1
|
Abstract
Myoblasts are defined as stem cells containing skeletal muscle cell precursors. A decade of experimental work has revealed many properties of myoblasts, including the stability of resulting hybrid myofibers without immune suppression, the persistence of transgene expression, and the lack of tumorigenicity. Early phase clinical trials also showed that myoblast-based therapy is a promising approach for many intractable clinical conditions, including both muscle-related and non-muscle-related diseases. The potential application of myoblast therapy may be in the treatment of genetic muscle diseases, cardiomyocyte damaged heart diseases, and urinary incontinence. This review will provide an overview of myoblast biology, along with discussion of the potential application in clinical medicine. In addition, problems in current myoblast therapy and possible future improvements will be addressed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Heart Center, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | | | | |
Collapse
|
2
|
Bartlett RJ, Secore SL, Singer JT, Bodo M, Sharma K, Ricordi C. Long-Term Expression of a Fluorescent Reporter Gene via Direct Injection of Plasmid Vector into Mouse Skeletal Muscle: Comparison of Human Creatine Kinase and Cmv Promoter Expression Levels in Vivo. Cell Transplant 2017; 5:411-9. [PMID: 8727010 DOI: 10.1177/096368979600500308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Expression of a fluorescent reporter gene has been studied using two alternate promoters to transcribe the green fluorescent protein (gfp) from Aequorea victoria. The human cytomegalovirus (CMV) enhancer/promoter or the human muscle-specific creatine kinase promoter (CKM) were inserted along with the gfp cDNA into a plasmid expression vector based on a modified adeno-associated virus genome. Naked plasmid DNA was injected into the hamstring muscle of mdx mice and gfp gene expression determined from frozen muscle sections taken at 4, 14, and 42 days postinjection. Fluorescence patterns obtained by photomicroscopy and quantitative fluorescence measurements indicated a near-linear increase in the accumulation of the gfp in skeletal muscle during the length of the study, with gfp expression at 42 days being roughly four times the values obtained at 4 days. The levels of expression of gfp from the CKM construct were consistantly higher than for the CMV construct. The CKM promoter/expression vector combination demonstrates significant potential for simple, direct delivery and long-term, high-level expression of genes in skeletal muscle.
Collapse
Affiliation(s)
- R J Bartlett
- Department of Neurology, University of Miami School of Medicine, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
3
|
de Pomerai DI. Are there limits to animal transgenesis? EUROPEAN JOURNAL OF GENETICS IN SOCIETY : AN ETHICAL APPROACH TO GENETICS 2001; 3:4-12. [PMID: 11657125 DOI: 10.1179/hrge.3.1.1881367r8117188w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Abstract
Gene reporter systems play a key role in gene expression and regulation studies. This review describes the ideal reporter systems, including reporter expression vector design. It summarizes the many uses of genetic reporters and outlines the currently available and commonly used reporter systems. Each system is described in terms of the reporter gene, the protein it encodes, and the assays available for detecting presence of the reporter. In addition, each reporter system is analyzed in terms of its recommended uses, advantages, and limitations.
Collapse
|
5
|
Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998; 19:717-97. [PMID: 9861545 DOI: 10.1210/edrv.19.6.0353] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During the last decade, the GH axis has become the compelling focus of remarkably active and broad-ranging basic and clinical research. Molecular and genetic models, the discovery of human GHRH and its receptor, the cloning of the GHRP receptor, and the clinical availability of recombinant GH and IGF-I have allowed surprisingly rapid advances in our knowledge of the neuroregulation of the GH-IGF-I axis in many pathophysiological contexts. The complexity of the GHRH/somatostatin-GH-IGF-I axis thus commends itself to more formalized modeling (154, 155), since the multivalent feedback-control activities are difficult to assimilate fully on an intuitive scale. Understanding the dynamic neuroendocrine mechanisms that direct the pulsatile secretion of this fundamental growth-promoting and metabolic hormone remains a critical goal, the realization of which is challenged by the exponentially accumulating matrix of experimental and clinical data in this arena. To the above end, we review here the pathophysiology of the GHRH somatostatin-GH-IGF-I feedback axis consisting of corresponding key neurotransmitters, neuromodulators, and metabolic effectors, and their cloned receptors and signaling pathways. We propose that this system is best viewed as a multivalent feedback network that is exquisitely sensitive to an array of neuroregulators and environmental stressors and genetic restraints. Feedback and feedforward mechanisms acting within the intact somatotropic axis mediate homeostatic control throughout the human lifetime and are disrupted in disease. Novel effectors of the GH axis, such as GHRPs, also offer promise as investigative probes and possible therapeutic agents. Further understanding of the mechanisms of GH neuroregulation will likely allow development of progressively more specific molecular and clinical tools for the diagnosis and treatment of various conditions in which GH secretion is regulated abnormally. Thus, we predict that unexpected and enriching insights in the domain of the neuroendocrine pathophysiology of the GH axis are likely be achieved in the succeeding decades of basic and clinical research.
Collapse
Affiliation(s)
- A Giustina
- Department of Internal Medicine, University of Brescia, Italy
| | | |
Collapse
|
6
|
Rolland AP, Mumper RJ. Plasmid delivery to muscle: Recent advances in polymer delivery systems. Adv Drug Deliv Rev 1998; 30:151-172. [PMID: 10837608 DOI: 10.1016/s0169-409x(97)00113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Preclinical studies involving intramuscular injection of plasmid into animals have revealed at least four significant variables that effect levels of gene expression (i.e., >fivefold effect over controls), including the formulation, injection technique, species and pretreatment of the muscle with myotoxic agents to induce muscle damage. The uptake of plasmid formulated in saline has been shown to be a saturable process, most likely via a receptor-mediated event involving the T tubules and caveolae. Pharmacokinetic studies have demonstrated that the bioavailability of injected plasmid to muscle cells is very low, due to rapid and extensive plasmid degradation by extracellular nucleases. We have developed protective, interactive, non-condensing (PINC) delivery systems designed to complex plasmids and to (i) protect plasmids from rapid nuclease degradation, (ii) disperse and retain intact plasmid in the muscle and (iii) facilitate the uptake of plasmid by muscle cells. PINC systems result in up to at least a one log increase in both the extent and levels of gene expression over plasmid formulated in saline. We have combined the PINC delivery systems with two different muscle-specific expression plasmids. After direct intramuscular injection of these gene medicines, we have shown both local myotrophic and neurotrophic effects of expressed human insulin-like growth factor (hIGF-I) and the secretion of biologically active human growth hormone (hGH) into the systemic circulation.
Collapse
Affiliation(s)
- AP Rolland
- GeneMedicine, Inc., 8301 New Trails Drive, The Woodlands, TX 77381-4248, USA
| | | |
Collapse
|
7
|
Strayer MS, Guttentag SH, Ballard PL. Targeting type II and Clara cells for adenovirus-mediated gene transfer using the surfactant protein B promoter. Am J Respir Cell Mol Biol 1998; 18:1-11. [PMID: 9448040 DOI: 10.1165/ajrcmb.18.1.2878] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined the ability of the human surfactant protein B (SP-B) promoter to confer cell specificity of transgene expression in an adenoviral vector. Using similar replication-deficient adenoviruses (rAd), we compared lacZ reporter gene expression driven by the human SP-B promoter (rAd.SPBlacZ) with the ubiquitously expressed Rous sarcoma virus promoter (rAd.RSVlacZ). rAd.SPBlacZ expressed lacZ in H-441 and A549 lung epithelial cell lines and not in HeLa cells whereas rAd.RSVlacZ expressed in all three cell lines. In primary human fetal lung fibroblasts, beta-galactosidase activity from rAd.RSVlacZ transduction increased in a dose-dependent manner whereas activity from rAd.SPBlacZ remained low. In mixed cell cultures prepared from human fetal lung explants that contained fibroblasts and type II cells, X-Gal staining localized rAd.SPBlacZ expression to only type II cells whereas rAd.RSVlacZ expressed in both cell types. In 24-wk gestation human fetal tissue explants infected ex vivo, the RSV promoter directed lacZ expression in lung, trachea, heart, liver, and esophagus, whereas with the SP-B promoter lacZ was expressed only in lung, specifically in air space-lining cells. This specificity was maintained in vivo. lacZ expression was undetectable in lung and other tissues after intravenous administration of rAd.SPBlacZ whereas rAd.RSV-lacZ expressed primarily in liver. After intratracheal instillation of rAd.SPBlacZ into mice, X-Gal staining localized expression to type II and Clara cells. In contrast, rAd.RSVlacZ expressed in all pulmonary epithelial cell types. Our results indicate that the SP-B promoter may be useful in targeting type II and Clara cells for gene therapy of conditions such as inherited deficiency of SP-B.
Collapse
Affiliation(s)
- M S Strayer
- Department of Pediatrics, University of Pennsylvania, and Children's Hospital of Philadelphia, 19104, USA
| | | | | |
Collapse
|
8
|
Persistent Systemic Production of Human Factor IX in Mice by Skeletal Myoblast-Mediated Gene Transfer: Feasibility of Repeat Application to Obtain Therapeutic Levels. Blood 1997. [DOI: 10.1182/blood.v90.3.1075.1075_1075_1082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myoblast-mediated gene transfer and its repeated applications were tested for achieving a long-term stable systemic production of human factor IX (hFIX) at a therapeutic level in SCID mice. Primary skeletal myoblasts were stably transfected with a hFIX expression plasmid vector, pdLMe4βAhIXm1, which contains a hFIX minigene under the control of a β-actin promoter with muscle creatine kinase enhancers. Myotubes derived from the myoblasts produced 1,750 ng hFIX/106 cells/24 hours in culture. hFIX secretion by the myoblasts and thereof derived myotubes were equally efficient, and myotubes were shown to have a sufficient secretory capacity to handle a substantially elevated production of hFIX. After intramuscular injection of 5, 10, and 20 × 106 myoblasts, SCID mice stably produced hFIX into the systemic circulation proportional to the number of implanted cells, and the expression levels were maintained for at least up to 10 months (end of the experiment). Additional cell injections administered to animals that originally received 10 × 106 cells approximately 2 months later elevated the systemic hFIX levels to an average of 182 ± 21 ng/mL, a therapeutic level, which persisted for at least 8 months (end of the experiment). These results indicate that long-term, stable systemic production of hFIX at therapeutic levels can be achieved by repeated application of myoblast-mediated gene transfer.
Collapse
|
9
|
Persistent Systemic Production of Human Factor IX in Mice by Skeletal Myoblast-Mediated Gene Transfer: Feasibility of Repeat Application to Obtain Therapeutic Levels. Blood 1997. [DOI: 10.1182/blood.v90.3.1075] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Myoblast-mediated gene transfer and its repeated applications were tested for achieving a long-term stable systemic production of human factor IX (hFIX) at a therapeutic level in SCID mice. Primary skeletal myoblasts were stably transfected with a hFIX expression plasmid vector, pdLMe4βAhIXm1, which contains a hFIX minigene under the control of a β-actin promoter with muscle creatine kinase enhancers. Myotubes derived from the myoblasts produced 1,750 ng hFIX/106 cells/24 hours in culture. hFIX secretion by the myoblasts and thereof derived myotubes were equally efficient, and myotubes were shown to have a sufficient secretory capacity to handle a substantially elevated production of hFIX. After intramuscular injection of 5, 10, and 20 × 106 myoblasts, SCID mice stably produced hFIX into the systemic circulation proportional to the number of implanted cells, and the expression levels were maintained for at least up to 10 months (end of the experiment). Additional cell injections administered to animals that originally received 10 × 106 cells approximately 2 months later elevated the systemic hFIX levels to an average of 182 ± 21 ng/mL, a therapeutic level, which persisted for at least 8 months (end of the experiment). These results indicate that long-term, stable systemic production of hFIX at therapeutic levels can be achieved by repeated application of myoblast-mediated gene transfer.
Collapse
|
10
|
Déglon N, Heyd B, Tan SA, Joseph JM, Zurn AD, Aebischer P. Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C12 myoblasts. Hum Gene Ther 1996; 7:2135-46. [PMID: 8934227 DOI: 10.1089/hum.1996.7.17-2135] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurotrophic factors hold promise for the treatment of neurodegenerative diseases. Intrathecal transplantation of polymer encapsulated cell lines genetically engineered to release neurotrophic factors provides a means to deliver them continuously behind the blood-brain barrier. Long-term delivery, however, may benefit from the use of conditionally mitotic cells to avoid the overgrowth observed with continuously dividing cell lines. Myoblast lines have all the advantages of dividing cell lines, i.e., unlimited availability, possibility for in vitro screening for the presence of pathogens, suitability for stable gene transfer and clonal selection. Furthermore they can be differentiated into a nonmitotic stage upon exposure to low-serum-containing medium. In this study, mouse C2C12 myoblasts were transfected with a pNUT expression vector containing the human ciliary neurotrophic factor (CNTF) gene. hCNTF expression and bioactivity were demonstrated by Northern blot, ELISA assay, and measurement of choline acetyltransferase (ChAT) activity in embryonic spinal cord motor neuron cultures. One C2C12 clone was found to secrete 200 ng of CNTF/10(6) cells per day. The rate of secretion of hCNTF was not altered upon differentiation of C2C12 myoblasts. A bromodeoxyuridine (BrdU) proliferation assay indicated that approximately 12% of the myoblasts continue to divide after 4 days in low-serum-containing medium. The presence of the herpes simplex thymidine kinase gene (HSV-tk) in the expression vector, however, provides a way to eliminate these dividing myoblasts upon exposure to ganciclovir, therefore increasing the safety of the encapsulation technology using established cell lines. Encapsulated hCNTF-C2C12 cells can partially rescue motor neurons from axotomy-induced cell death. In adult rats, intrathecal implantation of encapsulated hCNTF-C2C12 cells or control C2C12 confirmed the long-term survival of these cells and their potential use as a source of neurotophic factors for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- N Déglon
- Gene Therapy Center, Centre Hospitalier Universitaire Vaudois, Lausanne University Medical School, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Wang JM, Zheng H, Sugahara Y, Tan J, Yao SN, Olson E, Kurachi K. Construction of human factor IX expression vectors in retroviral vector frames optimized for muscle cells. Hum Gene Ther 1996; 7:1743-56. [PMID: 8886845 DOI: 10.1089/hum.1996.7.14-1743] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Development of a highly refined human factor IX (hFIX) expression vector system is critical for establishing a durable hemophilia B gene therapy. Here we report construction of a series of retroviral vectors and identification of an optimal basic structure and components for expressing hFIX in skeletal muscle cells. These vectors, which are derived from Moloney murine leukemia virus (MoMLV) with its enhancer sequence in the 3' long terminal repeat (LTR) deleted, contained internal hFIX expression units inserted in forward configuration without or with a viral vector intron sequence (pdL or pdLIn vector frame, respectively) or in inverted configuration without a viral vector intron sequence (pdLi frame). Internal expression units contained a hFIX cDNA or hFIX minigene (hIXm1 or hIXm2) derived from the hFIX cDNA by insertion of a shortened first intron sequence of the hFIX gene. Regardless of the promoter and vector frame used, both hIXm1 and hIXm2 gave 10- to 14-fold higher hFIX expression compared to those with hFIX cDNA. Internal hFIX transcriptional control units of these vectors were composed of various promoters linked with or without the muscle creatine kinase enhancer (Me) sequence. Promoters tested included those of alpha-actin (alpha A775), beta-actin (beta A280), cytochrome oxidase (CO1250 and CO650), myogenin (Mg1031 and Mg353), and Rous sarcoma virus (RSV). beta A200, which was derived from beta A280 by eliminating potential polyadenylation sites, was also tested. As extensively examined with the myogenin promoter, presence of one or multiple copies of Me in the vectors elevated the expression activity in myotubes by 4.5- to 19-fold over those without Me, but not significantly in myoblasts. Similar enhancements in expression activity with Me were also observed with other promoters, except those of RSV and CO. The latter two showed only modest enhancements in the presence of Me. As assayed with myotubes in culture, the general order of hFIX expression activity of various promoters with four copies of Me in the three different vector frames was beta A280 approximately beta A200 > Mg353 > Mg1031 approximately RSV approximately CO650 approximately alpha A775 > CO1250. One exception was that CO650 showed significantly less activity in pdLi-type vectors than in the pdLIn vectors. Based on the systematic analyses of various structural components, a group of pdLi vectors consisting of beta A200, two to four copies of Me, and hIXm2 was identified to have the optimal basic vector structure to be used in retrovirus for hFIX expression in differentiated skeletal muscle cells. The present studies provide the critical first step for establishing a highly refined hemophilia B gene therapy based on skeletal muscle-targeted hFIX gene transfer.
Collapse
Affiliation(s)
- J M Wang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Long-term expression of a fluorescent reporter gene via direct injection of plasmid vector into mouse skeletal muscle: comparison of human creatine kinase and CMV promoter expression levels in vivo. Cell Transplant 1996. [PMID: 8727010 DOI: 10.1016/0963-6897(95)02026-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of a fluorescent reporter gene has been studied using two alternate promoters to transcribe the green fluorescent protein (gfp) from Aequorea victoria. The human cytomegalovirus (CMV) enhancer/ promoter or the human muscle-specific creatine kinase promoter (CKM) were inserted along with the gfp cDNA into a plasmid expression vector based on a modified adeno-associated virus genome. Naked plasmid DNA was injected into the hamstring muscle of mdx mice and gfp gene expression determined from frozen muscle sections taken at 4, 14, and 42 days postinjection. Fluorescence patterns obtained by photomicroscopy and quantitative fluorescence measurements indicated a near-linear increase in the accumulation of the gfp in skeletal muscle during the length of the study, with gfp expression at 42 days being roughly four times the values obtained at 4 days. The levels of expression of gfp from the CKM construct were consistantly higher than for the CMV construct. The CKM promoter/expression vector combination demonstrates significant potential for simple, direct delivery and long-term, high-level expression of genes in skeletal muscle.
Collapse
|