and to UMP/CMP kinase of several species. The enzyme was expressed in Escherichia coli and shown to catalyse phosphorylation of AMP and dAMP with ATP as phosphate donor. When GTP was used as phosphate donor, the enzyme phosphorylated AMP, CMP, and to a small extent dCMP. Expression as a fusion protein with the green fluorescent protein showed that the enzyme is located in the cytosol. Northern blot analysis with mRNA from eight different human tissues demonstrated that the enzyme was expressed exclusively in brain, with two mRNA isoforms of 2.4 and 4.0 kb. The gene that encoded the enzyme was localized to chromosome 1p31. Based on the substrate specificity and the sequence similarity with the previously identified human adenylate kinases, we have named this novel enzyme adenylate kinase 5.
Collapse
Affiliation(s)
- A R Van Rompay
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Kaneko S, Miyazaki Y, Yasuda T, Shishido K. Cloning, sequence analysis and expression of the basidiomycete Lentinus edodes gene uck1, encoding UMP-CMP kinase, the homologue of Saccharomyces cerevisae URA6 gene. Gene 1998; 211:259-66. [PMID: 9602145 DOI: 10.1016/s0378-1119(98)00099-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sequence analysis of the downstream region of the basidiomycete Lentinus edodes priB gene encoding a protein with a 'Zn(II)2Cys6 zinc cluster' DNA-binding motif (Endo, H., Kajiwara, S., Tunoka, O., Shishido, K., 1994. A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene 139, 117-121) suggested the presence of a Saccharomyces cerevisiae URA6 gene homologue encoding UMP kinase. We isolated a corresponding cDNA from a mature fruiting-body cDNA library of L. edodes. The nucleotide sequence of this was determined and compared with that of the genomic DNA, revealing that the URA6 gene homologue encodes 227 amino acids (aa) and is interrupted by four small introns. The deduced aa sequence showed an overall identity of 51.1% to that of the S. cerevisiae URA6 gene product. The URA6 homologue protein produced in Escherichia coli using the glutathione S-transferase gene fusion system was found to catalyze the phosphoryl transfer from ATP to UMP and CMP efficiently and also to AMP and dCMP with lower efficiencies. Thus, the URA6 gene homologue was designated uck1 and its product UMP-CMP kinase. Northern-blot analysis showed that the uck1 is actively transcribed in the gill tissue of mature fruiting bodies of L. edodes, implying that uck1 may play a role during the formation of basidiospores occurs in the gill tissue.
Collapse
Affiliation(s)
- S Kaneko
- Department of Life Science, Faculty of Bioscience, Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
20
|
Zhou L, Lacroute F, Thornburg R. Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. PLANT PHYSIOLOGY 1998; 117:245-54. [PMID: 9576794 PMCID: PMC35009 DOI: 10.1104/pp.117.1.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 02/10/1998] [Indexed: 05/18/2023]
Abstract
A cDNA encoding the Arabidopsis thaliana uridine 5'-monophosphate (UMP)/cytidine 5'-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase proteins. The cDNA was subcloned into pGEX-4T-3 and expressed as a glutathione S-transferase fusion protein in Escherichia coli. Following proteolytic digestion, the plant UMP/CMP kinase was purified and analyzed for its structural and kinetic properties. The mass, N-terminal sequence, and total amino acid composition agreed with the sequence and composition predicted from the cDNA sequence. Kinetic analysis revealed that the UMP/CMP kinase preferentially uses ATP (Michaelis constant [Km] = 29 microM when UMP is the other substrate and Km = 292 microM when CMP is the other substrate) as a phosphate donor. However, both UMP (Km = 153 microM) and CMP (Km = 266 microM) were equally acceptable as the phosphate acceptor. The optimal pH for the enzyme is 6.5. P1, P5-di(adenosine-5') pentaphosphate was found to be a competitive inhibitor of both ATP and UMP.
Collapse
Affiliation(s)
- L Zhou
- Department of Biochemistry and Biophysics, Iowa State University, Ames,Iowa 50011, USA
| | | | | |
Collapse
|
21
|
Sánchez LB, Müller M. Cloning and heterologous expression of Entamoeba histolytica adenylate kinase and uridylate/cytidylate kinase. Gene 1998; 209:219-28. [PMID: 9524270 DOI: 10.1016/s0378-1119(98)00053-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have isolated two cDNA clones encoding Entamoeba histolytica nucleotide kinases, EhAK and EhUK, expressed them in E. coli and performed functional studies of the recombinant enzymes. Nucleotide sequence analysis showed that EhAK and EhUK genes exhibited the features characteristic of E. histolytica genes, such as transcripts with relatively short 5' and 3' untranslated flanking regions containing the conserved E. histolytica transcription promoter elements located 5' to the initiation codon and a polyadenylation signal in the 3' UTR, a distinctive codon usage bias for A or T in the third position and an AT bias greater than 75% in the flanking regions of the transcripts. At the protein level, both enzymes belong to the short variant nucleoside monophosphate (NMP) kinases, which lack a 29amino acid LID region present in the long variant isoenzymes. EhAK was 30-38% identical to the members of the adenylate kinase (AK) family while EhUK was more similar (48-49% identity) to UMP/CMP kinases. Both enzymes used ATP as preferred phosphate-group donor but each one exhibited strict specificity for the acceptor NMP, EhAK for AMP and EhUK for the pyrimidine nucleoside monophosphates UMP and CMP. Biochemical characterization of the enzymes and phylogenetic reconstruction showed that EhUK is an authentic and well conserved member of the UMP/CMP kinase group while EhAK is the most divergent member known of the AK1 isoenzymes.
Collapse
Affiliation(s)
- L B Sánchez
- The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
22
|
Bandlow W, Strobel G, Schricker R. Influence of N-terminal sequence variation on the sorting of major adenylate kinase to the mitochondrial intermembrane space in yeast. Biochem J 1998; 329 ( Pt 2):359-67. [PMID: 9425120 PMCID: PMC1219052 DOI: 10.1042/bj3290359] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major adenylate kinase (Aky2p) from yeast has no cleavable presequence and occurs in identical form in the mitochondrial intermembrane space (6-8%) and in the cytoplasm (approx. 90%). To identify the signal(s) on Aky2p that might be required for mitochondrial import, the N-terminal region was examined. The N-terminus of Aky2p can guide at least two cytoplasmic passengers, dihydrofolate reductase from mouse and UMP kinase (Ura6p) from yeast, to the intermembrane space in vivo, showing that the N-terminus harbours import information. In contrast, deletion of the eight N-terminal amino acid residues or the introduction of two compensating frameshifts into this segment does not abolish translocation into the organelle's intermembrane space. Thus internal targeting and sorting information must be present in Aky2p as well. Neither a pronounced amphiphilic alpha-helical moment nor positive charges in the N-terminal region is a necessary prerequisite for Aky2p to reach the intermembrane space. Even a surplus of negative charges in mutant N-termini does not impede basal import into the correct submitochondrial compartment. The potential to form an amphipathic alpha-helical structure of five to eight residues close to the N-terminus significantly improves import efficiency, whereas extension of this amphipathic structure, e.g. by replacing it with the homologous segment of Aky3p, a mitochondrial matrix protein from yeast, leads to misdirection of the chimaera to the matrix compartment. This shows that the topogenic N-terminal signal of Aky3p is dominant over the presumptive internal intermembrane space-targeting signal of Aky2p and argues that the sorting of wild-type Aky2p to the intermembrane space is not due to the presence in the protein of a specific sorting sequence for the intermembrane space, but rather is the consequence of being imported but not being sorted to the inner compartment. Some Aky2 mutant proteins are susceptible to proteolysis in the cytoplasm, indicating incorrect folding. They are nevertheless efficiently rescued by uptake into mitochondria, suggesting a negative correlation between folding velocity (or folding stability) and efficiency of import.
Collapse
Affiliation(s)
- W Bandlow
- Institut für Genetik und Mikrobiologie, Universität München, Maria-Ward-Strasse 1a, D-80638 München, Federal Republic of Germany
| | | | | |
Collapse
|
23
|
Fukami-Kobayashi K, Nosaka M, Nakazawa A, Go M. Ancient divergence of long and short isoforms of adenylate kinase: molecular evolution of the nucleoside monophosphate kinase family. FEBS Lett 1996; 385:214-20. [PMID: 8647254 DOI: 10.1016/0014-5793(96)00367-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adenylate kinases (AK) from vertebrates are separated into three isoforms, AK1, AK2 and AK3, based on structure, subcellular localization and substrate specificity. AK1 is the short type with the amino acid sequence being 27 residues shorter than sequences of the long types, AK2 and AK3. A phylogenetic tree prepared for the AK isozymes and other members of the nucleoside monophosphate (NMP) kinase family shows that the divergence of long and short types occurred first and then differentiation in subcellular localization or substrate specificity took place. The first step involved a drastic change in the three-dimensional structure of the LID domain. The second step was caused mainly by smaller changes in amino acid sequences.
Collapse
|
24
|
Klier H, Magdolen V, Schricker R, Strobel G, Lottspeich F, Bandlow W. Cytoplasmic and mitochondrial forms of yeast adenylate kinase 2 are N-acetylated. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1280:251-6. [PMID: 8639701 DOI: 10.1016/0005-2736(95)00304-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Yeast major adenylate kinase (Aky2p), encoded by a single gene, occurs in two subcellular compartments, mitochondria and cytoplasm. Only 6-8% of the protein which has no cleavable presequence is imported into the organelle (Bandlow et al. (1988) Eur. J. Biochem. 178, 451-457). In the wild type two AKY2-derived signals (a major and a minor one) were detected by a monospecific antibody after two-dimensional gel electrophoresis and Western blotting. The signals reflected identical electrophoretic mobilities and were absent from an AKY2-disrupted strain suggesting that they were due to differently modified forms of Aky2p. Two similar signals were found in a mutant defective in protein N-acetylation, however, the pI values of both spots were shifted towards alkaline pH by one charge. This indicated that both forms of Aky2p were N-acetylated in the wild type and that their charge difference was not caused by incomplete N-acetylation. This observation furthermore suggested that, in the wild type, two different modifications exist one of which is N-acetylation. The second modification remains unidentified. We analysed the influence of protein N-acetylation on mitochondrial import. Both versions of Aky2p occurred in the cytoplasm and in mitochondria. Their proportion was unchanged in the N-acetylation mutant showing that neither modification affected the efficiency of import of adenylate kinase into mitochondria. It is discussed that N-acetylation occurs during or immediately after translation in the cytoplasm so that import of adenylate kinase may ensue co-translationally.
Collapse
Affiliation(s)
- H Klier
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Schricker R, Magdolen V, Strobel G, Bogengruber E, Breitenbach M, Bandlow W. Strain-dependent occurrence of functional GTP:AMP phosphotransferase (AK3) in Saccharomyces cerevisiae. J Biol Chem 1995; 270:31103-10. [PMID: 8537371 DOI: 10.1074/jbc.270.52.31103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gene for yeast GTP:AMP phosphotransferase (PAK3) was found to encode a nonfunctional protein in 10 laboratory strains and one brewers' strain. The protein product showed high similarity to vertebrate AK3 and was located exclusively in the mitochondrial matrix. The deduced amino acid sequence revealed a protein that was shorter at the carboxyl terminus than all other known adenylate kinases. Introduction of a +1 frameshift into the 3'-terminal region of the gene extended homology of the deduced amino acid sequence to other members of the adenylate kinase family including vertebrate AK3. Frameshift mutations obtained after in vitro and in vivo mutagenesis were capable of complementing the adk1 temperature-conditional deficiency in Escherichia coli, indicating that the frameshift led to the expression of a protein that could phosphorylate AMP. Some yeasts, however, including strain D273-10B, two wine yeasts, and two more distantly related yeast genera, harbored an active allele, named AKY3, which contained a +1 frameshift close to the carboxyl terminus as compared with the laboratory strains. The encoded protein exhibited GTP:AMP and ITP:AMP phosphotransferase activities but did not accept ATP as phosphate donor. Although single copy in the haploid genome, disruption of the AKY3 allele displayed no phenotype, excluding the possibility that laboratory and brewers' strains had collected second site suppressors. It must be concluded that yeast mitochondria can completely dispense with GTP:AMP phosphotransferase activity.
Collapse
Affiliation(s)
- R Schricker
- Institut für Genetik und Mikrobiologie, Universität München, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Estévez AM, Heinisch JJ, Aragón JJ. Functional complementation of yeast phosphofructokinase mutants by the non-allosteric enzyme from Dictyostelium discoideum. FEBS Lett 1995; 374:100-4. [PMID: 7589492 DOI: 10.1016/0014-5793(95)01085-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phosphofructokinase (PFK) from yeast has been replaced by the non-allosteric isozyme from the slime mold Dictyostelium discoideum. This has been achieved by overexpression of the latter in a PFK-deficient strain of Saccharomyces cerevisiae under the control of the PFK2 promoter. Transformants complemented the glucose-negative growth phenotype exhibiting generation times on glucose-containing media similar to those of an untransformed strain being wild-type for yeast PFK genes. The PFK produced reacted with an antibody against D. discoideum PFK. It exhibited the same subunit size, quaternary structure and kinetic parameters than those of the wild-type enzyme, and was also devoid of specific regulatory properties.
Collapse
Affiliation(s)
- A M Estévez
- Departamento de Bioquímica de la UAM, Facultad de Medicina, Universidad Autónoma, Madrid, Spain
| | | | | |
Collapse
|
27
|
Wiesmüller L, Scheffzek K, Kliche W, Goody RS, Wittinghofer A, Reinstein J. Crystallization and preliminary X-ray analysis of UMP/CMP-kinase from Dictyostelium discoideum with the specific bisubstrate inhibitor P1-(adenosine 5')-P5-(uridine 5')-pentaphosphate (UP5A). FEBS Lett 1995; 363:22-4. [PMID: 7729545 DOI: 10.1016/0014-5793(95)00271-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UMP/CMP-kinase (UK) from the slime mold Dictyostelium discoideum has been purified to high homogeneity and co-crystallized with the bisubstrate inhibitor P1-(adenosine 5')-P5-(uridine 5')-pentaphosphate (UP5A). UP5A binds to UK with a dissociation constant (Kd) of 3 +/- 0.5 nM at 25 degrees C and pH 7.5. This is some 50-fold tighter than the binding of P1,P5-(diadenosine 5')-pentaphosphate (AP5A, Kd = 160 +/- 15 nM). AP5A is a bisubstrate inhibitor that is specific for adenylate kinase. The crystals have the symmetry of the tetragonal space group P4(1)2(1)2 or its enantiomorph P4(3)2(1)2. The unit cell dimensions are a = b = 78.5 A and c = 101.4 A. The crystals diffract to a Bragg spacing of 2.1 A.
Collapse
Affiliation(s)
- L Wiesmüller
- Max-Planck-Institut für medizinische Forschung, Abteilung Biophysik, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Ozier-Kalogeropoulos O, Adeline MT, Yang WL, Carman GM, Lacroute F. Use of synthetic lethal mutants to clone and characterize a novel CTP synthetase gene in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:431-9. [PMID: 8121398 DOI: 10.1007/bf00281793] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5'-triphosphate (UTP) to cytidine 5'-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.
Collapse
Affiliation(s)
- O Ozier-Kalogeropoulos
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire propre associé, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|