1
|
Yang Q, Liu S, Zhao Y, Han X, Chang R, Mao J. Enzymatic properties and inhibition tolerance analysis of key enzymes in β-phenylethanol anabolic pathway of Saccharomyces cerevisiae HJ. Synth Syst Biotechnol 2023; 8:772-783. [PMID: 38161995 PMCID: PMC10755794 DOI: 10.1016/j.synbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Huangjiu is known for its unique aroma, primarily attributed to its high concentration of β-phenylethanol (ranging from 40 to 130 mg/L). Phenylalanine aminotransferase Aro9p and phenylpyruvate decarboxylase Aro10p are key enzymes in the β-phenylethanol synthetic pathway of Saccharomyces cerevisiae HJ. This study examined the enzymatic properties of these two enzymes derived from S. cerevisiae HJ and S288C. After substrate docking, Aro9pHJ (-24.05 kJ/mol) and Aro10pHJ (-14.33 kJ/mol) exhibited lower binding free energies compared to Aro9pS288C (-21.93 kJ/mol) and Aro10pS288C (-12.84 kJ/mol). ARO9 and ARO10 genes were heterologously expressed in E. coli BL21. Aro9p, which was purified via affinity chromatography, showed inhibition by l-phenylalanine (L-PHE), but the reaction rate Vmax(Aro9pHJ: 23.89 μmol·(min∙g)-1) > Aro9pS288C: 21.3 μmol·(min∙g)-1) and inhibition constant Ki values (Aro9pHJ: 0.28 mol L-1>Aro9pS288C 0.26 mol L-1) indicated that Aro9p from S. cerevisiae HJ was more tolerant to substrate stress during Huangjiu fermentation. In the presence of the same substrate phenylpyruvate (PPY), Aro10pHJ exhibited a stronger affinity than Aro10pS288C. Furthermore, Aro9pHJ and Aro10pHJ were slightly more tolerant to the final metabolites β-phenylethanol and ethanol, respectively, compared to those from S288C. The study suggests that the mutations in Aro9pHJ and Aro10pHJ may contribute to the increased β-phenylethanol concentration in Huangjiu. This is the first study investigating enzyme tolerance mechanisms in terms of substrate and product, providing a theoretical basis for the regulation of the β-phenylethanol metabolic pathway.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuzong Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Son H, Min K, Lee J, Choi GJ, Kim JC, Lee YW. Differential roles of pyruvate decarboxylase in aerial and embedded mycelia of the ascomycete Gibberella zeae. FEMS Microbiol Lett 2012; 329:123-30. [DOI: 10.1111/j.1574-6968.2012.02511.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/14/2012] [Accepted: 01/20/2012] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology; Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology; Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Jungkwan Lee
- Department of Applied Biology; Dong-A University; Busan; Korea
| | - Gyung Ja Choi
- Biological Function Research Team; Korea Research Institute of Chemical Technology; Daejeon; Korea
| | - Jin-Cheol Kim
- Biological Function Research Team; Korea Research Institute of Chemical Technology; Daejeon; Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology; Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| |
Collapse
|
3
|
Hüttl S, Fiebig J, Kutter S, Hause G, Lilie H, Spinka M, König S. Catalytically active filaments - pyruvate decarboxylase from Neurospora crassa. pH-controlled oligomer structure and catalytic function. FEBS J 2011; 279:275-84. [PMID: 22077835 DOI: 10.1111/j.1742-4658.2011.08421.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pyruvate decarboxylase is a key enzyme in organisms whose energy metabolism is based on alcoholic fermentation. The enzyme catalyses the nonoxidative decarboxylation of 2-oxo acids in the presence of the cofactors thiamine diphosphate and magnesium ions. Pyruvate decarboxylase species from yeasts and plant seeds studied to date are allosterically activated by their substrate pyruvate. However, detailed kinetic studies on the enzyme from Neurospora crassa demonstrate for the first time the lack of substrate activation for a yeast pyruvate decarboxylase species. The quaternary structure of this enzyme species is also peculiar because it forms filamentous structures. The complex enzyme structure was analysed using a number of methods, including small-angle X-ray solution scattering, transmission electron microscopy, analytical ultracentrifugation and size-exclusion chromatography. These measurements were complemented by detailed kinetic studies in dependence on the pH.
Collapse
Affiliation(s)
- Stefanie Hüttl
- Division of Enzymology, Institute of Biochemistry & Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Functional analyses of two acetyl coenzyme A synthetases in the ascomycete Gibberella zeae. EUKARYOTIC CELL 2011; 10:1043-52. [PMID: 21666077 DOI: 10.1128/ec.05071-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) in Gibberella zeae revealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACS genes ACS1 and ACS2), to identify alternative acetyl-CoA production mechanisms for ACL. The ACS1 deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene, ACS2, has accessorial functions for ACS1 and has compensatory functions for ACL as a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle of G. zeae and has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi.
Collapse
|
5
|
König S, Spinka M, Kutter S. Allosteric activation of pyruvate decarboxylases. A never-ending story? ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Kutter S, Weiss MS, Wille G, Golbik R, Spinka M, König S. Covalently bound substrate at the regulatory site of yeast pyruvate decarboxylases triggers allosteric enzyme activation. J Biol Chem 2009; 284:12136-44. [PMID: 19246454 PMCID: PMC2673282 DOI: 10.1074/jbc.m806228200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 02/17/2009] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which the enzyme pyruvate decarboxylase from two yeast species is activated allosterically has been elucidated. A total of seven three-dimensional structures of the enzyme, of enzyme variants, or of enzyme complexes from two yeast species, three of them reported here for the first time, provide detailed atomic resolution snapshots along the activation coordinate. The prime event is the covalent binding of the substrate pyruvate to the side chain of cysteine 221, thus forming a thiohemiketal. This reaction causes the shift of a neighboring amino acid, which eventually leads to the rigidification of two otherwise flexible loops, one of which provides two histidine residues necessary to complete the enzymatically competent active site architecture. The structural data are complemented and supported by kinetic investigations and binding studies, providing a consistent picture of the structural changes occurring upon enzyme activation.
Collapse
Affiliation(s)
- Steffen Kutter
- Institute for Biochemistry and Biotechnology, Faculty of Biological Sciences, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
7
|
Kutter S, Spinka M, Koch MHJ, König S. The influence of protein concentration on oligomer structure and catalytic function of two pyruvate decarboxylases. Protein J 2008; 26:585-91. [PMID: 17805949 DOI: 10.1007/s10930-007-9101-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As a general rule protein concentration typical for structural studies differs considerably from that chosen for kinetic investigations. Consequently, structure-function relationships are often postulated without appropriate knowledge, whether the functional behaviour of the enzyme is the same in both protein concentration ranges. To deal with this question, substrate activation kinetics of two well-characterised yeast pyruvate decarboxylases, from Saccharomyces cerevisiae and from Kluyveromyces lactis, were analysed over the broad protein concentration range 2-2,000 microg/mL. Analytical ultracentrifugation and small-angle X-ray scattering were used to analyse the enzymes' oligomer structure in aqueous solution. For the upper part of the concentration range the determined parameters, like catalytic activity, observed substrate activation rates, sedimentation coefficients and scattering parameters are independent on enzyme concentration changes. No indication of protein aggregation is detectable. However, significant changes occur at low enzyme concentration. The catalytically active tetramer dissociates progressively into dimers with comparable catalytic activity, but with significantly accelerated substrate activation.
Collapse
Affiliation(s)
- Steffen Kutter
- Institute for Biochemistry & Biotechnology, Faculty for Life Sciences, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halles (Saale), Germany
| | | | | | | |
Collapse
|
8
|
Purification and characterisation of two isozymes of pyruvate decarboxylase from Rhizopus oryzae. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007. [DOI: 10.1007/bfb0103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Temporini ED, Alvarez ME, Mautino MR, Folco HD, Rosa AL. The Neurospora crassa cfp promoter drives a carbon source-dependent expression of transgenes in filamentous fungi. J Appl Microbiol 2004; 96:1256-64. [PMID: 15139917 DOI: 10.1111/j.1365-2672.2004.02249.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The objective of the present study was to determine the potential of promoter sequences from the cfp gene of Neurospora crassa to drive the expression of transgenes in filamentous fungi. METHODS AND RESULTS Northern blot analyses showed that the mRNA levels of cfp were rapidly modified in response to either inducing or repressing culture conditions. The hygromycin phosphotransferase (hph) and S-adenosylmethionine synthetase (eth-1) genes were fused to a minimal cfp promoter fragment (Pcfp) and used as reporter genes. These constructs were highly expressed in transformant N. crassa strains grown in media containing glucose or sucrose and repressed in media containing ethanol or ethanol plus glucose. A gene fusion of the cfp promoter to the beta-glucuronidase gene (cfp-uidA) showed identical patterns of expression in the heterologous filamentous fungus Aspergillus nidulans. CONCLUSIONS Our results show that the levels of expression of the native cfp gene, as well as reporter genes driven by cfp promoter sequences, can be rapidly modified in response to different carbon sources. These modified levels of expression are maintained by continuous growth in the presence of the corresponding carbon source. SIGNIFICANCE AND IMPACT OF THE STUDY We propose that the cfp promoter can be used to control the expression of transgenes in filamentous fungi in a carbon source-dependent fashion.
Collapse
Affiliation(s)
- E D Temporini
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, and Departmento de Química Biológica, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | | | | | | | | |
Collapse
|
11
|
Folco HD, Freitag M, Ramón A, Temporini ED, Alvarez ME, García I, Scazzocchio C, Selker EU, Rosa AL. Histone H1 Is required for proper regulation of pyruvate decarboxylase gene expression in Neurospora crassa. EUKARYOTIC CELL 2003; 2:341-50. [PMID: 12684383 PMCID: PMC154839 DOI: 10.1128/ec.2.2.341-350.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Accepted: 12/20/2002] [Indexed: 11/20/2022]
Abstract
We show that Neurospora crassa has a single histone H1 gene, hH1, which encodes a typical linker histone with highly basic N- and C-terminal tails and a central globular domain. A green fluorescent protein-tagged histone H1 chimeric protein was localized exclusively to nuclei. Mutation of hH1 by repeat-induced point mutation (RIP) did not result in detectable defects in morphology, DNA methylation, mutagen sensitivity, DNA repair, fertility, RIP, chromosome pairing, or chromosome segregation. Nevertheless, hH1 mutants had mycelial elongation rates that were lower than normal on all tested carbon sources. This slow linear growth phenotype, however, was less evident on medium containing ethanol. The pyruvate decarboxylase gene, cfp, was abnormally derepressed in hH1 mutants on ethanol-containing medium. This derepression was also found when an ectopically integrated fusion of the cfp gene promoter to the reporter gene hph was analyzed. Thus, Neurospora histone H1 is required for the proper regulation of cfp, a gene with a key role in the respiratory-fermentative pathway.
Collapse
Affiliation(s)
- H Diego Folco
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Raj KC, Talarico LA, Ingram LO, Maupin-Furlow JA. Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (pdc) and comparison to bacterial homologues. Appl Environ Microbiol 2002; 68:2869-76. [PMID: 12039744 PMCID: PMC123914 DOI: 10.1128/aem.68.6.2869-2876.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein(-1)) and the lowest Km for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production.
Collapse
Affiliation(s)
- Krishnan Chandra Raj
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
13
|
Talarico LA, Ingram LO, Maupin-Furlow JA. Production of the Gram-positive Sarcina ventriculi pyruvate decarboxylase in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2425-2435. [PMID: 11535783 DOI: 10.1099/00221287-147-9-2425] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sarcina ventriculi grows in a remarkable range of mesophilic environments from pH 2 to pH 10. During growth in acidic environments, where acetate is toxic, expression of pyruvate decarboxylase (PDC) serves to direct the flow of pyruvate into ethanol during fermentation. PDC is rare in bacteria and absent in animals, although it is widely distributed in the plant kingdom. The pdc gene from S. ventriculi is the first to be cloned and characterized from a Gram-positive bacterium. In Escherichia coli, the recombinant pdc gene from S. ventriculi was poorly expressed due to differences in codon usage that are typical of low-G+C organisms. Expression was improved by the addition of supplemental codon genes and this facilitated the 136-fold purification of the recombinant enzyme as a homo-tetramer of 58 kDa subunits. Unlike Zymomonas mobilis PDC, which exhibits Michaelis-Menten kinetics, S. ventriculi PDC is activated by pyruvate and exhibits sigmoidal kinetics similar to fungal and higher plant PDCs. Amino acid residues involved in the allosteric site for pyruvate in fungal PDCs were conserved in S. ventriculi PDC, consistent with a conservation of mechanism. Cluster analysis of deduced amino acid sequences confirmed that S. ventriculi PDC is quite distant from Z. mobilis PDC and plant PDCs. S. ventriculi PDC appears to have diverged very early from a common ancestor which included most fungal PDCs and eubacterial indole-3-pyruvate decarboxylases. These results suggest that the S. ventriculi pdc gene is quite ancient in origin, in contrast to the Z. mobilis pdc, which may have originated by horizontal transfer from higher plants.
Collapse
Affiliation(s)
- Lee A Talarico
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA1
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA1
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA1
| |
Collapse
|
14
|
Thompson-Coffe C, Borioli G, Zickler D, Rosa AL. Pyruvate decarboxylase filaments are associated with the cortical cytoskeleton of asci and spores over the sexual cycle of filamentous ascomycetes. Fungal Genet Biol 1999; 26:71-80. [PMID: 10072321 DOI: 10.1006/fgbi.1998.1106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that pyruvate decarboxylase (PDC) 8- to 10-nm-diameter filaments, first described in vegetative cells of Neurospora crassa, are ubiquitously present in filamentous fungi. The cellular arrangement of these structures was examined over the entire sexual cycle of the ascomycetes N. crassa, N. tetraesperma, Podospora anserina, and Sordaria macrospora. PDC-filaments were found associated with the cortical microtubule array of asci and ascospores and absent from the vicinity of spindles and spindle pole bodies. Nocodazole-induced depolymerization of the cortical microtubules results in the loss of PDC-filaments. Moreover, a S. macrospora mutant defective in cortical MT distribution shows abnormal PDC organization. Neurospora asci generated on various metabolic conditions, which modify the presence and relative abundance of PDC-filaments in vegetative cells, have identical patterns of subcellular distribution of these structures. A N. crassa mutant (snowflake) that accumulates giant bundles of PDC-filaments during vegetative growth, shows normal distribution of the filaments during ascogenesis. Thus, the regulation conditioning the presence and supramolecular assembly of PDC-filaments in Neurospora differs between vegetative and sexual cells. Taken together, these results suggest that PDC in filamentous fungi may perform two functions, intervening as an enzyme in vegetative metabolism and as a structural protein associated with the cytoskeleton during sexual development.
Collapse
Affiliation(s)
- C Thompson-Coffe
- Facultad de Ciencias Químicas, Ciudad Universitaria, Córdoba, 5016, Argentina
| | | | | | | |
Collapse
|
15
|
Iding H, Siegert P, Mesch K, Pohl M. Application of alpha-keto acid decarboxylases in biotransformations. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:307-22. [PMID: 9655924 DOI: 10.1016/s0167-4838(98)00076-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The advantages of using enzymes in the synthesis of organic compounds relate to their versatility, high reaction rates, and regio- and stereospecificity and the relatively mild reaction conditions involved. Stereospecificity is especially important in the synthesis of bioactive molecules, as only one of the enantiomeric forms usually manifests bioactivity, whereas the other is often toxic. Although enzymes which catalyze asymmetric carbon-carbon bond formation are of great importance in bioorganic chemistry, only a few examples are known for thiamin diphosphate (ThDP)-dependent enzymes, whereas transformations using e.g. aldolases, lipases and lyases are well documented already. The present review surveys recent work on the application of pyruvate decarboxylase and benzoylformate decarboxylase in organic synthesis. These enzymes catalyze the synthesis of chiral alpha-hydroxy ketones which are versatile building blocks for organic and pharmaceutical chemistry. Besides the substrate spectra of both enzymes amino acid residues relevant for substrate specificity and enantioselectivity of pyruvate decarboxylase have been investigated by site-directed mutagenesis.
Collapse
Affiliation(s)
- H Iding
- Institut für Enzymtechnologie der Heinrich-Heine Universität Düsseldorf, im Forschungszentrum Jülich, D-52426 Jülich, Germany
| | | | | | | |
Collapse
|
16
|
Candy JM, Duggleby RG. Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:323-38. [PMID: 9655927 DOI: 10.1016/s0167-4838(98)00077-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate decarboxylase (EC 4.1.1.1) is a thiamin diphosphate-dependent enzyme that catalyzes the penultimate step in alcohol fermentation. The enzyme is widely distributed in plants and fungi but is rare in prokaryotes and absent in animals. Here we review its structure and properties with particular emphasis on how site-directed mutagenesis of the enzyme from Zymomonas mobilis has assisted us to understand the function of critical residues.
Collapse
Affiliation(s)
- J M Candy
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
17
|
Lockington RA, Borlace GN, Kelly JM. Pyruvate decarboxylase and anaerobic survival in Aspergillus nidulans. Gene X 1997; 191:61-7. [PMID: 9210590 DOI: 10.1016/s0378-1119(97)00032-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The presence of pyruvate decarboxylase activity has been demonstrated in Aspergillus nidulans, and a gene encoding a pyruvate decarboxylase has been isolated from this organism and physically characterized. The isolation of the pdcA gene in A. nidulans confirms the existence of the alcoholic fermentation pathway in this fungus, despite it being an obligate aerobic organism. Southern analysis showed that it is most probably a single copy gene. Several potential binding sites for a GATAR-binding protein were identified in the sequence just prior to the start point of transcription, and mutant alleles of the GATAR-binding protein-encoding gene, areA, affected pdcA mRNA levels in a manner that suggested that it influences pdcA expression in nitrogen repressing conditions. Other previously reported cases of AREA action are in nitrogen-limiting conditions. Interestingly, the production of ethanol was affected in a similar way by the same areA alleles, suggesting that changes in pdcA mRNA level are reflected in the changes in the level of ethanol production. The experiments presented here confirm that PDC levels are a major determinant of ethanol production under these conditions.
Collapse
Affiliation(s)
- R A Lockington
- Department of Genetics, University of Adelaide, Australia
| | | | | |
Collapse
|
18
|
Barra JL, Mautino MR, Rosa AL. A dominant negative effect of eth-1r, a mutant allele of the Neurospora crassa S-adenosylmethionine synthetase-encoding gene conferring resistance to the methionine toxic analogue ethionine. Genetics 1996; 144:1455-62. [PMID: 8978034 PMCID: PMC1207698 DOI: 10.1093/genetics/144.4.1455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
eth-1r, a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48-->N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1+/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1+/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1+ and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1+/ eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1+/eth-1r AdoMet synthetase molecules.
Collapse
Affiliation(s)
- J L Barra
- Departamento de Química Biológica (CIQUIBIC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
19
|
Mücke U, Wohlfarth T, Fiedler U, Bäumlein H, Rücknagel KP, König S. Pyruvate decarboxylase from Pisum sativum. Properties, nucleotide and amino acid sequences. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:373-82. [PMID: 8647075 DOI: 10.1111/j.1432-1033.1996.0373k.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To study the molecular structure and function of pyruvate decarboxylase (PDC) from plants the protein was isolated from pea seeds and partially characterised. The active enzyme which occurs in the form of higher oligomers consists of two different subunits appearing in SDS/PAGE and mass spectroscopy experiments. For further experiments, like X-ray crystallography, it was necessary to elucidate the protein sequence. Partial cDNA clones encoding pyruvate decarboxylase from seeds of Pisum sativum cv. Miko have been obtained by means of polymerase chain reaction techniques. The first sequences were found using degenerate oligonucleotide primers designated according to conserved amino acid sequences of known pyruvate decarboxylases. The missing parts of one cDNA were amplified applying the 3'- and 5'-rapid amplification of cDNA ends systems. The amino acid sequence deduced from the entire cDNA sequence displays strong similarity to pyruvate decarboxylases from other organisms, especially from plants. A molecular mass of 64 kDa was calculated for this protein correlating with estimations for the smaller subunit of the oligomeric enzyme. The PCR experiments led to at least three different clones representing the middle part of the PDC cDNA indicating the existence of three isozymes. Two of these isoforms could be confirmed on the protein level by sequencing tryptic peptides. Only anaerobically treated roots showed a positive signal for PDC mRNA in Northern analysis although the cDNA from imbibed seeds was successfully used for PCR.
Collapse
Affiliation(s)
- U Mücke
- Institut für Biochemie, FB Biochemie/Biotechologie, Martin-Luther-Universität Halle-Wittenberg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Koga J. Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1249:1-13. [PMID: 7766676 DOI: 10.1016/0167-4838(95)00011-i] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Koga
- Bio Science Laboratories, Meiji Seika Kaisha, Ltd., Saitama, Japan
| |
Collapse
|
22
|
Candy JM, Duggleby RG. Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis. Biochem J 1994; 300 ( Pt 1):7-13. [PMID: 8198554 PMCID: PMC1138114 DOI: 10.1042/bj3000007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several enzymes require thiamin diphosphate (ThDP) as an essential cofactor, and we have used one of these, pyruvate decarboxylase (PDC; EC 4.1.1.1) from Zymomonas mobilis, as a model for this group of enzymes. It is well suited for this purpose because of its stability, ease of purification and its simple kinetic properties. A sequence motif of approx. 30 residues, beginning with a glycine-aspartate-glycine (-GDG-) triplet and ending with a double asparagine (-NN-) sequence, has been identified in many of these enzymes [Hawkins, Borges and Perham (1989) FEBS Lett. 255, 77-82]. Other residues within this putative ThDP-binding motif are conserved, but to a lesser extent, including a glutamate and a proline residue. The role of the elements of this motif has been clarified by the determination of the three-dimensional structure of three of these enzymes [Muller, Lindqvist, Furey, Schulz, Jordan and Schneider (1993) Structure 1, 95-103]. Four of the residues within this motif were modified by site-directed mutagenesis of the cloned PDC gene to evaluate their role in cofactor binding. The mutant proteins were expressed in Escherichia coli and found to purify normally, indicating that the tertiary structure of these enzymes had not been grossly perturbed by the amino acid substitutions. We have shown previously [Diefenbach, Candy, Mattick and Duggleby (1992) FEBS Lett. 296, 95-98] that changing the aspartate in the -GDG- sequence to glycine, threonine or asparagine yields an inactive enzyme that is unable to bind ThDP, therefore verifying the role of the ThDP-binding motif. Here we demonstrate that substitution with glutamate yields an active enzyme with a greatly reduced affinity for both ThDP and Mg2+, but with normal kinetics for pyruvate. Unlike the wild-type tetrameric enzyme, this mutant protein usually exists as a dimer. Replacement of the second asparagine of the -NN- sequence by glutamine also yields an inactive enzyme which is unable to bind ThDP, whereas replacement with an aspartate residue results in an active enzyme with a reduced affinity for ThDP but which displays normal kinetics for both Mg2+ and pyruvate. Replacing the conserved glutamate with aspartate did not alter the properties of the enzyme, while the conserved proline, thought to be required for structural reasons, could be substituted with glycine or alanine without inactivating the enzyme, but these changes did reduce its stability.
Collapse
Affiliation(s)
- J M Candy
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | |
Collapse
|