1
|
Zhang Z, Li J. Cyanobacterial Bloom Formation by Enhanced Ecological Adaptability and Competitive Advantage of Microcystis-Non-Negligible Role of Quorum Sensing. Microorganisms 2024; 12:1489. [PMID: 39065257 PMCID: PMC11278601 DOI: 10.3390/microorganisms12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microcystis-dominated cyanobacterial blooms (MCBs) frequently occur in freshwaters worldwide due to massive Microcystis colony formation and severely threaten human and ecosystem health. Quorum sensing (QS) is a direct cause of Microcystis colony formation that drives MCBs outbreak by regulating Microcystis population characteristics and behaviors. Many novel findings regarding the fundamental knowledge of the Microcystis QS phenomenon and the signaling molecules have been documented. However, little effort has been devoted to comprehensively summarizing and discussing the research progress and exploration directions of QS signaling molecules-mediated QS system in Microcystis. This review summarizes the action process of N-acyl homoserine lactones (AHLs) as major signaling molecules in Microcystis and discusses the detailed roles of AHL-mediated QS system in cellular morphology, physiological adaptability, and cell aggregation for colony formation to strengthen ecological adaptability and competitive advantage of Microcystis. The research progress on QS mechanisms in Microcystis are also summarized. Compared to other QS systems, the LuxI/LuxR-type QS system is more likely to be found in Microcystis. Also, we introduce quorum quenching (QQ), a QS-blocking process in Microcystis, to emphasize its potential as QS inhibitors in MCBs control. Finally, in response to the research deficiencies and gaps in Microcystis QS, we propose several future research directions in this field. This review deepens the understanding on Microcystis QS knowledge and provide theoretical guidance in developing strategies to monitor, control, and harness MCBs.
Collapse
Affiliation(s)
- Ziqing Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Brown PJB, Chang JH, Fuqua C. Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. J Bacteriol 2023; 205:e0000523. [PMID: 36892285 PMCID: PMC10127608 DOI: 10.1128/jb.00005-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.
Collapse
Affiliation(s)
- Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Rattray JB, Brown SP. Beyond Thresholds: Quorum‐Sensing as Quantitatively Varying Reaction Norms to Multiple Environmental Dimensions. Isr J Chem 2023. [DOI: 10.1002/ijch.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jennifer B. Rattray
- School of Biological Sciences Georgia Institute of Technology Atlanta GA 30332 USA
- Center for Microbial Dynamics and Infection Georgia Institute of Technology Atlanta GA 30332 USA
| | - Sam P. Brown
- School of Biological Sciences Georgia Institute of Technology Atlanta GA 30332 USA
- Center for Microbial Dynamics and Infection Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
4
|
The Role of Quorum Sensing in the Development of Microcystis aeruginosa Blooms: Gene Expression. Microorganisms 2023; 11:microorganisms11020383. [PMID: 36838348 PMCID: PMC9962132 DOI: 10.3390/microorganisms11020383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Microcystis aeruginosa (M. aeruginosa) is the dominant cyanobacterial species causing harmful algal blooms in water bodies worldwide. The blooms release potent toxins and pose severe public health hazards to water bodies, animals, and humans who are in contact with or consume this water. The interaction between M. aeruginosa and heterotrophic bacteria is thought to contribute to the development of the blooms. This study strives to provide a specific answer to whether quorum sensing is also a potential mechanism mediating the interaction of different strains/species and the expression by gene luxS or gene mcyB in M. aeruginosa growth. The luxS gene in M. aeruginosa PCC7806 is associated with quorum sensing and was tested by q-PCR throughout a 30-day growth period. The same was performed for the mcyB gene. Heterotrophic bacteria were collected from local water bodies: Cibolo Creek and Leon Creek in San Antonio, Texas. Results revealed that in algal bloom scenarios, there is a similar concentration of gene luxS that is expressed by the cyanobacteria. Gene mcyB, however, is not directly associated with algal blooms, but it is related to cyanotoxin production. Toxicity levels increased in experiments with multiple algal strains, and the HSL treatment was not effective at reducing microcystin levels.
Collapse
|
5
|
Miranda SW, Asfahl KL, Dandekar AA, Greenberg EP. Pseudomonas aeruginosa Quorum Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:95-115. [PMID: 36258070 PMCID: PMC9942581 DOI: 10.1007/978-3-031-08491-1_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.
Collapse
Affiliation(s)
| | - Kyle L Asfahl
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - E P Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Efficient 2,3-Butanediol/Acetoin Production Using Whole-Cell Biocatalyst with a New Nadh/Nad(+) Regeneration System. Catalysts 2021. [DOI: 10.3390/catal11121422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An auto-inducing expression system was developed that could express target genes in S. marcescens MG1. Using this system, MG1 was constructed as a whole-cell biocatalyst to produce 2,3-butanediol/acetoin. Formate dehydrogenase (FDH) and 2,3-butanediol dehydrogenase were expressed together to build an NADH regeneration system to transform diacetyl to 2,3-butanediol. After fermentation, the extract of recombinant S. marcescens MG1ABC (pETDuet-bdhA-fdh) showed 2,3-BDH activity of 57.8 U/mg and FDH activity of 0.5 U/mg. And 27.95 g/L of 2,3-BD was achieved with a productivity of 4.66 g/Lh using engineered S. marcescens MG1(Pswnb+pETDuet-bdhA-fdh) after 6 h incubation. Next, to produce 2,3-butanediol from acetoin, NADH oxidase and 2,3-butanediol dehydrogenase from Bacillus subtilis were co-expressed to obtain a NAD+ regeneration system. After fermentation, the recombinant strain S. marcescens MG1ABC (pSWNB+pETDuet-bdhA-yodC) showed AR activity of 212.4 U/mg and NOX activity of 150.1 U/mg. We obtained 44.9 g/L of acetoin with a productivity of 3.74 g/Lh using S. marcescens MG1ABC (pSWNB+pETDuet-bdhA-yodC). This work confirmed that S. marcescens could be designed as a whole-cell biocatalyst for 2,3-butanediol and acetoin production.
Collapse
|
7
|
Das S, Hunter EE, DeLateur NA, Steager EB, Weiss R, Kumar V. Cellular expression through morphogen delivery by light activated magnetic microrobots. JOURNAL OF MICRO-BIO ROBOTICS 2019. [DOI: 10.1007/s12213-019-00119-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Wang Y, Wang Y, Sun L, Grenier D, Yi L. The LuxS/AI-2 system of Streptococcus suis. Appl Microbiol Biotechnol 2018; 102:7231-7238. [PMID: 29938319 DOI: 10.1007/s00253-018-9170-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 11/24/2022]
Abstract
Quorum sensing (QS) is an important protective mechanism that allows bacteria to adapt to its environment. A limited number of signal molecules play the key role of transmitting information in this mechanism. Signals are transmitted between individual bacterium through QS systems, resulting in the expression of specific genes. QS plays an important role in a variety of bacterial processes, including drug resistance, biofilm formation, motility, adherence, and virulence. Most Gram-positive and Gram-negative bacteria possess QS systems, mainly the LuxS/AI-2-mediated QS system. Evidence has been brought that LuxS/AI-2 system controls major virulence determinants in Streptococcus suis and, as such, the ability of this bacterial species to cause infections in humans and pigs. Understanding the S. suis LuxS/AI-2 system may open up novel avenues for decreasing the drug resistance and infectivity of S. suis. This article focuses on the progress made to date on the S. suis LuxS/AI-2-mediated QS system.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Li Yi
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada. .,College of Life Science, Luoyang Normal University, Luoyang, China.
| |
Collapse
|
9
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
10
|
Sheng H, Wang F, Gu C, Stedtfeld R, Bian Y, Liu G, Wu W, Jiang X. Sorption characteristics of N-acyl homserine lactones as signal molecules in natural soils based on the analysis of kinetics and isotherms. RSC Adv 2018; 8:9364-9374. [PMID: 35541870 PMCID: PMC9078661 DOI: 10.1039/c7ra10421a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/19/2018] [Indexed: 11/21/2022] Open
Abstract
Quorum sensing, the communication between microorganisms, is mediated by specific diffusible signal molecules. Adsorption is an important process that influences the transport, transformation and bioavailability of N-acyl homoserine lactone (AHL) in complex natural environments such as soil. To examine the adsorption characteristics of N-hexanoyl, N-octanoyl, N-decanoyl and N-dodecanoyl homoserine lactones in soil, equilibrium and kinetic experiments were conducted in two types of soils (oxisol and alfisol) and monitored using Fourier-transform infrared spectroscopy (FTIR). A pseudo-second-order equation accurately described the sorption kinetics of AHLs in the two soils (R2 ≥ 0.97, NSD ≤ 21.25%). The AHL sorption reached equilibrium within 24 h and 12 h for oxisol and alfisol, respectively. The sorption kinetics of AHLs adsorbed on the soils were fitted to the Boyd model, suggesting that film diffusion was the rate-limiting process. Partition played a more vital role than surface adsorption in the AHL adsorption process. The adsorption isotherms of AHLs could be described by the Langmuir and Freundlich equation (R2 ≥ 0.98), indicating that the sorption process involved monolayer sorption and heterogeneous energetic distribution of active sites on the surfaces of the soils. The thermodynamic parameter, Gibbs free energy (ΔG), and a dimensionless parameter showed that the sorption of AHLs was mainly dominated by physical adsorption. Additionally, according to the FTIR data, the electrostatic forces and hydrogen bonding possibly influenced the adsorption of AHLs on the above mentioned two soils. The sorption characteristics of AHLs in soils correlated well with the molecular structure, solubility speciation and log P (n-octanol/water partition coefficient) of AHLs. Sorption characteristics of N-acyl homoserine lactones (signal molecules) in natural soils.![]()
Collapse
Affiliation(s)
- Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Robert Stedtfeld
- Department of Civil and Environmental Engineering
- Michigan State University
- East Lansing
- USA
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Guangxia Liu
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Wei Wu
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| |
Collapse
|
11
|
Lee CM, Monson RE, Adams RM, Salmond GPC. The LacI-Family Transcription Factor, RbsR, Is a Pleiotropic Regulator of Motility, Virulence, Siderophore and Antibiotic Production, Gas Vesicle Morphogenesis and Flotation in Serratia. Front Microbiol 2017; 8:1678. [PMID: 28955306 PMCID: PMC5601083 DOI: 10.3389/fmicb.2017.01678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/21/2017] [Indexed: 11/21/2022] Open
Abstract
Gas vesicles (GVs) are proteinaceous, gas-filled organelles used by some bacteria to enable upward movement into favorable air/liquid interfaces in aquatic environments. Serratia sp. ATCC39006 (S39006) was the first enterobacterium discovered to produce GVs naturally. The regulation of GV assembly in this host is complex and part of a wider regulatory network affecting various phenotypes, including antibiotic biosynthesis. To identify new regulators of GVs, a comprehensive mutant library containing 71,000 insertion mutants was generated by random transposon mutagenesis and 311 putative GV-defective mutants identified. Three of these mutants were found to have a transposon inserted in a LacI family transcription regulator gene (rbsR) of the putative ribose operon. Each of these rbsR mutants was GV-defective; no GVs were visible by phase contrast microscopy (PCM) or transmission electron microscopy (TEM). GV deficiency was caused by the reduction of gvpA1 and gvrA transcription (the first genes of the two contiguous operons in the GV gene locus). Our results also showed that a mutation in rbsR was highly pleiotropic; the production of two secondary metabolites (carbapenem and prodigiosin antibiotics) was abolished. Interestingly, the intrinsic resistance to the carbapenem antibiotic was not affected by the rbsR mutation. In addition, the production of a siderophore, cellulase and plant virulence was reduced in the mutant, whereas it exhibited increased swimming and swarming motility. The RbsR protein was predicted to bind to regions upstream of at least 18 genes in S39006 including rbsD (the first gene of the ribose operon) and gvrA. Electrophoretic mobility shift assays (EMSA) confirmed that RbsR bound to DNA sequences upstream of rbsD, but not gvrA. The results of this study indicate that RbsR is a global regulator that affects the modulation of GV biogenesis, but also with complex pleiotropic physiological impacts in S39006.
Collapse
|
12
|
Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1291-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Utari PD, Vogel J, Quax WJ. Deciphering Physiological Functions of AHL Quorum Quenching Acylases. Front Microbiol 2017; 8:1123. [PMID: 28674525 PMCID: PMC5474475 DOI: 10.3389/fmicb.2017.01123] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/01/2017] [Indexed: 11/13/2022] Open
Abstract
N-Acylhomoserine lactone (AHL)-acylase (also known as amidase or amidohydrolase) is a class of enzyme that belongs to the Ntn-hydrolase superfamily. As the name implies, AHL-acylases are capable of hydrolysing AHLs, the most studied signaling molecules for quorum sensing in Gram-negative bacteria. Enzymatic degradation of AHLs can be beneficial in attenuating bacterial virulence, which can be exploited as a novel approach to fight infection of human pathogens, phytopathogens or aquaculture-related contaminations. Numerous acylases from both prokaryotic and eukaryotic sources have been characterized and tested for the interference of quorum sensing-regulated functions. The existence of AHL-acylases in a multitude of organisms from various ecological niches, raises the question of what the physiological roles of AHL-acylases actually are. In this review, we attempt to bring together recent studies to extend our understanding of the biological functions of these enzymes in nature.
Collapse
Affiliation(s)
- Putri D Utari
- Chemical and Pharmaceutical Biology Department, University of GroningenGroningen, Netherlands
| | - Jan Vogel
- Chemical and Pharmaceutical Biology Department, University of GroningenGroningen, Netherlands
| | - Wim J Quax
- Chemical and Pharmaceutical Biology Department, University of GroningenGroningen, Netherlands
| |
Collapse
|
14
|
Nickzad A, Déziel E. Adaptive Significance of Quorum Sensing-Dependent Regulation of Rhamnolipids by Integration of Growth Rate in Burkholderia glumae: A Trade-Off between Survival and Efficiency. Front Microbiol 2016; 7:1215. [PMID: 27540372 PMCID: PMC4972832 DOI: 10.3389/fmicb.2016.01215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent mechanism which enables a population of bacteria to coordinate cooperative behaviors in response to the accumulation of self-produced autoinducer signals in their local environment. An emerging framework is that the adaptive significance of QS in the regulation of production of costly extracellular metabolites ("public goods") is to maintain the homeostasis of cooperation. We investigated this model using the phytopathogenic bacterium Burkholderia glumae, which we have previously demonstrated uses QS to regulate the production of rhamnolipids, extracellular surface-active glycolipids promoting the social behavior called "swarming motility." Using mass spectrometric quantification and chromosomal lux-based gene expression, we made the unexpected finding that when unrestricted nutrient resources are provided, production of rhamnolipids is carried out completely independently of QS regulation. This is a unique observation among known QS-controlled factors in bacteria. On the other hand, under nutrient-limited conditions, QS then becomes the main regulating mechanism, significantly enhancing the specific rhamnolipids yield. Accordingly, decreasing nutrient concentrations amplifies rhamnolipid biosynthesis gene expression, revealing a system where QS-dependent regulation is specifically triggered by the growth rate of the population, rather than by its cell density. Furthermore, a gradual increase in QS signal specific concentration upon decrease of specific growth rate suggests a reduction in quorum threshold, which reflects an increase in cellular demand for production of QS-dependent target gene product at low density populations. Integration of growth rate with QS as a decision-making mechanism for biosynthesis of costly metabolites, such as rhamnolipids, could serve to assess the demand and timing for expanding the carrying capacity of a population through spatial expansion mechanisms, such as swarming motility, thus promoting the chances of survival, even if the cell density might not be high enough for an otherwise efficient production of rhamnolipids. In conclusion, we propose that the adaptive significance of growth rate-dependent functionality of QS in biosynthesis of costly public goods lies within providing a regulatory mechanism for selecting the optimal trade-off between survival and efficiency.
Collapse
Affiliation(s)
| | - Eric Déziel
- Institut National de la Recherche Scientifique – Institut Armand-Frappier, LavalQC, Canada
| |
Collapse
|
15
|
Majumdar S, Mondal S. Conversation game: talking bacteria. J Cell Commun Signal 2016; 10:331-335. [PMID: 27278085 DOI: 10.1007/s12079-016-0333-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
The story of autonomous unicellular organisms, bacteria with unimaginable computational and evolutionary capabilities along with collective behavior has been running since the first six decades of the twentieth Century. However, do not consider them to be small and simple, because they possess the generic term quorum sensing adopted to describe the cell communication process which co-ordinate gene expression, when the population has reached a high cell density. Bacteria release diffusible signal molecules known as autoinducers or quorum sensing molecules. In recent research, the direction for activating or deactivating nature of a wave of gene expression is predicted experimentally which control bacterial populations subject to a diffusing autoinducer signal. On the other hand, it has been observed that the accumulation of the quorum sensing molecules leads to a negative diffusion coefficient in the solution of governing differential equation.
Collapse
Affiliation(s)
- Sarangam Majumdar
- Department of Mathematics, Universitat Hamburg, Bundesstrae, 55 20146, Hamburg, Germany.
| | - Subhoshmita Mondal
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
16
|
Bacterial tweets and podcasts #signaling#eavesdropping#microbialfightclub. Mol Biochem Parasitol 2016; 208:41-8. [PMID: 27208877 DOI: 10.1016/j.molbiopara.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 11/22/2022]
Abstract
Once thought to live independently, bacteria are now known to be highly social organisms. Their behaviors ranges from cooperatively forming complex multispecies communities to fiercely competing for resources. Work over the past fifty years has shown that bacteria communicate through diverse mechanisms, such as exchanging diffusible molecules, exporting molecules in membrane vesicles, and interacting through direct cell-cell contact. These methods allow bacteria to sense and respond to other cells around them and coordinate group behavior. In this review, we share the discoveries and lessons learned in the field of bacterial communication with the aim of providing insights to parasitologists and other researchers working on related questions.
Collapse
|
17
|
Almasoud A, Hettiarachchy N, Rayaprolu S, Babu D, Kwon YM, Mauromoustakos A. Inhibitory effects of lactic and malic organic acids on autoinducer type 2 (AI-2) quorum sensing of Escherichia coli O157:H7 and Salmonella Typhimurium. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Polkade AV, Mantri SS, Patwekar UJ, Jangid K. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria. Front Microbiol 2016; 7:131. [PMID: 26904007 PMCID: PMC4748050 DOI: 10.3389/fmicb.2016.00131] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/25/2016] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.
Collapse
Affiliation(s)
| | | | | | - Kamlesh Jangid
- Microbial Culture Collection, National Centre for Cell Science, Savitribai Phule Pune University CampusPune, India
| |
Collapse
|
19
|
Ee R, Lim YL, Tee KK, Yin WF, Chan KG. Quorum sensing activity of Serratia fonticola strain RB-25 isolated from an ex-landfill site. SENSORS 2014; 14:5136-46. [PMID: 24625739 PMCID: PMC4003984 DOI: 10.3390/s140305136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola.
Collapse
Affiliation(s)
- Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Keng Tee
- Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
20
|
Bowden SD, Hale N, Chung JCS, Hodgkinson JT, Spring DR, Welch M. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing. Microbiology (Reading) 2013; 159:2375-2385. [DOI: 10.1099/mic.0.070748-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Steven D. Bowden
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicola Hale
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jade C. S. Chung
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
21
|
Bowden SD, Eyres A, Chung JCS, Monson RE, Thompson A, Salmond GPC, Spring DR, Welch M. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Mol Microbiol 2013; 90:457-71. [PMID: 23957692 DOI: 10.1111/mmi.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.
Collapse
Affiliation(s)
- Steven D Bowden
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge, CB2 1QW, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 2012; 10:743-54. [PMID: 23042564 DOI: 10.1038/nrmicro2890] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteus mirabilis, named for the Greek god who changed shape to avoid capture, has fascinated microbiologists for more than a century with its unique swarming differentiation, Dienes line formation and potent urease activity. Transcriptome profiling during both host infection and swarming motility, coupled with the availability of the complete genome sequence for P. mirabilis, has revealed the occurrence of interbacterial competition and killing through a type VI secretion system, and the reciprocal regulation of adhesion and motility, as well as the intimate connections between metabolism, swarming and virulence. This Review addresses some of the unique and recently described aspects of P. mirabilis biology and pathogenesis, and emphasizes the potential role of this bacterium in single-species and polymicrobial urinary tract infections.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Medical Science Building II, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
23
|
The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2012; 76:46-65. [PMID: 22390972 DOI: 10.1128/mmbr.05007-11] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production.
Collapse
|
24
|
Chandler JR, Heilmann S, Mittler JE, Greenberg EP. Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture model. ISME JOURNAL 2012; 6:2219-28. [PMID: 22763647 DOI: 10.1038/ismej.2012.69] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many Proteobacteria use acyl-homoserine lactone (AHL)-mediated quorum sensing to activate the production of antibiotics at high cell density. Extracellular factors like antibiotics can be considered public goods shared by individuals within a group. Quorum-sensing control of antibiotic production may be important for protecting a niche or competing for limited resources in mixed bacterial communities. To begin to investigate the role of quorum sensing in interspecies competition, we developed a dual-species co-culture model using the soil saprophytes Burkholderia thailandensis (Bt) and Chromobacterium violaceum (Cv). These bacteria require quorum sensing to activate the production of antimicrobial factors that inhibit growth of the other species. We demonstrate that quorum-sensing-dependent antimicrobials can provide a competitive advantage to either Bt or Cv by inhibiting growth of the other species in co-culture. Although the quorum-sensing signals differ for each species, we show that the promiscuous signal receptor encoded by Cv can sense signals produced by Bt, and that this ability to eavesdrop on Bt can provide Cv an advantage in certain situations. We use an in silico approach to investigate the effect of eavesdropping in competition, and show conditions where early activation of antibiotic production resulting from eavesdropping can promote competitiveness. Our work supports the idea that quorum sensing is important for interspecies competition and that promiscuous signal receptors allow eavesdropping on competitors in mixed microbial habitats.
Collapse
Affiliation(s)
- Josephine R Chandler
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | |
Collapse
|
25
|
Quorum sensing and expression of virulence in pectobacteria. SENSORS 2012; 12:3327-49. [PMID: 22737011 PMCID: PMC3376562 DOI: 10.3390/s120303327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/21/2012] [Accepted: 03/02/2012] [Indexed: 01/23/2023]
Abstract
Quorum sensing (QS) is a population density-dependent regulatory mechanism in which gene expression is coupled to the accumulation of a chemical signaling molecule. QS systems are widespread among the plant soft-rotting bacteria. In Pectobacterium carotovorum, at least two QS systems exist being specified by the nature of chemical signals involved. QS in Pectobacterium carotovorum uses N-acylhomoserine lactone (AHL) based, as well as autoinducer-2 (AI-2) dependent signaling systems. This review will address the importance of the QS in production of virulence factors and interaction of QS with other regulatory systems in Pectobacterium carotovorum.
Collapse
|
26
|
Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit Quorum Sensing in Yersinia enterocolitica: Phenotypic response and associated molecular changes. Food Chem 2011; 132:1465-1474. [PMID: 29243637 DOI: 10.1016/j.foodchem.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023]
Abstract
The mammalian enteropathogen Yersinia enterocolitica produces two main N-acylhomoserine lactones (AHLs) involved in Quorum Sensing (QS)-mediated infection processes, such as virulence, biofilm maturation and motility. Ellagitannin (ET)-rich fruits exhibit anti-QS activity but in vivo effects against intestinal pathogens may be associated to the ETs gut microbiota derived metabolites, urolithin-A (Uro-A) and urolithin-B (Uro-B). In this work we show that urolithins, at concentrations achievable in the intestine through the diet, reduce the levels of N-hexanoyl-l-homoserine lactone (C6-HSL) and N-(3-oxo-hexanoyl)-l-homoserine lactone (3-oxo-C6-HSL) in Y. enterocolitica and inhibit QS-associated biofilm maturation and swimming motility. These inhibitory effects were not associated to downregulation of the expression of some of the genes involved in the synthesis of AHLs (yenI and yenR) or in motility (flhDC, fliA, fleB). Our results suggest that urolithins may exert antipathogenic effects in the gut against Y. enterocolitica and highlight the need to investigate the antipathogenic in vivo properties of plant derived metabolites.
Collapse
|
27
|
Han TL, Cannon RD, Villas-Bôas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011; 48:747-63. [DOI: 10.1016/j.fgb.2011.04.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
|
28
|
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158. [PMID: 21845185 PMCID: PMC3145257 DOI: 10.3389/fmicb.2011.00158] [Citation(s) in RCA: 361] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
Collapse
Affiliation(s)
- Rustam I Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
| |
Collapse
|
29
|
Baldrich E, Muñoz FX, García-Aljaro C. Electrochemical Detection of Quorum Sensing Signaling Molecules by Dual Signal Confirmation at Microelectrode Arrays. Anal Chem 2011; 83:2097-103. [DOI: 10.1021/ac1028243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eva Baldrich
- Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Francesc Xavier Muñoz
- Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 645, Barcelona 08028, Spain
| |
Collapse
|
30
|
Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum Sensing in Gram-Negative Bacteria: Small-Molecule Modulation of AHL and AI-2 Quorum Sensing Pathways. Chem Rev 2010; 111:28-67. [DOI: 10.1021/cr100109t] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Warren R. J. D. Galloway
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - James T. Hodgkinson
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - Steven D. Bowden
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - Martin Welch
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - David R. Spring
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| |
Collapse
|
31
|
Diggle SP. Microbial communication and virulence: lessons from evolutionary theory. MICROBIOLOGY-SGM 2010; 156:3503-3512. [PMID: 20929954 DOI: 10.1099/mic.0.045179-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
At the heart of tackling the huge challenge posed by infectious micro-organisms is the overwhelming need to understand their nature. A major question is, why do some species of bacteria rapidly kill their host whilst others are relatively benign? For example, Yersinia pestis, the causative organism of plague, is a highly virulent human pathogen whilst the closely related Yersinia pseudotuberculosis causes a much less severe disease. Using molecular techniques such as mutating certain genes, microbiologists have made significant advances over recent decades in elucidating the mechanisms that govern the production of virulence factors involved in causing disease in many bacterial species. There are also evolutionary and ecological factors which will influence virulence. Many of these ideas have arisen through the development of evolutionary theory and yet there is strikingly little empirical evidence testing them. By applying both mechanistic and adaptive approaches to microbial behaviours we can begin to address questions such as, what factors influence cooperation and the evolution of virulence in microbes and can we exploit these factors to develop new antimicrobial strategies?
Collapse
Affiliation(s)
- Stephen P Diggle
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, NG7 2RD, UK
| |
Collapse
|
32
|
Wang J, Quan C, Wang X, Zhao P, Fan S. Extraction, purification and identification of bacterial signal molecules based on N-acyl homoserine lactones. Microb Biotechnol 2010; 4:479-90. [PMID: 21375695 PMCID: PMC3815260 DOI: 10.1111/j.1751-7915.2010.00197.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacteria possess an extraordinary repertoire for intercellular communication and social behaviour. This repertoire for bacterial communication, termed as quorum sensing (QS), depends on specific diffusible signal molecules. There are many different kinds of signal molecules in the bacterial community. Among those signal molecules, N‐acyl homoserine lactones (HSLs, in other publications also referred to as AHLs, acy‐HSLs etc.) are often employed as QS signal molecules for many Gram‐negative bacteria. Due to the specific structure and tiny amount of those HSL signal molecules, the characterization of HSLs has been the subject of extensive investigations in the last decades and has become a paradigm for bacteria intercellular signalling. In this article, different methods, including extraction, purification and characterization of HSLs, are reviewed. The review provides an insight into identification and characterization of new HSLs and other signal molecules for bacterial intercellular communication.
Collapse
Affiliation(s)
- Jianhua Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | | | | | | | | |
Collapse
|
33
|
Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J Biotechnol 2010; 148:91-8. [DOI: 10.1016/j.jbiotec.2010.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/03/2010] [Accepted: 04/21/2010] [Indexed: 11/20/2022]
|
34
|
Votyakova TV, Kaprelyants AS, Kell DB. Influence of Viable Cells on the Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in an Extended Stationary Phase: the Population Effect. Appl Environ Microbiol 2010; 60:3284-91. [PMID: 16349381 PMCID: PMC201800 DOI: 10.1128/aem.60.9.3284-3291.1994] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high proportion of Micrococcus luteus cells in cultures which had been starved for 3 to 6 months lost the ability to grow and form colonies on agar plates but could be resuscitated from their dormancy by incubation in an appropriate liquid medium (A. S. Kaprelyants and D. B. Kell, Appl. Environ. Microbiol. 59:3187-3196, 1993). In the present work, such cultures were studied by both flow cytometry and conventional microbiological methods and were found to contain various numbers of viable cells. Pretreatment of such cultures with penicillin G, and subsequent dilution, was used to vary this number. When the initial number of colony-forming cells per 30-ml flask was approximately nine (+/-five) or more, resuscitation of 10 to 40% of the cells, and thus culture growth, was observed. The lag period before the appearance of a population of cells showing significant accumulation of the fluorescent dye rhodamine 123 (i.e., of cells with measurable membrane energization) decreased from 70 to 27 h when the number of viable cells was increased from 30 to 10 per flask, while the lag period before an observable increase in the number of colony-forming cells occurred was almost constant (at some 20 h). Provided there were more than nine (+/-five) initially viable cells per flask, the number of initially viable cells did not affect the final percentage of resuscitable cells in the culture. The lag period could be ascribed in part to the time taken to restore the membrane permeability barrier of starved cells during resuscitation, as revealed by flow cytometric assessment of the uptake of the normally membrane-impermeant fluorescent DNA stain PO-PRO-3 {4-[3-methyl-2, 3-dihydro-(benzo-1, 3-oxazole)-2-methylidene]-1-(3'-trimethylammonium propyl)-pyridinium diiodide}. Although cell populations which contained fewer than nine +/-five viable cells per flask failed to grow, 4 to 20% of the cells (of 1.2 X 10) were able to accumulate rhodamine 123 after 80 to 100 h of incubation, showing the ability of a significant number of the cells in the population at least to display "metabolic resuscitation." Resuscitation and cell growth under such conditions were favored by the use of a 1:1 mixture of fresh lactate medium and supernatant from late-logarithmic-phase M. luteus cultures as the resuscitation medium. We conclude that the presence of a small fraction of viable cells at the onset of resuscitation facilitates the recovery of the majority of the remaining (dormant) cells. The cell density dependence of the kinetics, or population effect, suggests that this recovery is due to the excretion of some factor(s) which promoted the transition of cells from a state in which they are incapable of growth and division to one in which they are capable of colony formation.
Collapse
Affiliation(s)
- T V Votyakova
- Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DA, United Kingdom
| | | | | |
Collapse
|
35
|
Beattie GA, Lindow SE. Comparison of the Behavior of Epiphytic Fitness Mutants of Pseudomonas syringae under Controlled and Field Conditions. Appl Environ Microbiol 2010; 60:3799-808. [PMID: 16349418 PMCID: PMC201889 DOI: 10.1128/aem.60.10.3799-3808.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epiphytic fitness of four Tn5 mutants of Pseudomonas syringae that exhibited reduced epiphytic fitness in the laboratory was evaluated under field conditions. The mutants differed more from the parental strain under field conditions than under laboratory conditions in their survival immediately following inoculation onto bean leaves and in the size of the epiphytic populations that they established, demonstrating that their fitness was reduced more under field conditions than in the laboratory. Under both conditions, the four mutants exhibited distinctive behaviors. One mutant exhibited particularly large population decreases and short half-lives following inoculation but grew epiphytically at near-wild-type rates, while the others exhibited reduced survival only in the warmest, driest conditions tested and grew epiphytically at reduced rates or, in the case of one mutant, not at all. The presence of the parental strain, B728a, did not influence the survival or growth of three of the mutants under field conditions; however, one mutant, an auxotroph, established larger populations in the presence of B728a than in its absence, possibly because of cross-feeding by B728a in planta. Experiments with B728a demonstrated that established epiphytic populations survived exposure of leaves to dry conditions better than newly inoculated cells did and that epiphytic survival was not dependent on the cell density in the inoculum. Three of the mutants behaved similarly to two nonpathogenic strains of P. syringae, suggesting that the mutants may be altered in traits that are missing or poorly expressed in naturally occurring nonpathogenic epiphytes.
Collapse
Affiliation(s)
- G A Beattie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720
| | | |
Collapse
|
36
|
Barnard AML, Simpson NJL, Lilley KS, Salmond GPC. Mutations in rpsL that confer streptomycin resistance show pleiotropic effects on virulence and the production of a carbapenem antibiotic in Erwinia carotovora. Microbiology (Reading) 2010; 156:1030-1039. [DOI: 10.1099/mic.0.034595-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous streptomycin-resistant derivatives of Erwinia carotovora subsp. carotovora strain ATTn10 were isolated. Sequencing of the rpsL locus (encoding the ribosomal protein S12) showed that each mutant was missense, with a single base change, resulting in the substitution of the wild-type lysine by arginine, threonine or asparagine at codon 43. Phenotypic analyses showed that the rpsL mutants could be segregated into two groups: K43R mutants showed reduced production of the β-lactam secondary metabolite 1-carbapen-2-em-3 carboxylic acid (Car), but little effect on exoenzyme production or virulence in potato tuber tests. By contrast, the K43N and K43T mutations were pleiotropic, resulting in reduced exoenzyme production and virulence, as well as diminished Car production. The effect on Car production was due to reduced transcription of the quorum-sensing-dependent car biosynthetic genes. The effects of K43N and K43T mutations on Car production were partially alleviated by provision of an excess of the quorum-sensing signalling molecule N-(3-oxohexanoyl)-l-homoserine lactone. Finally, a proteomic analysis of the K43T mutant indicated that the abundance of a subset of intracellular proteins was affected by this rpsL mutation.
Collapse
Affiliation(s)
- Anne M. L. Barnard
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Natalie J. L. Simpson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - George P. C. Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
37
|
Atkinson S, Williams P. Quorum sensing and social networking in the microbial world. J R Soc Interface 2009; 6:959-78. [PMID: 19674996 PMCID: PMC2827448 DOI: 10.1098/rsif.2009.0203] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/10/2009] [Indexed: 12/15/2022] Open
Abstract
For many years, bacterial cells were considered primarily as selfish individuals, but, in recent years, it has become evident that, far from operating in isolation, they coordinate collective behaviour in response to environmental challenges using sophisticated intercellular communication networks. Cell-to-cell communication between bacteria is mediated by small diffusible signal molecules that trigger changes in gene expression in response to fluctuations in population density. This process, generally referred to as quorum sensing (QS), controls diverse phenotypes in numerous Gram-positive and Gram-negative bacteria. Recent advances have revealed that bacteria are not limited to communication within their own species but are capable of 'listening in' and 'broadcasting to' unrelated species to intercept messages and coerce cohabitants into behavioural modifications, either for the good of the population or for the benefit of one species over another. It is also evident that QS is not limited to the bacterial kingdom. The study of two-way intercellular signalling networks between bacteria and both uni- and multicellular eukaryotes as well as between eukaryotes is just beginning to unveil a rich diversity of communication pathways.
Collapse
Affiliation(s)
- Steve Atkinson
- Centre for Biomolecular Sciences, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
38
|
Ni N, Li M, Wang J, Wang B. Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 2009; 29:65-124. [DOI: 10.1002/med.20145] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Kovacic P. Does structural commonality of metal complex formation by PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) denote mechanistic similarity? Signal transduction and medical aspects. J Recept Signal Transduct Res 2008; 28:141-52. [PMID: 18569522 DOI: 10.1080/10799890802084077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is an urgent need of novel approaches to drugs in the cancer, HIV, and bacterial areas. Increasing resistance to conventional therapies is observed. This minireview provides novel insights for drugs in these three areas. The agents PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) have recently attracted attention due to considerable potential based on new approaches. PAC-1 activates procaspase-3 to caspase-3, resulting in induction of apoptosis in tumor cells. DHBNH binds to a newly revealed site on HIV reverse transcriptase. The drug mainly inhibits RNase H (RNA-cleaving). AHLs comprise an important class that participates in bacterial cell communication. UCS1025A is a fungus-derived inhibitor of the enzyme telomerase, present in cancer cells, which is crucially involved in tumor cell immortality. All four agents possess chelating sites for metal binding, which has not been appreciated. In PAC-1 and DHBNH, the coordinating portion is similar to salicylaldehyde semicarbazone. For AHL and UCS1025A, the metal-binding moiety is a beta -ketoamide. Metal complexes of heavier metals are well-known electron transfer (ET) functionalities that can generate reactive oxygen species. Hence, it is reasonable to hypothesize a commonality in mechanism based on metal ET. Differences in receptor binding can result, in part, in diverse physiological responses. There is considerable literature that addresses involvement of signal transduction with the various physiologically active agents discussed herein. Thus, cell communication appears to play an important role in the biochemistry of these endogenous and exogenous substances. Details of cell signaling are presented for complexes of metals (Fe, Cu, Ni, and As), telomerase, caspase-3, and RNase. In addition, practical medical aspects are discussed.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| |
Collapse
|
40
|
Funke M, Büchler R, Mahobia V, Schneeberg A, Ramm M, Boland W. Rapid Hydrolysis of Quorum-Sensing Molecules in the Gut of Lepidopteran Larvae. Chembiochem 2008; 9:1953-9. [DOI: 10.1002/cbic.200700781] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Abstract
INTRODUCTION The term quorum sensing (QS) is used to describe communication between bacterial cells, whereby a coordinated population response is controlled by diffusible signal molecules produced by individuals. SOURCES OF DATA Studies on QS-mediated signalling processes in bacteria have revealed the existence of intricate regulatory networks to enable bacterial populations to fine tune their responses to environmental changes and increase their chances of survival, using complex signalling pathways. AREAS OF AGREEMENT A population of bacteria invading a host may benefit from the coordinated release of virulence determinants and in vitro studies have shown that QS regulates virulence factor production in many species of bacteria. AREAS OF CONTROVERSY However, the role of QS in vivo is less well understood, but has been demonstrated to be important in several pathogenic organisms. GROWING POINTS AND AREAS TIMELY FOR DEVELOPING RESEARCH There is a growing interest in blocking bacterial cell-cell communication as a means to control infections. This review discusses QS from a pathogenic perspective and discusses the potential of QS as an anti-pathogenic target.
Collapse
Affiliation(s)
- Roman Popat
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
42
|
Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology (Reading) 2007; 153:3923-3938. [DOI: 10.1099/mic.0.2007/012856-0] [Citation(s) in RCA: 500] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
43
|
Fletcher MP, Diggle SP, Crusz SA, Chhabra SR, Cámara M, Williams P. A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules. Environ Microbiol 2007; 9:2683-93. [DOI: 10.1111/j.1462-2920.2007.01380.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Wang YJ, Huang JJ, Leadbetter JR. Acyl-HSL signal decay: intrinsic to bacterial cell-cell communications. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:27-58. [PMID: 17448787 DOI: 10.1016/s0065-2164(06)61002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ya-Juan Wang
- Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
45
|
Barnard AM, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GP. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc Lond B Biol Sci 2007; 362:1165-83. [PMID: 17360277 PMCID: PMC2435580 DOI: 10.1098/rstb.2007.2042] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing describes the ability of bacteria to sense their population density and respond by modulating gene expression. In the plant soft-rotting bacteria, such as Erwinia, an arsenal of plant cell wall-degrading enzymes is produced in a cell density-dependent manner, which causes maceration of plant tissue. However, quorum sensing is central not only to controlling the production of such destructive enzymes, but also to the control of a number of other virulence determinants and secondary metabolites. Erwinia synthesizes both N-acylhomoserine lactone (AHL) and autoinducer-2 types of quorum sensing signal, which both play a role in regulating gene expression in the phytopathogen. We review the models for AHL-based regulation of carbapenem antibiotic production in Erwinia. We also discuss the importance of quorum sensing in the production and secretion of virulence determinants by Erwinia, and its interplay with other regulatory systems.
Collapse
Affiliation(s)
| | | | | | | | | | - George P.C Salmond
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
46
|
Williams P, Winzer K, Chan WC, Cámara M. Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 2007; 362:1119-34. [PMID: 17360280 PMCID: PMC2435577 DOI: 10.1098/rstb.2007.2039] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many years bacteria were considered primarily as autonomous unicellular organisms with little capacity for collective behaviour. However, we now appreciate that bacterial cells are in fact, highly communicative. The generic term 'quorum sensing' has been adopted to describe the bacterial cell-to-cell communication mechanisms which co-ordinate gene expression usually, but not always, when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules (often referred to as pheromones or autoinducers) that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of quorum sensing signal molecules, and consequently, their concentration in the external environment rises. Once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed) so facilitating the expression of quorum sensing-dependent genes. Quorum sensing enables a bacterial population to mount a co-operative response that improves access to nutrients or specific environmental niches, promotes collective defence against other competitor prokaryotes or eukaryotic defence mechanisms and facilitates survival through differentiation into morphological forms better able to combat environmental threats. Quorum sensing also crosses the prokaryotic-eukaryotic boundary since quorum sensing-dependent signalling can be exploited or inactivated by both plants and mammals.
Collapse
Affiliation(s)
- Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | |
Collapse
|
47
|
Martens T, Gram L, Grossart HP, Kessler D, Müller R, Simon M, Wenzel SC, Brinkhoff T. Bacteria of the Roseobacter clade show potential for secondary metabolite production. MICROBIAL ECOLOGY 2007; 54:31-42. [PMID: 17351813 DOI: 10.1007/s00248-006-9165-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 08/04/2006] [Accepted: 09/06/2006] [Indexed: 05/14/2023]
Abstract
Members of the Roseobacter clade are abundant and widespread in marine habitats and have very diverse metabolisms. Production of acylated homoserine lactones (AHL) and secondary metabolites, e.g., antibiotics has been described sporadically. This prompted us to screen 22 strains of this group for production of signaling molecules, antagonistic activity against bacteria of different phylogenetic groups, and the presence of genes encoding for nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS), representing enzymes involved in the synthesis of various pharmaceutically important natural products. The screening approach for NRPS and PKS genes was based on polymerase chain reaction (PCR) with degenerate primers specific for conserved sequence motifs. Additionally, sequences from whole genome sequencing projects of organisms of the Roseobacter clade were considered. Obtained PCR products were cloned, sequenced, and compared with genes of known function. With the PCR approach genes showing similarity to known NRPS and PKS genes were found in seven and five strains, respectively, and three PKS and NRPS sequences from genome sequencing projects were obtained. Three strains exhibited antagonistic activity and also showed production of AHL. Overall production of AHL was found in 10 isolates. Phylogenetic analysis of the 16S rRNA gene sequences of the tested organisms showed that several of the AHL-positive strains clustered together. Three strains were positive for three or four categories tested, and were found to be closely related within the genus Phaeobacter. The presence of a highly similar hybrid PKS/NRPS gene locus of unknown function in sequenced genomes of the Roseobacter clade plus the significant similarity of gene fragments from the strains studied to these genes argues for the functional requirement of the encoded hybrid PKS/NRPS complex. Our screening results therefore suggest that the Roseobacter clade is indeed employing PKS/NRPS biochemistry and should thus be further studied as a potential and largely untapped source of secondary metabolites.
Collapse
Affiliation(s)
- Torben Martens
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, PO Box 2503, D-26111 Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A. Cell-cell communication in food related bacteria. Int J Food Microbiol 2007; 120:34-45. [PMID: 17617483 DOI: 10.1016/j.ijfoodmicro.2007.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 02/07/2007] [Indexed: 11/26/2022]
Abstract
Although the study of quorum sensing is relatively recent, it has been well established that bacteria produce, release, detect and respond to small signalling hormone-like molecules called "autoinducers". When a critical threshold concentration of the signal molecule is achieved, bacteria detect its presence and initiate a signalling cascade resulting in changes of target gene expression. Cell-cell communication has been shown within and between species with mechanisms substantially different in Gram-positive and Gram-negative bacteria. The identified quorum-sensing mechanisms in several food related Gram-negative and Gram-positive bacteria, including bacteriocin synthesis, luxS quorum sensing and interactions between sourdough starter lactic acid bacteria are reviewed. The understanding of extracellular signalling may provide a new basis for controlling over molecular and cellular process the deleterious and useful food related bacteria whose behaviour is mostly a consequence of very complex community interactions.
Collapse
Affiliation(s)
- M Gobbetti
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, Bari, Italy.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Many bacteria use cell-cell communication to monitor their population density, synchronize their behaviour and socially interact. This communication results in a coordinated gene regulation and is generally called quorum sensing. In gram-negative bacteria, the most common quorum signal molecules are acylated homoserine lactones (AHLs), although other low-molecular-mass signalling molecules have been described such as Autoinducer-2 (AI-2). The phenotypes that are regulated in Serratia species by means of AHLs are remarkably diverse and of profound biological and ecological significance, and often interconnected with other global regulators. Furthermore, AHL- and AI-2-mediated systems (less profoundly studied) are continuously being discovered and explored in Serratia spp., many having interesting twists on the basic theme. Therefore, this review will highlight the current known quorum sensing systems in Serratia spp., including the important nosocomial pathogen Serratia marcescens.
Collapse
Affiliation(s)
- Rob Van Houdt
- Molecular and Cellular Biology, Institute for Health, Environment and Safety, Belgian Nuclear Research Centre SCK x CEN, Mol, Belgium.
| | | | | |
Collapse
|
50
|
Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, van der Wolf JM. Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 2007; 52:1006-15. [PMID: 17110970 DOI: 10.1139/w06-062] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quorum sensing plays a role in the regulation of soft rot diseases caused by the plant pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. The signal molecules involved in quorum sensing in P. carotovorum subsp. carotovorum belong to the group of N-acyl homoserine lactones (AHLs). In our study, we screened bacteria isolated from the potato rhizosphere for the ability to degrade AHLs produced by P. carotovorum subsp. carotovorum. Six isolates able to degrade AHLs were selected for further studies. According to 16S rDNA sequence analysis and fatty acid methyl ester profiling, the isolates belonged to the genera Ochrobactrum, Rhodococcus, Pseudomonas, Bacillus, and Delftia. For the genera Ochrobactrum and Delftia, for the first time AHL-degrading isolates were found. Data presented in this study revealed for the first time that Ochrobactrum sp. strain A44 showed the capacity to inactivate various synthetic AHL molecules; the substituted AHLs were inactivated with a lower efficiency than the unsubstituted AHLs. Compared with the other isolates, A44 was very effective in the degradation of AHLs produced by P. carotovorum subsp. carotovorum. It was verified by polymerase chain reaction, DNA-DNA hybridization, and a lactone ring reconstruction assay that Ochrobactrum sp. strain A44 did not possess AHL lactonase activity. AHL degradation in Ochrobactrum sp. strain A44 occurred intracellularly; it was not found in the culture supernatant. AHL-degrading activity of A44 was thermo sensitive. Experiments in planta revealed that Ochrobactrum sp. strain A44 significantly inhibited the maceration of potato tuber tissue. Since A44 did not produce antibiotics, the attenuation of the decay might be due to the quenching of quorum- sensing-regulated production of pectinolytic enzymes. The strain can potentially serve to control P. carotovorum subsp. carotovorum in potato.
Collapse
Affiliation(s)
- S Jafra
- Plant Research International, Wageningen, Netherlands.
| | | | | | | | | | | |
Collapse
|