1
|
Gravells P, Ahrabi S, Vangala RK, Tomita K, Brash JT, Brustle LA, Chung C, Hong JM, Kaloudi A, Humphrey TC, Porter ACG. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair. Hum Mol Genet 2015; 24:7097-110. [PMID: 26423459 PMCID: PMC4654060 DOI: 10.1093/hmg/ddv409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
Collapse
Affiliation(s)
- Polly Gravells
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Sara Ahrabi
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rajani K Vangala
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Kazunori Tomita
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - James T Brash
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Lena A Brustle
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Christopher Chung
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Julia M Hong
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Aikaterini Kaloudi
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Timothy C Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| |
Collapse
|
2
|
Bianchi M, Crinelli R, Giacomini E, Carloni E, Radici L, Magnani M. Yin Yang 1 intronic binding sequences and splicing elicit intron-mediated enhancement of ubiquitin C gene expression. PLoS One 2013; 8:e65932. [PMID: 23776572 PMCID: PMC3680475 DOI: 10.1371/journal.pone.0065932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/02/2013] [Indexed: 12/28/2022] Open
Abstract
In a number of organisms, introns affect expression of the gene in which they are contained. Our previous studies revealed that the 5′-UTR intron of human ubiquitin C (UbC) gene is responsible for the boost of reporter gene expression and is able to bind, in vitro, Yin Yang 1 (YY1) trans-acting factor. In this work, we demonstrate that intact YY1 binding sequences are required for maximal promoter activity and YY1 silencing causes downregulation of luciferase mRNA levels. However, YY1 motifs fail to enhance gene expression when the intron is moved upstream of the proximal promoter, excluding the typical enhancer hypothesis and supporting a context-dependent action, like intron-mediated enhancement (IME). Yet, almost no expression is seen in the construct containing an unspliceable version of UbC intron, indicating that splicing is essential for promoter activity. Moreover, mutagenesis of YY1 binding sites and YY1 knockdown negatively affect UbC intron removal from both endogenous and reporter transcripts. Modulation of splicing efficiency by YY1 cis-elements and protein factor may thus be part of the mechanism(s) by which YY1 controls UbC promoter activity. Our data highlight the first evidence of the involvement of a sequence-specific DNA binding factor in IME.
Collapse
Affiliation(s)
- Marzia Bianchi
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section, University of Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
3
|
Doig J, Anderson C, Lawrence NJ, Selfridge J, Brownstein DG, Melton DW. Mice with skin-specific DNA repair gene (Ercc1) inactivation are hypersensitive to ultraviolet irradiation-induced skin cancer and show more rapid actinic progression. Oncogene 2006; 25:6229-38. [PMID: 16682947 DOI: 10.1038/sj.onc.1209642] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ercc1 has an essential role in the nucleotide excision repair (NER) pathway that protects against ultraviolet (UV)-induced DNA damage and is also involved in additional repair pathways. The premature death of simple Ercc1 mouse knockouts meant that we were unable to study the role of Ercc1 in the skin. To do this, we have used the Cre-lox system to generate a skin-specific Ercc1 knockout. With a Cre transgene under control of the bovine keratin 5 promoter we achieved 100% recombination of the Ercc1 gene in the epidermis. Hairless mice with Ercc1-deficient skin were hypersensitive to the short-term effects of UV irradiation, showing a very low minimal erythemal dose and a dramatic hyperproliferative response. Ultraviolet-irradiated mice with Ercc1-deficient skin developed epidermal skin tumours much more rapidly than controls. These tumours appeared to arise earlier in actinic progression and grew more rapidly than tumours on control mice. These responses are more pronounced than have been reported for other NER-deficient mice, demonstrating that Ercc1 has a key role in protecting against UV-induced skin cancer.
Collapse
Affiliation(s)
- J Doig
- Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
4
|
Lemoine A, Mathelin J, Braquart-Varnier C, Everaerts C, Delachambre J. A functional analysis of ACP-20, an adult-specific cuticular protein gene from the beetle Tenebrio: role of an intronic sequence in transcriptional activation during the late metamorphic period. INSECT MOLECULAR BIOLOGY 2004; 13:481-493. [PMID: 15373806 DOI: 10.1111/j.0962-1075.2004.00508.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A gene encoding the adult cuticular protein ACP-20 was isolated in Tenebrio. It consists of three exons interspersed by two introns, intron 1 interrupting the signal peptide. To understand the regulatory mechanisms of ACP-20 expression, ACP-20 promoter-luciferase reporter gene constructs were transfected into cultured pharate adult wing epidermis. Transfection assays needed the presence of 20-hydroxyecdysone, confirming that ACP-20 is up-regulated by ecdysteroids. Analysis of 5' deletion constructs revealed that three regions are necessary for high levels of transcription. Interaction experiments between intronic fragments and epidermal nuclear proteins confirmed the importance of intron 1 in ACP-20 transcriptional control, which results from the combined activity of regulatory cis-acting elements of the promoter and those of intron 1.
Collapse
Affiliation(s)
- A Lemoine
- UMR CNRS 5548, Développement et Communication Chimique chez les Insectes, Université de , Dijon, France.
| | | | | | | | | |
Collapse
|
5
|
Paisley D, Banks S, Selfridge J, McLennan NF, Ritchie AM, McEwan C, Irvine DS, Saunders PTK, Manson JC, Melton DW. Male infertility and DNA damage in Doppel knockout and prion protein/Doppel double-knockout mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2279-88. [PMID: 15161660 PMCID: PMC1615753 DOI: 10.1016/s0002-9440(10)63784-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prion protein (PrP) and Doppel (Dpl) have many structural and biochemical properties in common, leading to the suggestion that the lack of an obvious phenotype in PrP-deficient mice maybe because of compensation by Dpl. To test this hypothesis and also investigate the function of Dpl we have generated Prnd(-/-) and Prnp(-/-)/Prnd(-/-) mouse lines. Both develop normally and display an identical male sterility phenotype that differs from that reported for another Prnd(-/-) mouse line. Sperm from both our mutant lines were present at normal concentrations, had normal motility, and no morphological abnormalities. Despite only rarely fertilizing oocytes in vivo, because of an inability to perform the acrosome reaction, mutant sperm were capable of fertilization in vitro, albeit at reduced rates compared to wild type. Elevated levels of oxidative DNA damage were found in both types of mutant sperm and resulting embryos failed at an early stage. Therefore we found no evidence that Dpl compensates for the loss of PrP function in mutant mouse lines, but it does have an important anti-oxidant function necessary for sperm integrity and male fertility.
Collapse
Affiliation(s)
- Derek Paisley
- Molecular Medicine Centre, University of Edinburgh, Edinburgh, Scotland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Magin TM, Hesse M, Meier-Bornheim R, Reichelt J. Developing Mouse Models to Study Intermediate Filament Function. Methods Cell Biol 2004; 78:65-94. [PMID: 15646616 DOI: 10.1016/s0091-679x(04)78004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Thomas M Magin
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitätsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
7
|
O'Neill LP, Randall TE, Lavender J, Spotswood HT, Lee JT, Turner BM. X-linked genes in female embryonic stem cells carry an epigenetic mark prior to the onset of X inactivation. Hum Mol Genet 2003; 12:1783-90. [PMID: 12874099 DOI: 10.1093/hmg/ddg193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use chromatin immunoprecipitation to show that genes on the two active X chromosomes in undifferentiated, XX female embryonic stem cells (ES cells) are marked by hyperacetylation of all core histones, hyper(di)methylation of H3 lysine 4 and hypo(di)methylation of H3 lysine 9, compared with autosomal genes or genes on the single active X in XY male cells. The mark is found on both coding and promoter regions. On differentiation, and after the onset of X inactivation, the mark is reversed on the inactive X, whose genes show extreme hypoacetylation of all four core histones, hypo(di)methylation of H3K4 and hyper(di)methylation of H3K9. The mark is retained on the active X in female ES cells for at least several days of differentiation, but is not present in adult females. The selective marking of X-linked genes in female ES cells in a way that distinguishes them from the equivalent genes in males, is unprecedented. We suggest that the mark forms part of a chromatin-based mechanism that restricts X-inactivation to cells with more than one X chromosome.
Collapse
Affiliation(s)
- Laura P O'Neill
- Chromatin and Gene Expression Group, Anatomy Department, University of Birmingham Medical School, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
8
|
Melton DW, Ketchen AM, Kind AJ, McEwan C, Paisley D, Selfridge J. A one-step gene amplification system for use in cultured mammalian cells and transgenic animals. Transgenic Res 2001; 10:133-42. [PMID: 11305360 DOI: 10.1023/a:1008951732020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene amplification is widely used for the production of pharmaceuticals and therapeutics in situations where a mammalian system is essential to synthesise a fully active product. Current gene amplification systems require multiple rounds of selection, often with high concentrations of toxic chemicals, to achieve the highest levels of gene amplification. The use of these systems has not been demonstrated in specialised mammalian cells, such as embryonic-stem cells, which can be used to generate transgenic animals. Thus, it has not yet proved possible to produce transgenic animals containing amplified copies of a gene of interest, with the potential to synthesise large amounts of a valuable gene product. We have developed a new amplification system, based around vectors encoding a partially disabled hypoxanthine phosphoribosyltransferase (HPRT) minigene, which can achieve greater than 1000-fold amplification of HPRT and the human growth hormone gene in a single step in Chinese hamster-lung cells. The amplification system also works in mouse embryonic-stem cells and we have used it to produce mice which express 30-fold higher levels of human protein C in milk than obtained with conventional transgenesis using the same protein C construct. This system should also be applicable to large animal transgenics produced by nuclear transfer from cultured cell lines.
Collapse
Affiliation(s)
- D W Melton
- Sir Alastair Currie CRC Laboratories, Molecular Medicine Centre, Edinburgh University, Western General Hospital, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Takahashi K, Nishiyama C, Nishiyama M, Okumura K, Ra C, Ohtake Y, Yokota T. A complex composed of USF1 and USF2 activates the human FcεRI α chain expression via a CAGCTG element in the first intron. Eur J Immunol 2001. [DOI: 10.1002/1521-4141(200102)31:2<590::aid-immu590>3.0.co;2-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Gemel J, Jacobsen C, MacArthur CA. Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. J Biol Chem 1999; 274:6020-6. [PMID: 10026229 DOI: 10.1074/jbc.274.9.6020] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-8 (FGF8) plays a critical role in vertebrate development and is expressed normally in temporally and spatially restricted regions of the vertebrate embryo. We now report on the identification of regions of Fgf8 important for its transcriptional regulation in murine ES cell-derived embryoid bodies. Stable transfection of ES cells, using a human growth hormone reporter gene, was employed to identify regions of the Fgf8 gene with promoter/enhancer activity. A 2-kilobase 5' region of Fgf8 was shown to contain promoter activity. A 0.8-kilobase fragment derived from the large intron of Fgf8 was found to enhance human growth hormone expressed from the Fgf8 promoter 3-4-fold in an orientation dependent manner. The intronic fragment contains DNA-binding sites for the AP2, Pbx1, and Engrailed transcription factors. Gel shift and Western blot experiments documented the presence of these transcription factors in nuclear extracts from ES cell embryoid bodies. In vitro mutagenesis of the Engrailed or Pbx1 site demonstrated that these sites modulate the activity of the intronic fragment. In addition, in vitro mutagenesis of both Engrailed and Pbx1 sites indicated that other unidentified sites are responsible for the transcriptional enhancement observed with the intronic fragment.
Collapse
Affiliation(s)
- J Gemel
- Department of Pediatrics and Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
11
|
Foss DL, Baarsch MJ, Murtaugh MP. Regulation of hypoxanthine phosphoribosyltransferase, glyceraldehyde-3-phosphate dehydrogenase and beta-actin mRNA expression in porcine immune cells and tissues. Anim Biotechnol 1998; 9:67-78. [PMID: 9676236 DOI: 10.1080/10495399809525893] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Various "housekeeping" genes are often used as endogenous controls in gene expression experiments. We have cloned from swine, three genes commonly used as endogenous controls in other species and have characterized their relative levels of expression in various porcine tissues and their response to various cell activators. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin were readily detected by northern hybridization in various tissues and in alveolar macrophages. The expression of hypoxanthine phosphoribosyltransferase (HPRT) was detected only by northern hybridization of poly-A+ enriched RNA and by reverse transcriptase-polymerase chain reaction (RT-PCR), making it more suitable for highly sensitive detection methods. Expression of GAPDH varied less among tissues than did beta-actin, making it more useful control for comparisons of gene expression between tissues with northern hybridizations. Various treatments of cultured alveolar macrophages differentially affected levels of beta-actin and GAPDH, while HPRT expression was unchanged in alveolar macrophages or spleen cells similarly treated. Therefore, while HPRT can be used as the endogenous control with sensitive detection methods such as RT-PCR, less sensitive detection methods require a more abundant gene such as GAPDH.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/chemistry
- Actins/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern/veterinary
- Cells, Cultured
- Cloning, Molecular
- Concanavalin A/pharmacology
- Densitometry/veterinary
- Gene Expression Regulation
- Gene Expression Regulation, Enzymologic
- Glyceraldehyde-3-Phosphate Dehydrogenases/biosynthesis
- Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Humans
- Hypoxanthine Phosphoribosyltransferase/biosynthesis
- Hypoxanthine Phosphoribosyltransferase/chemistry
- Hypoxanthine Phosphoribosyltransferase/genetics
- Lipopolysaccharides/pharmacology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Polymerase Chain Reaction/veterinary
- RNA, Messenger/biosynthesis
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Swine/genetics
- Swine/immunology
- Swine/metabolism
Collapse
Affiliation(s)
- D L Foss
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
12
|
Magin TM, Schröder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C, Melton DW. Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J Cell Biol 1998; 140:1441-51. [PMID: 9508776 PMCID: PMC2132680 DOI: 10.1083/jcb.140.6.1441] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1997] [Revised: 01/15/1998] [Indexed: 02/06/2023] Open
Abstract
Here, we report on the analysis of keratin 18 null mice. Unlike the ablation of K8, which together with K18 is expressed in embryonic and simple adult epithelia, K18 null mice are viable, fertile, and show a normal lifespan. In young K18 null mice, hepatocytes were completely devoid of keratin filaments. Nevertheless, typical desmosomes were formed and maintained. Old K18 null mice, however, developed a distinctive liver pathology with abnormal hepatocytes containing K8-positive aggregates. These stained positively for ubiquitin and MM120-1 and were identified as Mallory bodies, one hallmark of human alcoholic hepatitis. This is the first demonstration that the ablation of one keratin leads to the accumulation of its single partner. Another striking finding was the absence or drastic down regulation of K7 in several tissues despite its ongoing transcription. Moreover, K18 null mice revealed new insights in the filament-forming capacity of the tail-less K19 in vivo. Due to the unexpected secondary loss of K7, only K8/19 are expressed in the uterine epithelium of K18 null mice. Immunoelectron microscopy of this tissue demonstrated the presence of typical K8/19 IF, thus highlighting in vivo that K19 is a fully competent partner for K8.
Collapse
Affiliation(s)
- T M Magin
- Institut fuer Genetik, Abteilung Molekulargenetik, Universitat Bonn, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Melton DW, Ketchen AM, Núñez F, Bonatti-Abbondandolo S, Abbondandolo A, Squires S, Johnson RT. Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination. J Cell Sci 1998; 111 ( Pt 3):395-404. [PMID: 9427687 DOI: 10.1242/jcs.111.3.395] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ERCC1 protein is essential for nucleotide excision repair in mammalian cells and is also believed to be involved in mitotic recombination. ERCC1-deficient mice, with their extreme runting and polyploid hepatocyte nuclei, have a phenotype that is more reminiscent of a cell cycle arrest/premature ageing disorder than the classic DNA repair deficiency disease, xeroderma pigmentosum. To understand the role of ERCC1 and the link between ERCC1-deficiency and cell cycle arrest, we have studied primary and immortalised embryonic fibroblast cultures from ERCC1-deficient mice and a Chinese hamster ovary ERCC1 mutant cell line. Mutant cells from both species showed the expected nucleotide excision repair deficiency, but the mouse mutant was only moderately sensitive to mitomycin C, indicating that ERCC1 is not essential for the recombination-mediated repair of interstrand cross links in the mouse. Mutant cells from both species had a high mutation frequency and the level of genomic instability was elevated in ERCC1-deficient mouse cells, both in vivo and in vitro. There was no evidence for an homologous recombination deficit in ERCC1 mutant cells from either species. However, the frequency of S-phase-dependent illegitimate chromatid exchange, induced by ultra violet light, was dramatically reduced in both mutants. In rodent cells the G1 arrest induced by ultra violet light is less extensive than in human cells, with the result that replication proceeds on an incompletely repaired template. Illegitimate recombination, resulting in a high frequency of chromatid exchange, is a response adopted by rodent cells to prevent the accumulation of DNA double strand breaks adjacent to unrepaired lesion sites on replicating DNA and allow replication to proceed. Our results indicate an additional role for ERCC1 in this process and we propose the following model to explain the growth arrest and early senescence seen in ERCC1-deficient mice. In the absence of ERCC1, spontaneously occurring DNA lesions accumulate and the failure of the illegitimate recombination process leads to the accumulation of double strand breaks following replication. This triggers the p53 response and the G2 cell cycle arrest, mediated by increased expression of the cyclin-dependent kinase inhibitor p21(cip1/waf1). The increased levels of unrepaired lesions and double strand breaks lead to an increased mutation frequency and genome instability.
Collapse
Affiliation(s)
- D W Melton
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Melton DW, Ketchen AM, Selfridge J. Stability of HPRT marker gene expression at different gene-targeted loci: observing and overcoming a position effect. Nucleic Acids Res 1997; 25:3937-43. [PMID: 9380520 PMCID: PMC146987 DOI: 10.1093/nar/25.19.3937] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For sophisticated gene targeting procedures requiring two sequential selective steps to operate efficiently it is essential that the marker genes used are not prone to position effects. The double replacement gene targeting procedure, to produce mice with subtle gene alterations, is based on the use of hypoxanthine phosphoribosyltransferase ( HPRT) minigenes in HPRT-deficient embryonic stem cells. Our standard HPRTminigene, under the control of the mouse phosphoglycerate kinase-1 gene promoter, was stably expressed at five of six target loci examined. At the remaining locus, DNA ligase I (Lig1), expression of this minigene was highly unstable. A different minigene, under the control of the mouse HPRT promoter and embedded in its natural CpG-rich island, overcame this position effect and was stably expressed when targeted to the identical site in the Lig1 locus. The promoter region of the stably expressed minigene remained unmethylated, while the promoter of the unstably expressed minigene rapidly became fully methylated. The difference in the stability of HPRT minigene expression at the same target locus can be explained in the context of the different lengths of their CpG-rich promoter regions with associated transcription factors and a resulting difference in their susceptibility to DNA methylation, rather than by differences in promoter strength.
Collapse
Affiliation(s)
- D W Melton
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
15
|
Bornstein P. Regulation of expression of the alpha 1 (I) collagen gene: a critical appraisal of the role of the first intron. Matrix Biol 1996; 15:3-10. [PMID: 8783182 DOI: 10.1016/s0945-053x(96)90121-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcriptional regulation of the genes encoding the alpha 1 (I) collagen chains is necessarily complex since these genes are expressed at widely different levels, and in a cell- and tissue-specific fashion. In the case of the alpha 1 (I) gene, there is substantial, but controversial, evidence for an involvement of the first intron in the tissue-specific expression of the gene. This evidence is based largely on transfection of cells with collagen-reporter gene constructs and on studies of transgenic mice. In this review, I propose a number of reason for the conflicting data in the literature: 1) the cell-specific nature of the intronic effect; thus, not all cultured, collagen-synthesizing cells will demonstrate an intronic effect by transfection; 2) the possibility that functionally equivalent regulatory elements are placed in different regions of the alpha 1 (I) gene in different species; and 3) the possibility that functionally redundant sequences exist within the alpha 1 (I) gene, which would permit other regions to substitute for the first intron.
Collapse
Affiliation(s)
- P Bornstein
- Department of Biochemistry University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Moore RC, Redhead NJ, Selfridge J, Hope J, Manson JC, Melton DW. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:999-1004. [PMID: 9636277 DOI: 10.1038/nbt0995-999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector to reconstruct the inactivated allele, concomitantly introducing an engineered mutation. Five independent embryonic stem cell lines have been produced bearing different targeted alterations to the prion protein gene, including one which raises the level of expression. We have constructed mice bearing the codon 101 proline to leucine substitution linked to the human familial prion disease, Gerstmann-Straussler-Scheinker syndrome. We anticipate that this procedure will have applications to the study of human inherited diseases and the development of therapies.
Collapse
Affiliation(s)
- R C Moore
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| | | | | | | | | | | |
Collapse
|
17
|
Chrysogelos SA. Chromatin structure of the EGFR gene suggests a role for intron 1 sequences in its regulation in breast cancer cells. Nucleic Acids Res 1993; 21:5736-41. [PMID: 8284222 PMCID: PMC310542 DOI: 10.1093/nar/21.24.5736] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The chromatin structure of the epidermal growth factor receptor gene (EGFR) has been analyzed in several human breast cancer cell lines exhibiting a wide range of EGFR expression. Using DNase I, structural differences were identified in the promoter, first exon, and intron 1 of the EGFR gene that correlate with its expression. Specifically, a DNase I hypersensitive site (DH site) around the exon 1/intron 1 boundary occurred preferentially in estrogen receptor positive breast cancer cell lines with low levels of EGFR expression, while a group of DH sites in intron 1 were observed in estrogen receptor negative, high EGFR expressors. Additionally, a region in the promoter was sensitive to DNase I in all breast cancer cells expressing EGFR, but showed differences in both the level of nuclease sensitivity and the extent of the area that was susceptible. Fine mapping by native genomic blotting revealed the presence of multiple protein footprints in both the promoter and first intron of the EGFR gene in MDA-MB-468 cells, a breast cancer cell line that overexpresses the EGFR gene. The appearance of DH sites in intron 1 associated with high levels of EGFR expression suggests that these regions of the gene contain potential enhancer elements, while the absence of a DH site at the exon 1/intron 1 boundary when the gene is up-regulated suggests the action of a repressor that may block transcriptional elongation.
Collapse
Affiliation(s)
- S A Chrysogelos
- Lombardi Cancer Research Center, Georgetown University, Washington, DC 20007
| |
Collapse
|
18
|
Mayor R, Essex LJ, Bennett MF, Sargent MG. Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression. Development 1993; 119:661-71. [PMID: 8187636 DOI: 10.1242/dev.119.3.661] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xsna, the Xenopus homologue of Drosophila snail, is expressed in both mesoderm and ectoderm. Expression occurs in all mesoderm initially but is down regulated in a tissue-specific fashion at the end of gastrulation in a way that reveals the subdivision of the mesoderm before its derivatives are overtly differentiated. Xsna is also expressed in the ectoderm of the prospective neural fold from stage 11, in a distinct band of cells surrounding the prospective neural plate, which we designate the neural plate border. The deep and superficial ectoderm compartments labelled by Xsna represent the prospective neural crest and the prospective roof of the neural tube, respectively. Xsna expression persists in neural crest cells during their subsequent migration. The role of the Xsna promoter in creating this pattern of expression has been investigated by injecting fertilised eggs with constructs containing the 5′ upstream sequence of the gene fused to a reporter. An element of 115 base pairs (−160 to −45 relative to the transcriptional start) is sufficient to drive appropriate reporter gene expression. The promoter does not contain a TATA or CAAT box and does not have a high GC content, but RNA synthesis starts precisely at 33 bases upstream to the translational start. The start sequence can be deleted so that transcription is initiated elsewhere without affecting the expression pattern. The distribution of Xsna promoter activity within the embryo, examined using beta-galactosidase (beta-gal) fusions, is similar to that of the endogenous mRNA seen by in situ hybridisation. The contribution of elements within the 5′ sequence have been assessed by comparing the expression patterns of constructs that have deletions in this region. Sequences from −112 to −97 are required for mesodermal expression and sequences from −96 to −44 are required for ectodermal expression. The behaviour of the injected promoter constructs differ in one important respect from the endogenous gene in that expression in an animal cap assay is not inducible by mesoderm-inducing factors but is inducible by cells of the vegetal pole.
Collapse
Affiliation(s)
- R Mayor
- Laboratory of Developmental Biology, National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | |
Collapse
|