1
|
Calkins AL, Demey LM, Rosenthal BM, DiRita VJ, Biteen JS. Achieving Single-Molecule Tracking of Subcellular Regulation in Bacteria during Real-Time Environmental Perturbations. Anal Chem 2023; 95:774-783. [PMID: 36576807 DOI: 10.1021/acs.analchem.2c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteria rely on protein systems for regulation in response to external environmental signals. Single-molecule fluorescence imaging and tracking has elucidated the complex mechanism of these protein systems in a variety of bacteria. We recently investigated Vibrio cholerae, the Gram-negative bacterium responsible for the human cholera disease, and its regulation of the production of toxins and virulence factors through the membrane-localized transcription factors TcpP and ToxR. These experiments determined that TcpP and ToxR work cooperatively under steady-state conditions, but measurements of how these dynamical interactions change over the course of environmental perturbations were precluded by the traditional preparation of bacterial cells confined on agarose pads. Here, we address this gap in technology and access single-molecule dynamics during real-time changes by implementing two alternative sample preparations: microfluidic devices and chitosan-coated coverslips. We report the first demonstration of single-molecule tracking within live bacterial cells in a microfluidic device. Additionally, using the chitosan-coated coverslips, we show that real-time environmental changes impact TcpP-PAmCherry dynamics, activating a virulence condition in the bacteria about 45 min after dropping to pH 6 and about 20 min after inducing ToxR expression. These new technology advances open our ability for new experiments studying a variety of bacteria with single-molecule imaging and tracking during real-time environmental perturbations.
Collapse
Affiliation(s)
- Anna L Calkins
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Lucas M Demey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Brooke M Rosenthal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Victor J DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
2
|
Bennett BD, Essock-Burns T, Ruby EG. HbtR, a Heterofunctional Homolog of the Virulence Regulator TcpP, Facilitates the Transition between Symbiotic and Planktonic Lifestyles in Vibrio fischeri. mBio 2020; 11:e01624-20. [PMID: 32873761 PMCID: PMC7468203 DOI: 10.1128/mbio.01624-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
The bioluminescent bacterium Vibrio fischeri forms a mutually beneficial symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, in which the bacteria, housed inside a specialized light organ, produce light used by the squid in its nocturnal activities. Upon hatching, E. scolopes juveniles acquire V. fischeri from the seawater through a complex process that requires, among other factors, chemotaxis by the bacteria along a gradient of N-acetylated sugars into the crypts of the light organ, the niche in which the bacteria reside. Once inside the light organ, V. fischeri transitions into a symbiotic, sessile state in which the quorum-signaling regulator LitR induces luminescence. In this work we show that expression of litR and luminescence are repressed by a homolog of the Vibrio cholerae virulence factor TcpP, which we have named HbtR. Further, we demonstrate that LitR represses genes involved in motility and chemotaxis into the light organ and activates genes required for exopolysaccharide production.IMPORTANCE TcpP homologs are widespread throughout the Vibrio genus; however, the only protein in this family described thus far is a V. cholerae virulence regulator. Here, we show that HbtR, the TcpP homolog in V. fischeri, has both a biological role and regulatory pathway completely unlike those in V. cholerae Through its repression of the quorum-signaling regulator LitR, HbtR affects the expression of genes important for colonization of the E. scolopes light organ. While LitR becomes activated within the crypts and upregulates luminescence and exopolysaccharide genes and downregulates chemotaxis and motility genes, it appears that HbtR, upon expulsion of V. fischeri cells into seawater, reverses this process to aid the switch from a symbiotic to a planktonic state. The possible importance of HbtR to the survival of V. fischeri outside its animal host may have broader implications for the ways in which bacteria transition between often vastly different environmental niches.
Collapse
Affiliation(s)
- Brittany D Bennett
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| | - Tara Essock-Burns
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
3
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Anthouard R, DiRita VJ. Small-molecule inhibitors of toxT expression in Vibrio cholerae. mBio 2013; 4:e00403-13. [PMID: 23919997 PMCID: PMC3735192 DOI: 10.1128/mbio.00403-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/15/2013] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Vibrio cholerae, a Gram-negative bacterium, infects humans and causes cholera, a severe disease characterized by vomiting and diarrhea. These symptoms are primarily caused by cholera toxin (CT), whose production by V. cholerae is tightly regulated by the virulence cascade. In this study, we designed and carried out a high-throughput chemical genetic screen to identify inhibitors of the virulence cascade. We identified three compounds, which we named toxtazin A and toxtazin B and B', representing two novel classes of toxT transcription inhibitors. All three compounds reduce production of both CT and the toxin-coregulated pilus (TCP), an important colonization factor. We present evidence that toxtazin A works at the level of the toxT promoter and that toxtazins B and B' work at the level of the tcpP promoter. Treatment with toxtazin B results in a 100-fold reduction in colonization in an infant mouse model of infection, though toxtazin A did not reduce colonization at the concentrations tested. These results add to the growing body of literature indicating that small-molecule inhibitors of virulence genes could be developed to treat infections, as alternatives to antibiotics become increasingly needed. IMPORTANCE V. cholerae caused more than 580,000 infections worldwide in 2011 alone (WHO, Wkly. Epidemiol. Rec. 87:289-304, 2012). Cholera is treated with an oral rehydration therapy consisting of water, glucose, and electrolytes. However, as V. cholerae is transmitted via contaminated water, treatment can be difficult for communities whose water source is contaminated. In this study, we address the need for new therapeutic approaches by targeting the production of the main virulence factor, cholera toxin (CT). The high-throughput screen presented here led to the identification of two novel classes of inhibitors of the virulence cascade in V. cholerae, toxtazin A and toxtazins B and B'. We demonstrate that (i) small-molecule inhibitors of virulence gene production can be identified in a high-throughput screen, (ii) targeting virulence gene production is an effective therapeutic strategy, and (iii) small-molecule inhibitors can uncover unknown layers of gene regulation, even in well-studied regulatory cascades.
Collapse
Affiliation(s)
- Rebecca Anthouard
- Department of Microbiology and Immunology, University of Michigan, Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
5
|
Richard AL, Withey JH, Beyhan S, Yildiz F, DiRita VJ. The Vibrio cholerae virulence regulatory cascade controls glucose uptake through activation of TarA, a small regulatory RNA. Mol Microbiol 2010; 78:1171-81. [PMID: 21091503 DOI: 10.1111/j.1365-2958.2010.07397.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vibrio cholerae causes the severe diarrhoeal disease cholera. A cascade of regulators controls expression of virulence determinants in V. cholerae at both transcriptional and post-transcriptional levels. ToxT is the direct transcription activator of the major virulence genes in V. cholerae. Here we describe TarA, a highly conserved, small regulatory RNA, whose transcription is activated by ToxT from toxboxes present upstream of the ToxT-activated gene tcpI. TarA regulates ptsG, encoding a major glucose transporter in V. cholerae. Cells overexpressing TarA exhibit decreased steady-state levels of ptsG mRNA and grow poorly in glucose-minimal media. A mutant lacking the ubiquitous regulatory protein Hfq expresses diminished TarA levels, indicating that TarA likely interacts with Hfq to regulate gene expression. RNAhybrid analysis of TarA and the putative ptsG mRNA leader suggests potential productive base-pairing between these two RNA molecules. A V. cholerae mutant lacking TarA is compromised for infant mouse colonization in competition with wild type, suggesting a role in the in vivo fitness of V. cholerae. Although somewhat functionally analogous to SgrS of Escherichia coli, TarA does not encode a regulatory peptide, and its expression is activated by the virulence gene pathway in V. cholerae and not by glycolytic intermediates.
Collapse
Affiliation(s)
- Aimee L Richard
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
6
|
Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC, Felt SA, Torreilles S, Schoolnik GK. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog 2010; 6:e1001102. [PMID: 20862321 PMCID: PMC2940755 DOI: 10.1371/journal.ppat.1001102] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/13/2010] [Indexed: 01/09/2023] Open
Abstract
A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients. Most pathogenic microorganisms infect in a stepwise manner: colonization of host surfaces is followed by invasion and injury of host tissues and, late in the infectious process, dissemination to other hosts occurs. During its residence in the host, the pathogen produces essential virulence determinants and often replicates rapidly, leading to a vast expansion of its biomass. Although this scenario is well established also for Vibrio cholerae, the cause of a potentially fatal diarrheal illness, it has not previously been possible to identify precisely when or where virulence determinants are produced in the intestine. We addressed this question by investigating the expression of virulence genes by individual V. cholerae during infection of the small intestine. Virulence genes were found to be powerfully expressed early in the infectious process by bacteria in close proximity to epithelial surfaces. Increased replication rates were also localized to epithelial surfaces. During later stages of the infection, the population of V. cholerae bifurcates into two fractions: one subpopulation continues to express virulence genes, whereas these genes are silenced in the other subpopulation. The genetic program controlling the continued production of virulence genes may mediate the persistence of a hyper-infectious subpopulation of bacteria in the stools of cholera patients.
Collapse
Affiliation(s)
- Alex T. Nielsen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nadia A. Dolganov
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Rasmussen
- Technical University of Denmark, Department of Systems Biology, Kgs. Lyngby, Denmark
| | - Glen Otto
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael C. Miller
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen A. Felt
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stéphanie Torreilles
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gary K. Schoolnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kirn TJ, Taylor RK. TcpF is a soluble colonization factor and protective antigen secreted by El Tor and classical O1 and O139 Vibrio cholerae serogroups. Infect Immun 2005; 73:4461-70. [PMID: 16040956 PMCID: PMC1201224 DOI: 10.1128/iai.73.8.4461-4470.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae causes diarrhea by colonizing the human small bowel and intoxicating epithelial cells. Colonization is a required step in pathogenesis, and strains defective for colonization are significantly attenuated. The best-characterized V. cholerae colonization factor is the toxin-coregulated pilus (TCP). It has been demonstrated that TCP is required for V. cholerae colonization in both humans and mice. TCP enhances bacterial interactions that allow microcolony formation and thereby promotes survival in the intestine. We have recently discovered that the TCP biogenesis apparatus also serves as a secretion system, mediating the terminal step in the extracellular secretion pathway of TcpF. TcpF was identified in classical isolates of V. cholerae O1 as a soluble factor essential for colonization in the infant mouse cholera model. In the present study, we expanded our analysis of TcpF to include the O1 El Tor and O139 serogroups and investigated how TCP and TcpF act together to mediate colonization. Additionally, we demonstrated that antibodies generated against TcpF are protective against experimental V. cholerae infection in the infant mouse cholera model. This observation, coupled with the fact that TcpF is a potent mediator of colonization, suggests that TcpF should be considered as a component of a polyvalent cholera vaccine formulation.
Collapse
Affiliation(s)
- Thomas J Kirn
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
8
|
Sánchez J, Medina G, Buhse T, Holmgren J, Soberón-Chavez G. Expression of cholera toxin under non-AKI conditions in Vibrio cholerae El Tor induced by increasing the exposed surface of cultures. J Bacteriol 2004; 186:1355-61. [PMID: 14973024 PMCID: PMC344413 DOI: 10.1128/jb.186.5.1355-1361.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory systems controlling expression of the ctxAB genes encoding cholera toxin (CT) in the classical and El Tor biotypes of pathogenic Vibrio cholerae have been characterized and found to be almost identical. Notwithstanding this, special in vitro conditions, called AKI conditions, are required for El Tor bacteria to produce CT. The AKI conditions involve biphasic cultures. In phase 1 the organism is grown in a still tube for 4 h. In phase 2 the medium is poured into a flask to continue growth with shaking. Virtually no expression of CT occurs if this protocol is not followed. Here we demonstrated that CT expression takes place in single-phase still cultures if the volume-to-surface-area ratio is decreased, both under air and under an inert atmosphere. The expression of key genes involved in the regulation of CT production was analyzed, and we found that the expression pattern closely resembles the in vivo expression pattern.
Collapse
Affiliation(s)
- Joaquín Sánchez
- Facultad de Medicina, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| | | | | | | | | |
Collapse
|
9
|
Krukonis ES, Yu RR, Dirita VJ. The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol 2000; 38:67-84. [PMID: 11029691 DOI: 10.1046/j.1365-2958.2000.02111.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ToxR is required in Vibrio cholerae for transcriptional activation of the toxT gene, the protein product of which activates numerous genes involved in virulence. Although ToxR cannot activate the toxT promoter in Escherichia coli, the products of the tcpPH operon are shown here to activate the toxT promoter, and co-expression with ToxRS enhances activation. An identical pattern was seen in a DeltatcpPDeltatoxR strain of V. cholerae when TcpPH or ToxRS was expressed from plasmids. Although overexpression of the TcpP/H proteins in V. cholerae partially complemented both a DeltatoxR strain and a DeltatcpPDeltatoxR double mutant for toxin production and toxT-lacZ activation, the presence of ToxR greatly increased their expression. Analysis of a toxT-lacZ promoter deletion series demonstrated that TcpP was able to interact functionally with the toxT promoter downstream of the ToxR binding site. This was confirmed using electrophoretic mobility shift assays of this toxT promoter deletion series and DNase I footprinting analysis, which showed that TcpP interacts with the promoter region from -51 to -32, whereas ToxR protected a region from -100 to -69. In addition, membranes containing endogenous levels of ToxR bound more readily to the toxT promoter than did membranes containing only TcpP. Characterization of a number of tcpP substitution mutants revealed one derivative (TcpP-H93L) that, when overexpressed, was markedly defective for toxT activation, cholera toxin and TcpA (toxin co-regulated pilus) production and DNA binding; however, toxT activation by TcpP-H93L was restored in the presence of ToxR, suggesting that ToxR can provide the promoter recognition function for toxT activation. Two additional mutant derivatives, TcpP-W68L and TcpP-R86A, failed to activate toxT or direct toxin and TcpA production in the presence or absence of ToxR. Both TcpP-W68L and TcpP-R86A, like TcpP-H93L, were defective for DNA binding. Finally, a ToxR mutant derivative, ToxR-G80S, served to separate the different roles of ToxR on different promoters. Although ToxR-G80S was inefficient at activating the ompU promoter in V. cholerae (ompU encodes an outer membrane porin regulated by ToxR), it was fully capable of activating the toxT promoter. These data suggest that ToxR is not a direct activator in the toxT expression system but, instead, enhances the activity of TcpP, perhaps by recruiting it to the toxT promoter under conditions in which expression levels of TcpP are too low for it to activate toxT efficiently on its own.
Collapse
Affiliation(s)
- E S Krukonis
- Unit for Laboratory Animal Medicine, and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0614, USA
| | | | | |
Collapse
|
10
|
Murley YM, Carroll PA, Skorupski K, Taylor RK, Calderwood SB. Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon. Infect Immun 1999; 67:5117-23. [PMID: 10496885 PMCID: PMC96860 DOI: 10.1128/iai.67.10.5117-5123.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidemic strains of Vibrio cholerae O1 are divided into two biotypes, classical and El Tor. In both biotypes, regulation of virulence gene expression depends on a cascade in which ToxR activates expression of ToxT, and ToxT activates expression of cholera toxin and other virulence genes. In the classical biotype, maximal expression of this ToxR regulon in vitro occurs at 30 degrees C at pH 6.5 (ToxR-inducing conditions), whereas in the El Tor biotype, production of these virulence genes only occurs under very limited conditions and not in response to temperature and pH; this difference between biotypes is mediated at the level of toxT transcription. In the classical biotype, two other proteins, TcpP and TcpH, are needed for maximal toxT transcription. Transcription of tcpPH in the classical biotype is regulated by pH and temperature independently of ToxR or ToxT, suggesting that TcpP and TcpH couple environmental signals to transcription of toxT. In this study, we show a near absence of tcpPH message in the El Tor biotype under ToxR-inducing conditions of temperature and pH. However, once expressed, El Tor TcpP and TcpH appear to be as effective as classical TcpP and TcpH in activating toxT transcription. These results suggest that differences in regulation of virulence gene expression between the biotypes of V. cholerae primarily result from differences in expression of tcpPH message in response to environmental signals. We present an updated model for control of the ToxR virulence regulon in V. cholerae.
Collapse
Affiliation(s)
- Y M Murley
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
11
|
Medrano AI, DiRita VJ, Castillo G, Sanchez J. Transient transcriptional activation of the Vibrio cholerae El Tor virulence regulator toxT in response to culture conditions. Infect Immun 1999; 67:2178-83. [PMID: 10225872 PMCID: PMC115955 DOI: 10.1128/iai.67.5.2178-2183.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae El Tor require special in vitro culture conditions, consisting of an initial static growth period followed by shift to shaking (AKI conditions), for expression of cholera toxin (CT) and toxin coregulated pili (TCP). ToxT, a regulator whose initial transcription depends on the ToxR regulator, positively modulates expression of CT and TCP. To help understand control of CT and TCP in El Tor vibrios, we monitored ctxAB and ToxR-dependent toxT transcription by time course primer extension assays. AKI conditions stimulated CT synthesis with an absence of ctxAB transcription during static growth followed by induction upon shaking. ToxR-dependent toxT transcription was induced at the end of the static growth period but was transient, stopping shortly after shaking was initiated but, interestingly, also if the static phase was prolonged. Immunoblot assays showed that ToxR protein levels were not coincidentally transient, implying a protein on/off switch mechanism for ToxR. Despite the transient activation by ToxR, transcription of ctxAB was maintained during shaking. This finding suggested continued toxT expression, possibly through relay transcription from another promoter. The 12.6-kb distant upstream tcpA promoter responsible for expression of the TCP operon has been proposed to provide an alternate toxT message by readthrough transcription. Activation of the tcpA promoter is supported by increased expression of TcpA protein during the shaking phase of the culture. Readthrough transcription of toxT from tcpA would be compatible with reverse transcription-PCR evidence for a toxT mRNA at times when ToxR-dependent transcription was no longer detectable by primer extension.
Collapse
Affiliation(s)
- A I Medrano
- Facultad de Medicina, UAEM, Cuernavaca, Morelos, Mexico 62210, USA
| | | | | | | |
Collapse
|
12
|
Yu RR, DiRita VJ. Analysis of an autoregulatory loop controlling ToxT, cholera toxin, and toxin-coregulated pilus production in Vibrio cholerae. J Bacteriol 1999; 181:2584-92. [PMID: 10198025 PMCID: PMC93687 DOI: 10.1128/jb.181.8.2584-2592.1999] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coordinate expression of many virulence genes in the human pathogen Vibrio cholerae is controlled by the ToxR, TcpP, and ToxT proteins. These proteins function in a regulatory cascade in which ToxR and TcpP, two inner membrane proteins, are required to activate toxT and ToxT is the direct activator of virulence gene expression. ToxT-activated genes include those whose products are required for the biogenesis of cholera toxin (CTX) and the toxin-coregulated pilus, the major subunit of which is TcpA. This work examined control of toxT transcription. We tested a model whereby activation of toxT by ToxR and TcpP is required to prime an autoregulatory loop in which ToxT-dependent transcription of the tcpA promoter reads through a proposed terminator between the tcpF and toxT genes to result in continued ToxT production. Primer extension analysis of RNA from wild-type classical strain O395 showed that there are two products encoding toxT, one of which is longer than the other by 105 bp. Deletion of the toxT promoter (toxTDeltapro) resulted in the abolishment of toxT transcription, as predicted. Deletion of the tcpA promoter (tcpADeltapro) had no effect on subsequent detection of the smaller toxT primer extension product, but the larger toxT product was not detected, indicating that this product may be the result of transcription from the tcpA promoter and not of initiation directly upstream of toxT. Neither mutant strain produced detectable TcpA, but the CTX levels of the strains were different. The toxTDeltapro strain produced little detectable CTX, while the tcpADeltapro strain produced CTX levels intermediate between those of the wild-type and toxTDeltapro strains. Dependence of toxT transcription on TcpP and TcpH was confirmed by analyzing RNAs from strains carrying deletions in the genes encoding these regulators. The tcpP defect resulted in undetectable toxT transcription, whereas the tcpH mutation led to a diminishing of toxT RNA but not complete abolishment. Taken together, these results suggest that toxT transcription is dependent on two different promoters; one is directly upstream and is activated in part by TcpP and TcpH, and the other is much further upstream and is activated by ToxT.
Collapse
Affiliation(s)
- R R Yu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
13
|
Häse CC, Mekalanos JJ. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 1998; 95:730-4. [PMID: 9435261 PMCID: PMC18489 DOI: 10.1073/pnas.95.2.730] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The production of several virulence factors in Vibrio cholerae O1, including cholera toxin and the pilus colonization factor TCP (toxin-coregulated pilus), is strongly influenced by environmental conditions. To specifically identify membrane proteins involved in these signal transduction events, we examined a transposon library of V. cholerae generated by Tnbla mutagenesis for cells that produce TCP when grown under various nonpermissive conditions. To select for TCP-producing cells we used the recently described bacteriophage CTX phi-Kan, which uses TCP as its receptor and carries a gene encoding resistance to kanamycin. Among the isolated mutants was a transposon insertion in a gene homologous to nqrB from Vibrio alginolyticus, which encodes a subunit of a Na(+)-translocating NADH:ubiquinone oxidoreductase, and tcpI, encoding a chemo-receptor previously implicated in the negative regulation of TCP production. A third transposon mutant had an insertion in tcpP, which is in an operon with tcpH, a known positive regulator of TCP production. However, TcpP was shown to be essential for TCP production in V. cholerae, as a tcpP-deletion strain was deficient in pili production. The amino-terminal region of TcpP shows sequence homology to the DNA-binding domains of several regulatory proteins, including ToxR from V. cholerae and PsaE from Yersinia pestis. Like ToxR, TcpP activates transcription of the toxT gene, an essential activator of tcp operon transcription. Furthermore, TcpH, with its large periplasmic domain and inner membrane anchor, has a structure similar to that of ToxS and was shown to enhance the activity of TcpP. We propose that TcpP/TcpH constitute a pair of regulatory proteins functionally similar to ToxR/ToxS and PsaE/PsaF that are required for toxT transcription in V. cholerae.
Collapse
Affiliation(s)
- C C Häse
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Slauch J, Taylor R, Maloy S. Survival in a cruel world: how Vibrio cholerae and Salmonella respond to an unwilling host. Genes Dev 1997; 11:1761-74. [PMID: 9242485 DOI: 10.1101/gad.11.14.1761] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J Slauch
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
15
|
Abstract
The toxin co-regulated pilus (TCP) has been identified as a critical colonization factor in both animal models and humans for Vibrio cholerae O1. The major pilin subunit, TcpA (and also TcpB), is similar to type-4 pilins but TCP probably more appropriately belongs to a sub-class which includes the bundle-forming pilus of enteropathogenic Escherichia coli. The genes for TCP biosynthesis and assembly are clustered with the exception of housekeeping functions such as TcpG (=DsbA, a periplasmic disulfide bond epimerase). The nt sequences from El Tor and classical strains show only minor differences corresponding to the major regulatory regions and in TcpA itself. These differences are thought to account for the alternate conditions required for expression of TCP by the two biotypes and the antigenic variation and lack of cross-protection. Aside from the TcpA only a few of the proteins have had their roles in TCP biogenesis defined. Regulation of TCP is controlled by the ToxR regulon via ToxT with a possible involvement of TcpP and the cAMP-CRP system. Experiments using the infant mouse cholera model have now shown that TCP is a colonization factor and protective antigen for both classical and El Tor O1 strains and in the O139 Bengal serotype and that the mannose-sensitive haemagglutinin pilus does not appear to play a comparable role.
Collapse
Affiliation(s)
- P A Manning
- Department of Microbiology and Immunology, University of Adelaide, Australia.
| |
Collapse
|
16
|
Skorupski K, Taylor RK. Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc Natl Acad Sci U S A 1997; 94:265-70. [PMID: 8990197 PMCID: PMC19310 DOI: 10.1073/pnas.94.1.265] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insertion mutations in two Vibrio cholerae genes, cya and crp, which encode adenylate cyclase and the cyclic AMP (cAMP) receptor protein (CRP), respectively, derepressed the expression of a chromosomal cholera toxin (CT) promoter-lacZ fusion at the nonpermissive temperature of 37 degrees C. In the classical biotype strain O395, the crp mutation increased the production of both CT and toxin-coregulated pilus (TCP) in vitro under a variety of growth conditions not normally permissive for their expression. The most dramatic increase in CT and TCP was observed with the crp mutant in Luria-Bertani (LB) medium pH 8.5, at 30 degrees C. El Tor biotype strains differ from classical strains in that they do not produce CT or TCP when grown in LB media. Incorporation of the crp mutation into El Tor strain C6706 permitted production of these proteins in LB medium pH 6.5, at 30 degrees C. In the infant mouse cholera model, the crp mutation decreased colonization in both biotypes at least 100-fold relative to the wild-type strains. The data presented here suggest a model whereby cAMP-CRP negatively regulates the expression of CT and TCP in both classical and El Tor biotypes under certain environmental conditions and also influences pathogenesis by regulating other processes necessary for optimal growth in vivo.
Collapse
Affiliation(s)
- K Skorupski
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
17
|
Ogierman MA, Voss E, Meaney C, Faast R, Attridge SR, Manning PA. Comparison of the promoter proximal regions of the toxin-co-regulated tcp gene cluster in classical and El Tor strains of Vibrio cholerae O1. Gene 1996; 170:9-16. [PMID: 8621096 DOI: 10.1016/0378-1119(95)00744-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A physical map has been constructed of the 5-kb XbaI fragment encoding the promoter proximal of region the tcp gene cluster encoding the toxin-coregulated pilus (TCP) of Vibrio cholerae. This fragment contains the major regulatory regions for TCP. Comparison of the nucleotide (nt) sequences from strains of the classical and El Tor biotypes demonstrates that the regions are essentially identical, with several notable exceptions. The intergenic regions, between tcpI and tcpP, and between tcpH and tcpA, show significant sequence divergence which may account for the biotype-related differences in TCP, since this is the location of the major promoter sequences. The C-terminal coding regions of the major pilin subunit, TcpA, also differ. Southern hybridization analyses suggest that the tcpA nt sequence is conserved within a biotype, and Western blot analysis suggests that the two forms of TcpA are antigenically different, but related. Besides tcpA, tcpB, tcpH and tcpI, the genes encoding two additional proteins, TcpP and TcpQ, but not previously defined, were also identified. TcpH and TcpI have been previously suggested to be regulatory proteins but homology data imply that TcpI is a methyl-accepting chemotaxis protein (MCP), as recently reported [Harkey et al., Infect. Immun. 62 (1994) 2669-2678], and TcpH is predicted to be a periplasmic or exported protein. TcpP is thought to be a trans-cytoplasmic membrane (CM) protein which may have a regulatory role.
Collapse
Affiliation(s)
- M A Ogierman
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
18
|
|