1
|
Volpato JP, Mayotte N, Fossati E, Guerrero V, Sauvageau G, Pelletier JN. Selectively weakened binding of methotrexate by human dihydrofolate reductase allows rapid ex vivo selection of mammalian cells. J Mol Recognit 2011; 24:188-98. [PMID: 21360609 DOI: 10.1002/jmr.1037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ex vivo selection of transduced hematopoietic stem cells (HSC) with drug-resistance genes offers the possibility to enrich transduced cells prior to engraftment, toward increased reconstitution in transplant recipients. We evaluated the potential of highly methotrexate (MTX)-resistant variants of human dihydrofolate reductase (hDHFR) for this application. Two subsets of hDHFR variants with reduced affinity for MTX that had been previously identified in a bacterial system were considered: those with substitutions at positions 31, 34, and/or 35, and those with substitutions at position 115. The variants were characterized for their resistance to pemetrexed (PMTX), an antifolate that is related to MTX. We observed a strong correlation between decreased binding to both antifolates, although the identity of specific sequence variations modulated the correlation. We chose a subset of hDHFR variants for tests of ex vivo MTX resistance, taking into consideration their residual specific activity and their decrease in affinity for the related antifolates. Murine myeloid progenitors and other differentiated hematopoietic cells were transduced and exposed to MTX in a nucleotide-free medium. Bone marrow (BM) cells including 15% cells infected with F31R/Q35E were enriched to 98% transduced cells within 6 days of ex vivo selection. hDHFR variant F31R/Q35E allowed a strong ex vivo enrichment upon a short exposure to MTX relative to a less resistant variant of hDHFR, L22Y. We have thus demonstrated that bacterial selection of highly antifolate-resistant hDHFR variants can provide selectable markers for rapid ex vivo enrichment of hematopoietic cells.
Collapse
Affiliation(s)
- Jordan P Volpato
- Département de biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
2
|
Mishra PJ, Menon LG, Mishra PJ, Mayer-Kuckuk P, Bertino JR, Banerjee D. Translational Modulation of Proteins Expressed from Bicistronic Vectors. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Prasun J. Mishra
- From the Department of Pharmacology, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Department of Neurosurgery, Brigham and Women's
| | - Lata G. Menon
- From the Department of Pharmacology, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Department of Neurosurgery, Brigham and Women's
| | - Pravin J. Mishra
- From the Department of Pharmacology, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Department of Neurosurgery, Brigham and Women's
| | - Philipp Mayer-Kuckuk
- From the Department of Pharmacology, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Department of Neurosurgery, Brigham and Women's
| | - Joseph R. Bertino
- From the Department of Pharmacology, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Department of Neurosurgery, Brigham and Women's
| | - Debabrata Banerjee
- From the Department of Pharmacology, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Medicine, Robert Wood Johnson Medical School, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ; Department of Neurosurgery, Brigham and Women's
| |
Collapse
|
3
|
Selection for methotrexate resistance in mammalian cells bearing a Drosophila dihydrofolate reductase transgene: Methotrexate resistance in transgenic mammalian cells. Cell Biol Toxicol 2009; 26:117-26. [PMID: 19337845 DOI: 10.1007/s10565-009-9122-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
Antifolates, such as methotrexate (MTX), are the treatment of choice for numerous cancers. MTX inhibits dihydrofolate reductase (DHFR), which is essential for cell growth and proliferation. Mammalian cells can acquire resistance to antifolate treatment through a variety of mechanisms but decreased antifolate titers due to changes in drug efflux or influx, or alternatively, the amplification of the DHFR gene are the most commonly acquired resistance mechanisms. In Drosophila, however, a resistant phenotype has only been observed to occur by mutation resulting in a MTX-resistant DHFR. It is unclear if differences in gene structure and/or genome organization between Drosophila and mammals contribute to the observed differences in acquired drug resistance. To investigate if gene structure is involved, Drosophila Dhfr cDNA was transfected into a line of CHO cells that do not express endogenous DHFR. These transgenic cells, together with wild-type CHO cells, were selected for 19 months for resistance to increasing concentrations of MTX, from 50- to 200-fold over the initial concentration. Since Drosophila Dhfr appears to have been amplified several fold in the selected transgenic mammalian cells, a difference in genome organization may contribute to the mechanism of MTX resistance.
Collapse
|
4
|
Mutational 'hot-spots' in mammalian, bacterial and protozoal dihydrofolate reductases associated with antifolate resistance: sequence and structural comparison. Drug Resist Updat 2009; 12:28-41. [PMID: 19272832 DOI: 10.1016/j.drup.2009.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/24/2008] [Accepted: 02/04/2009] [Indexed: 12/16/2022]
Abstract
Human dihydrofolate reductase (DHFR) is a primary target for antifolate drugs in cancer treatment, while DHFRs from Plasmodium falciparum, Plasmodium vivax and various bacterial species are primary targets in the treatment of malaria and bacterial infections. Mutations in each of these DHFRs can result in resistance towards clinically relevant antifolates. We review the structural and functional impact of active-site mutations with respect to enzyme activity and antifolate resistance of DHFRs from mammals, protozoa and bacteria. The high structural homology between DHFRs results in a number of cross-species, active-site 'hot-spots' for broad-based antifolate resistance. In addition, we identify mutations that confer species-specific resistance, or antifolate-specific resistance. This comparative review of antifolate binding in diverse species provides new insights into the relationship between antifolate design and the development of mutational resistance. It also presents avenues for designing antifolate-resistant mammalian DHFRs as chemoprotective agents.
Collapse
|
5
|
Volpato JP, Fossati E, Pelletier JN. Increasing methotrexate resistance by combination of active-site mutations in human dihydrofolate reductase. J Mol Biol 2007; 373:599-611. [PMID: 17868689 DOI: 10.1016/j.jmb.2007.07.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Methotrexate-resistant forms of human dihydrofolate reductase have the potential to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis during cancer therapy. It has been shown that synergistic MTX-resistance can be obtained by combining two active-site mutations that independently confer weak MTX-resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase (hDHFR) variants for this application, we used a semi-rational approach to obtain combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We created a combinatorial mutant library encoding various amino acids at residues Phe31, Phe34 and Gln35. In vivo library selection was achieved in a bacterial system on medium containing high concentrations of MTX. We characterized ten novel MTX-resistant mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and inhibition parameters of the purified mutants revealed that higher MTX-resistance roughly correlated with a greater number of mutations, the most highly-resistant mutants containing three active site mutations (Ki(MTX)=59-180 nM; wild-type Ki(MTX)<0.03 nM). An inverse correlation was observed between resistance and catalytic efficiency, which decreased mostly as a result of increased KM toward the substrate dihydrofolate. We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX toxicity by transfecting the most resistant mutants into DHFR-knock-out CHO cells. The transfected variants conferred survival at concentrations of MTX between 100-fold and >4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering protection beyond the maximal concentration of MTX that could be included in the medium. These highly resistant variants of hDHFR offer potential for myeloprotection during administration of MTX in cancer treatment.
Collapse
Affiliation(s)
- Jordan P Volpato
- Département de biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
6
|
Cornetta K, Croop J, Dropcho E, Abonour R, Kieran MW, Kreissman S, Reeves L, Erickson LC, Williams DA. A pilot study of dose-intensified procarbazine, CCNU, vincristine for poor prognosis brain tumors utilizing fibronectin-assisted, retroviral-mediated modification of CD34+ peripheral blood cells with O6-methylguanine DNA methyltransferase. Cancer Gene Ther 2006; 13:886-95. [PMID: 16645619 DOI: 10.1038/sj.cgt.7700963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Administration of chemotherapy is often limited by myelosuppression. Expression of drug-resistance genes in hematopoietic cells has been proposed as a means to decrease the toxicity of cytotoxic agents. In this pilot study, we utilized a retroviral vector expressing methylguanine DNA methyltransferase (MGMT) to transduce hematopoietic progenitors, which were subsequently used in the setting of alkylator therapy (procarbazine, CCNU, vincristine (PCV)) for poor prognosis brain tumors. Granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood progenitor cells were collected by apheresis and enriched for CD34+ expression. Nine subjects were infused with CD34+-enriched cells treated in a transduction procedure involving a 4-day exposure to cytokines with vector exposure on days 3 and 4. No major adverse event was related to the gene therapy procedure. Importantly, the engraftment kinetics of the treated product was similar to unmanipulated peripheral blood stem cells, suggesting that the ex vivo manipulation did not significantly reduce engrafting progenitor cell function. Gene-transduced cells were detected in all subjects. Although the level and duration was limited, patients receiving cells transduced using fibronectin 'preloaded' with virus supernatant appeared to show improved in vivo marking frequency. These findings demonstrate the feasibility and safety of utilizing MGMT-transduced CD34+ peripheral blood progenitor cells in the setting of chemotherapy.
Collapse
Affiliation(s)
- K Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The antifolates were the first class of antimetabolites to enter the clinics more than 50 years ago. Over the following decades, a full understanding of their mechanisms of action and chemotherapeutic potential evolved along with the mechanisms by which cells develop resistance to these drugs. These principals served as a basis for the subsequent exploration and understanding of the mechanisms of resistance to a variety of diverse antineoplastics with different cellular targets. This section describes the bases for intrinsic and acquired antifolate resistance within the context of the current understanding of the mechanisms of actions and cytotoxic determinants of these agents. This encompasses impaired drug transport into cells, augmented drug export, impaired activation of antifolates through polyglutamylation, augmented hydrolysis of antifolate polyglutamates, increased expression and mutation of target enzymes, and the augmentation of cellular tetrahydrofolate-cofactor pools in cells. This chapter also describes how these insights are being utilized to develop gene therapy approaches to protect normal bone marrow progenitor cells as a strategy to improve the efficacy of bone marrow transplantation. Finally, clinical studies are reviewed that correlate the cellular pharmacology of methotrexate with the clinical outcome in children with neoplastic diseases treated with this antifolate.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
8
|
Ranganathan P, Eisen S, Yokoyama WM, McLeod HL. Will pharmacogenetics allow better prediction of methotrexate toxicity and efficacy in patients with rheumatoid arthritis? Ann Rheum Dis 2003; 62:4-9. [PMID: 12480661 PMCID: PMC1754300 DOI: 10.1136/ard.62.1.4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Methotrexate (MTX) remains the most commonly used disease modifying antirheumatic drug in rheumatoid arthritis (RA) because of its cost and experience in its use, despite the availability of new treatments such as leflunomide and the biological agents. However, a significant number of patients with RA either do not benefit from the drug or are unable to tolerate it. Pharmacogenetic approaches may help optimise treatment with MTX, and also other agents, in RA.
Collapse
Affiliation(s)
- P Ranganathan
- Division of Rheumatology and Department of Medicine, Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
9
|
Licht T, Haskins M, Henthorn P, Kleiman SE, Bodine DM, Whitwam T, Puck JM, Gottesman MM, Melniczek JR. Drug selection with paclitaxel restores expression of linked IL-2 receptor gamma -chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc Natl Acad Sci U S A 2002; 99:3123-8. [PMID: 11867757 PMCID: PMC122483 DOI: 10.1073/pnas.052712199] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unstable expression of transferred genes is a major obstacle to successful gene therapy of hematopoietic diseases. We have investigated in a canine large-animal model whether expression of transduced genes can be recovered in vivo. Mixed-breed dogs had undergone autologous bone marrow transplantation (BMT) with stem cell factor and granulocyte-colony-stimulating factor-mobilized retrovirally marked hematopoietic cells. The bicistronic retroviral vector construct allowed for coexpression of MDR1 and human IL-2 receptor common gamma-chain cDNAs. The latter gene is deficient in X-linked severe combined immunodeficiency. After initial high-level expression, P-glycoprotein and the gamma-chain were undetectable in blood and bone marrow 17 months post-BMT. Six months later, one dog was treated i.v. with 125 mg/m2 paclitaxel. Three administrations restored expression of the two linked genes to high levels in blood and bone marrow. Two dogs treated with higher paclitaxel doses died from myelosuppression after the first administration. As determined by flow cytometry, both genes were expressed in granulocytes, monocytes, and lymphocytes of the surviving animal. PCR analysis of DNA from peripheral blood confirmed that the retroviral cDNA was increased after paclitaxel treatment, suggesting enrichment of transduced cells. P-glycoprotein was detectable for more than 1 year after cessation of paclitaxel. Repeated analyses of blood and bone marrow aspirates gave no indication of hematopoietic disturbance after BMT with transduced cells and paclitaxel treatment. In summary, we have shown that with the use of a drug-selectable marker gene, chemotherapy can select for cells that express an otherwise nonselected therapeutic gene in blood and bone marrow.
Collapse
Affiliation(s)
- Thomas Licht
- Laboratories of Molecular Biology and Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Blakley RL, Sorrentino BP. In vitro mutations in dihydrofolate reductase that confer resistance to methotrexate: potential for clinical application. Hum Mutat 2000; 11:259-63. [PMID: 9554740 DOI: 10.1002/(sici)1098-1004(1998)11:4<259::aid-humu1>3.0.co;2-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian cells cultured in the presence of the chemotherapeutic agent, methotrexate, develop resistance to this drug. Sometimes this is due to mutations in the gene for dihydrofolate reductase, the primary target of methotrexate. However, it has not been possible to link such polymorphism to resistance of neoplastic disease to therapy with methotrexate. Nevertheless, interest in this possibility lead to the introduction of many mutations into the cDNA for human DHFR by mutagenesis. Most of the corresponding enzyme variants have been expressed in Escherichia coli and characterized. Many mutations in codons for hydrophobic residues at the active site greatly decrease inhibition by methotrexate, and by the related substrate analogue, trimetrexate, while allowing the retention of considerable catalytic efficiency. Introduction of some of these mutants into mammalian cells by retroviral transfer provides substantial protection from toxic effects of the inhibitors, and has promise for the myeloprotection of patients receiving therapy with methotrexate or trimetrexate. Another potential use is in therapy for inherited disorders of hematopoiesis, where genetic modification of enough cells is a perennial problem. After transplantation of bone marrow that has been transduced with a bicistronic vector encoding both the mutant DHFR and a therapeutic gene, subsequent administration of methotrexate or trimetrexate should permit selection and enrichment of genetically modified hematopoietic cells.
Collapse
Affiliation(s)
- R L Blakley
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
11
|
Sauerbrey A, McPherson JP, Zhao SC, Banerjee D, Bertino JR. Expression of a novel double-mutant dihydrofolate reductase-cytidine deaminase fusion gene confers resistance to both methotrexate and cytosine arabinoside. Hum Gene Ther 1999; 10:2495-504. [PMID: 10543614 DOI: 10.1089/10430349950016834] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel fusion gene consisting of the open reading frame of a double-mutant (Phe22-Ser31) dihydrofolate reductase (dmDHFR) cDNA fused to the open reading frame of cytidine deaminase (CD) was constructed and characterized for the purpose of conferring simultaneous resistance to methotrexate (MTX) and cytosine arabinoside (ara-C). The kinetic properties of purified recombinant dmDHFR-CD fusion protein were compared with those of purified CD and dmDHFR. The fusion protein was found to retain enzymatic properties of both dmDHFR and CD, in that the Km and Kcat values of purified dmDHFR-CD protein were found to be virtually identical to those of CD and dmDHFR alone. Retrovirus-mediated expression of dmDHFR-CD in NIH 3T3 cells conferred significant resistance (10- to 12-fold) against MTX and ara-C, compared with mock- and single gene-infected cells and the level of resistance obtained was similar to that of cells expressing both CD and dmDHFR from a retroviral bicistronic vector. Infection of mouse bone marrow cells with the dmDHFR-CD construct also showed high levels of resistance to MTX and ara-C in a CFU-GM assay. This fusion protein confers resistance to two antineoplastic agents that differ in their mechanism of action, and may be useful in the design of gene transfer strategies for protection of target cells against multiple drugs. Since high-dose ara-C and MTX are used in the treatment of lymphomas, this vector may be of value in protecting human hematopoietic progenitor cells from the toxicity of these antimetabolites.
Collapse
Affiliation(s)
- A Sauerbrey
- Program of Molecular Pharmacology and Therapeutics, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
12
|
Beauséjour CM, Le NL, Létourneau S, Cournoyer D, Momparler RL. Coexpression of cytidine deaminase and mutant dihydrofolate reductase by a bicistronic retroviral vector confers resistance to cytosine arabinoside and methotrexate. Hum Gene Ther 1998; 9:2537-44. [PMID: 9853520 DOI: 10.1089/hum.1998.9.17-2537] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The transfer of a drug resistance gene into hematopoietic cells is an approach being investigated to overcome the problem of myelosuppression produced by anticancer drugs. Chemotherapeutic agents are often given in combination in order to increase their effectiveness. Consequently, there is an advantage in designing vectors for gene transfer that are capable of expressing two drug resistance genes. We have constructed a bicistronic retroviral vector, MFG-DHFR-IRES/CD, which contains the mutated human dihydrofolate reductase (DHFR) cDNA with a phenylalanine-to-serine substitution at codon 31 (F31S) and the human cytidine deaminase (CD) cDNA. Murine fibroblast and hematopoietic cells were transduced with this vector and evaluated for their resistance to methotrexate (MTX) and cytosine arabinoside (ARA-C). The transduced fibroblast cells showed high levels of resistance to MTX and to ARA-C as determined by a clonogenic assay. Using enzymatic assays, we observed a coordinate increase in resistance to MTX and DHFR enzyme activity following an ARA-C selection. In addition, MTX selection produced an increase in CD enzyme activity and ARA-C resistance. Murine hematopoietic cells transduced with the bicistronic vector also showed drug resistance to both MTX and ARA-C. Interestingly, the double-gene construct conferred an equivalent level of drug resistance compared with single-gene vectors bearing only CD or DHFR genes in the hematopoietic cells. These results demonstrate the potential of the MFG-DHFR-IRES/CD vector to confer drug resistance to both MTX and ARA-C and may have future application in chemoprotection of normal hematopoietic cells in patients with cancer.
Collapse
Affiliation(s)
- C M Beauséjour
- Département de Pharmacologie, Université de Montréal, Centre de Recherche Pédiatrique, Hôpital Ste-Justine, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Coexpression of Cytidine Deaminase and Mutant Dihydrofolate Reductase by a Bicistronic Retroviral Vector Confers Resistance to Cytosine Arabinoside and Methotrexate. Hum Gene Ther 1998. [DOI: 10.1089/10430349850019373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Protection of Hematopoietic Progenitor Cells from Chemotherapy Toxicity by Transfer of Drug Resistance Genes. Gene Ther 1998. [DOI: 10.1007/978-3-662-03577-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Flasshove M, Banerjee D, Leonard JP, Mineishi S, Li MX, Bertino JR, Moore MA. Retroviral transduction of human CD34+ umbilical cord blood progenitor cells with a mutated dihydrofolate reductase cDNA. Hum Gene Ther 1998; 9:63-71. [PMID: 9458243 DOI: 10.1089/hum.1998.9.1-63] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood cells (UCB) have become a major target population for experimental and clinical studies using transfer of genes involved in inborn enzymatic diseases. Cord blood contains hematopoietic progenitor cells at a high frequency, and expanding these cells ex vivo generates sufficient numbers of hematopoietic precursors for transplantation into adults, e.g., as supportive treatment. As clinical reports about retroviral transduction into UCB cells have not been as encouraging as the first preclinical data, we have established a retroviral transduction system that allows expansion and selection of hematopoietic progenitor cells from UCB. CD34-enriched UCB cells were transduced with a retroviral vector encoding a mutated dihydrofolate reductase cDNA that confers MTX resistance. We observed increased resistance to MTX in transduced granulocyte macrophage-colony forming units (CFU-GM) after co-culture of CD34+ UCB cells with the virus-producing cell line, or after incubation with virus-containing supernatant. The supernatant-based transduction protocol included a prestimulation with recombinant interleukin-1 (rhIL-1), rhkit-ligand, and rhIL-3 to increase the percentage of cells in S phase to greater than 50%. Using this protocol we measured a 72-fold expansion of CFU-GM and a 2.5-fold selective advantage of transduced versus nontransduced progenitor cells after exposure to low-dose methotrexate in liquid culture. Polymerase chain reaction analysis revealed integration of proviral DNA into the majority of transduced colonies before and after ex vivo expansion. The retroviral vector and transduction protocol reported here provides an experimental system for selection and expansion of retrovirally transduced progenitor/stem cells from UCB that may help improve the efficiency of current clinical gene therapy strategies.
Collapse
Affiliation(s)
- M Flasshove
- James Ewing Laboratory of Developmental Hematopoiesis of the Cell Biology and Genetics Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Patel M, Sleep SE, Lewis WS, Spencer HT, Mareya SM, Sorrentino BP, Blakley RL. Comparison of the protection of cells from antifolates by transduced human dihydrofolate reductase mutants. Hum Gene Ther 1997; 8:2069-77. [PMID: 9414255 DOI: 10.1089/hum.1997.8.17-2069] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retroviral transduction of antifolate-resistant variants of human dihydrofolate reductase (hDHFR) into cells can increase their resistance to the cytotoxic effects of these drugs. We evaluated the ability of wild-type hDHFR and 20 mutant enzymes (13 with single-amino acid substitutions, 7 with two substitutions) to prevent growth inhibition in antifolate-treated CCRF-CEM cells. The wild-type enzyme and all of the variants significantly protected transduced cells from trimetrexate (TMTX)-induced growth inhibition. However, only half of the variants conferred more protection than does the wild-type enzyme. For the variants tested, the observed protective effect was higher for TMTX than for methotrexate (< or =7.5-fold increased resistance), piritrexim (< or =16-fold), and edatrexate (negligible). Transduction of the variants L22Y-F31S and L22Y-F31R led to the greatest protection against TMTX (approximately 200-fold). Protection from loss of cell viability was similar to protection from growth inhibition. The protection associated with a particular mutant hDHFR did not result from the level of expression: Efficient protection resulted from low affinity of the variant for antifolates, reasonable catalytic activity, and good thermal stability. Clones isolated from a polyclonal population of transduced cells varied by as much as 30-fold in their resistance to TMTX, the resistance differences depending on hDHFR expression levels.
Collapse
Affiliation(s)
- M Patel
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao SC, Banerjee D, Mineishi S, Bertino JR. Post-transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum Gene Ther 1997; 8:903-9. [PMID: 9195212 DOI: 10.1089/hum.1997.8.8-903] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To test the concept that protection of bone marrow progenitor cells via introduction of a drug resistance gene would allow larger and curative doses of chemotherapy to be administered, we used mice bearing a transplanted breast cancer as a model system. Mice bearing the E0771 tumor were treated with lethal doses of cyclophosphamide (CPA) and rescued from toxicity by administration of bone marrow transduced with a mutant dihydrofolate reductase (DHFR) cDNA (Ser-31) in a retroviral construct. Animals receiving marrow not transduced with mutant DHFR cDNA died from methotrexate (MTX) toxicity, whereas mice transduced with mutant DHFR cDNA containing marrow were able to tolerate MTX treatment post-transplant; 44% of the mice had no demonstrable tumor when sacrificed on day 52. Another control group of mice treated with CPA and transplanted but not treated with MTX post-transplant succumbed to tumor regrowth. These data provide a strong rationale for the use of drug resistance genes to protect marrow from drug toxicity because the increase in dose tolerated may result in an improved cure rate of chemosensitive tumors.
Collapse
Affiliation(s)
- S C Zhao
- Molecular Pharmacology and Experimental Therapeutics Program, Sloan Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | |
Collapse
|
18
|
Blau CA, Neff T, Papayannopoulou T. The hematological effects of folate analogs: implications for using the dihydrofolate reductase gene for in vivo selection. Hum Gene Ther 1996; 7:2069-78. [PMID: 8934221 DOI: 10.1089/hum.1996.7.17-2069] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies have shown that dihydrofolate reductase (DHFR) gene transfer protects marrow from methotrexate (MTX)-mediated toxicity; however, MTX treatment in vivo has not convincingly been shown to enrich DHFR-transduced progenitors or stem cells. Experiments were performed to better characterize the hematological effects of MTX, and maneuvers were tested with the aim of improving the utility of MTX as an agent for in vivo selection. Progenitors were assayed as colony forming unit cells in culture (CFU-C) and in the spleens of irradiated mice (day 11 CFU-S). A single injection of MTX at doses up to 250 mg/kg (more than three times the LD10) failed to reduce CFU-C numbers significantly in the femur or spleen assayed 1-3 days later. However, consistent declines in the number of mononuclear cells per femur reflected a significant depletion of nonclonogenic precursor cells. Preceding administration of pegylated stem cell factor (SCF), 100 micrograms/kg per day, increased CFU-C killing by a single dose of 5-fluorouracil (5-FU) 15- to 65-fold in the femur, and 5- to 15-fold in the spleen, consistent with previous reports. In contrast, despite preceding SCF administration there was no significant progenitor killing by MTX. Similar results were obtained using a second folate analog, trimetrexate. These results suggest that the mechanism by which folate analogs exert their hematological toxicity is through the depletion of relatively mature, nonclonogenic precursor cells, and not by killing progenitors. This information is relevant to the use of DHFR in gene therapy protocols, and suggests that folate analogs are poorly suited agents for selection at the level of clonogenic progenitor cells in vivo.
Collapse
Affiliation(s)
- C A Blau
- Division of Hematology, University of Washington, Seattle, 98195, USA
| | | | | |
Collapse
|
19
|
Lewis WS, Cody V, Galitsky N, Luft JR, Pangborn W, Chunduru SK, Spencer HT, Appleman JR, Blakley RL. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J Biol Chem 1995; 270:5057-64. [PMID: 7890613 DOI: 10.1074/jbc.270.10.5057] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although substitution of tyrosine, phenylalanine, tryptophan, or arginine for leucine 22 in human dihydrofolate reductase greatly slows hydride transfer, there is little loss in overall activity (kcat) at pH 7.65 (except for the arginine 22 variant), but Km for dihydrofolate and NADPH are increased significantly. The greatest effect, decreased binding of methotrexate to the enzyme-NADPH complex by 740- to 28,000-fold due to a large increase in the rate of methotrexate dissociation, makes these variants suitable to act as selectable markers. Affinities for four other inhibitors are also greatly decreased. Binding of methotrexate to apoenzyme is decreased much less (decreases as much as 120-fold), binding of tetrahydrofolate is decreased as much as 23-fold, and binding of dihydrofolate is decreased little or increased. Crystal structures of ternary complexes of three of the variants show that the mutations cause little perturbation of the protein backbone, of side chains of other active site residues, or of bound inhibitor. The largest structural deviations occur in the ternary complex of the arginine variant at residues 21-27 and in the orientation of the methotrexate. Tyrosine 22 and arginine 22 relieve short contacts to methotrexate and NADPH by occupying low probability conformations, but this is unnecessary for phenylalanine 22 in the piritrexim complex.
Collapse
Affiliation(s)
- W S Lewis
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Banerjee D, Zhao SC, Li MX, Schweitzer BI, Mineishi S, Bertino JR. Gene therapy utilizing drug resistance genes: a review. Stem Cells 1994; 12:378-85. [PMID: 7951004 DOI: 10.1002/stem.5530120404] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The generation of drug resistant bone marrow may facilitate the development of aggressive chemotherapeutic regimens that might otherwise be lethal due to marrow toxicity. With the availability of technology that permits in vitro manipulation of human marrow and peripheral blood stem cells, it is now possible to introduce genes that confer drug resistance to these hematopoietic progenitors. Animal models and in vitro work with human progenitors using drug resistance genes are reviewed.
Collapse
Affiliation(s)
- D Banerjee
- Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | | | | | |
Collapse
|