1
|
Liu Y, Dai C, Zuo Y, Qiao J, Shen J, Yin X, Liu Y. Characterization of Siderophores Produced by Bacillus velezensis YL2021 and Its Application in Controlling Rice Sheath Blight and Rice Blast. PHYTOPATHOLOGY 2024; 114:2491-2501. [PMID: 39190815 DOI: 10.1094/phyto-04-24-0148-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bacillus velezensis YL2021 has extensive antimicrobial activities against phytopathogens, and its genome harbors a catechol-type siderophore biosynthesis gene cluster. Here, we describe the characterization of siderophores produced by strain YL2021 and its antimicrobial activity in vitro and in vivo. A few types of siderophores were detected by chrome azurol S plates coupled with Arnow's test, purified, and identified by reversed-phase high-performance liquid chromatography. We found that strain YL2021 can produce different antimicrobial compounds under low-iron M9 medium or iron-sufficient Luria-Bertani medium, although antimicrobial activities can be easily observed on the two media as described above in vitro. Strain YL2021 can produce at least three catechol-type siderophores in low-iron M9 medium, whereas no siderophores were produced in Luria-Bertani medium. Among them, the main antimicrobial siderophore produced by strain YL2021 was bacillibactin, with m/z 882, based on the liquid chromatography-tandem mass spectrometry analysis, which has broad-spectrum antimicrobial activities against gram-positive and gram-negative bacteria, the oomycete Phytophthora capsici, and phytopathogenic fungi. Moreover, the antifungal activity of siderophores, including bacillibactin, observed in vitro was correlated with control efficacies against rice sheath blight disease caused by Rhizoctonia solani and rice blast disease caused by Magnaporthe oryzae in vivo. Collectively, the results demonstrate that siderophores, including bacillibactin, produced by B. velezensis YL2021 are promising biocontrol agents for application in rice disease control.
Collapse
Affiliation(s)
- Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zuo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junqing Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiahui Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
2
|
Angelini LL, Dos Santos RAC, Fox G, Paruthiyil S, Gozzi K, Shemesh M, Chai Y. Pulcherrimin protects Bacillus subtilis against oxidative stress during biofilm development. NPJ Biofilms Microbiomes 2023; 9:50. [PMID: 37468524 PMCID: PMC10356805 DOI: 10.1038/s41522-023-00418-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Pulcherrimin is an iron-binding reddish pigment produced by various bacterial and yeast species. In the soil bacterium Bacillus subtilis, this pigment is synthesized intracellularly as the colorless pulcherriminic acid by using two molecules of tRNA-charged leucine as the substrate; pulcherriminic acid molecules are then secreted and bind to ferric iron extracellularly to form the red-colored pigment pulcherrimin. The biological importance of pulcherrimin is not well understood. A previous study showed that secretion of pulcherrimin caused iron depletion in the surroundings and growth arrest on cells located at the edge of a B. subtilis colony biofilm. In this study, we identified that pulcherrimin is primarily produced under biofilm conditions and provides protection to cells in the biofilm against oxidative stress. We presented molecular evidence on how pulcherrimin lowers the level of reactive oxygen species (ROS) and alleviates oxidative stress and DNA damage caused by ROS accumulation in a mature biofilm. We also performed global transcriptome profiling to identify differentially expressed genes in the pulcherrimin-deficient mutant compared with the wild type, and further characterized the regulation of genes by pulcherrimin that are related to iron homeostasis, DNA damage response (DDR), and oxidative stress response. Based on our findings, we propose pulcherrimin as an important antioxidant that modulates B. subtilis biofilm development.
Collapse
Affiliation(s)
| | | | - Gabriel Fox
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Srinand Paruthiyil
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Medical Scientist Training Program (MSTP), Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Kevin Gozzi
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
- The Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, MA, 02142, USA
| | - Moshe Shemesh
- Department of Food Science, Agricultural Research Organization The Volcani Institute, Derech Hamacabim, POB 15159, Rishon LeZion, 7528809, Israel
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Goff JL, Chen Y, Thorgersen MP, Hoang LT, Poole FL, Szink EG, Siuzdak G, Petzold CJ, Adams MWW. Mixed heavy metal stress induces global iron starvation response. THE ISME JOURNAL 2023; 17:382-392. [PMID: 36572723 PMCID: PMC9938188 DOI: 10.1038/s41396-022-01351-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Multiple heavy metal contamination is an increasingly common global problem. Heavy metals have the potential to disrupt microbially mediated biogeochemical cycling. However, systems-level studies on the effects of combinations of heavy metals on bacteria are lacking. For this study, we focused on the Oak Ridge Reservation (ORR; Oak Ridge, TN, USA) subsurface which is contaminated with several heavy metals and high concentrations of nitrate. Using a native Bacillus cereus isolate that represents a dominant species at this site, we assessed the combined impact of eight metal contaminants, all at site-relevant concentrations, on cell processes through an integrated multi-omics approach that included discovery proteomics, targeted metabolomics, and targeted gene-expression profiling. The combination of eight metals impacted cell physiology in a manner that could not have been predicted from summing phenotypic responses to the individual metals. Exposure to the metal mixture elicited a global iron starvation response not observed during individual metal exposures. This disruption of iron homeostasis resulted in decreased activity of the iron-cofactor-containing nitrate and nitrite reductases, both of which are important in biological nitrate removal at the site. We propose that the combinatorial effects of simultaneous exposure to multiple heavy metals is an underappreciated yet significant form of cell stress in the environment with the potential to disrupt global nutrient cycles and to impede bioremediation efforts at mixed waste sites. Our work underscores the need to shift from single- to multi-metal studies for assessing and predicting the impacts of complex contaminants on microbial systems.
Collapse
Affiliation(s)
- Jennifer L. Goff
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Yan Chen
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael P. Thorgersen
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Linh T. Hoang
- grid.214007.00000000122199231Scripps Center for Metabolomics, Scripps Research, La Jolla, CA USA
| | - Farris L. Poole
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Elizabeth G. Szink
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Gary Siuzdak
- grid.214007.00000000122199231Scripps Center for Metabolomics, Scripps Research, La Jolla, CA USA
| | - Christopher J. Petzold
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael W. W. Adams
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| |
Collapse
|
4
|
de Jesús Olivares-Trejo J, Elizbeth Alvarez-Sánchez M. Proteins of Streptococcus pneumoniae Involved in Iron Acquisition. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a human pathogen bacterium capable of using hemoglobin (Hb) and haem as a single iron source but not in presence of lactoferrin. This bacterium has developed a mechanism through the expression of several membrane proteins that bind to iron sources, between them a lipoprotein of 37 kDa called Spbhp-37 (Streptococcus pneumoniae haem-binding protein) involved in iron acquisition. The Spbhp-37 role is to maintain the viability of S. pneumoniae in presence of Hb or haem. This mechanism is relevant during the invasion of S. pneumoniae to human tissue for the acquisition of iron from hemoglobin or haem as an iron source.
Collapse
|
5
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
6
|
Yang S, Cao Y, Sun L, Li C, Lin X, Cai Z, Zhang G, Song H. Modular Pathway Engineering of Bacillus subtilis To Promote De Novo Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:70-81. [PMID: 30543412 DOI: 10.1021/acssynbio.8b00258] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Menaquinone-7 (MK-7), a valuable vitamin K2, plays an important role in the prevention of osteoporosis and cardiovascular calcification. We chose B. subtilis 168 as the chassis for the modular metabolic engineering design to promote the biosynthesis of MK-7. The biosynthetic pathway of MK-7 was categorized into four modules, namely, the MK-7 pathway (Module I), the shikimate (SA) pathway (Module II), the methylerythritol phosphate (MEP) pathway (Module III), and the glycerol metabolism pathway (Module IV). Overexpression of menA (Module I) resulted in 6.6 ± 0.1 mg/L of MK-7 after 120 h fermentation, which was 2.1-fold that of the starting strain BS168NU (3.1 ± 0.2 mg/L). Overexpression of aroA, aroD, and aroE (Module II) had a negative effect on the synthesis of MK-7. Simultaneous overexpression of dxs, dxr, yacM, and yacN (Module III) enabled the yield of MK-7 to 12.0 ± 0.1 mg/L. Moreover, overexpression of glpD (Module IV) resulted in an increase of the yield of MK-7 to 13.7 ± 0.2 mg/L. Furthermore, deletion of dhbB reduced the consumption of the intermediate metabolite isochorismate, thus promoting the yield of MK-7 to 15.4 ± 0.6 mg/L. Taken together, the final resulting strain MK3-MEP123-Gly2-Δ dhbB with simultaneous overexpression of menA, dxs, dxr, yacM-yacN, glpD and deletion of dhbB enabled the yield of MK-7 to 69.5 ± 2.8 mg/L upon 144 h fermentation in a 2 L baffled flask.
Collapse
Affiliation(s)
- Shaomei Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Liming Sun
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhigang Cai
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, China
| | - Guoyin Zhang
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Tarry MJ, Haque AS, Bui KH, Schmeing TM. X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture. Structure 2017; 25:783-793.e4. [PMID: 28434915 DOI: 10.1016/j.str.2017.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
Nonribosomal peptide synthetases (NRPS) are macromolecular machines that produce peptides with diverse activities. Structural information exists for domains, didomains, and even modules, but little is known about higher-order organization. We performed a multi-technique study on constructs from the dimodular NRPS DhbF. We determined a crystal structure of a cross-module construct including the adenylation (A) and peptidyl carrier protein (PCP) domains from module 1 and the condensation domain from module 2, complexed with an adenosine-vinylsulfonamide inhibitor and an MbtH-like protein (MLP). The action of the inhibitor and the role of the MLP were investigated using adenylation reactions and isothermal titration calorimetry. In the structure, the PCP and A domains adopt a novel conformation, and noncovalent, cross-module interactions are limited. We calculated envelopes of dimodular DhbF using negative-stain electron microscopy. The data show large conformational variability between modules. Together, our results suggest that NRPSs lack a uniform, rigid supermodular architecture.
Collapse
Affiliation(s)
- Michael J Tarry
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Asfarul S Haque
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
8
|
Hertlein G, Müller S, Garcia-Gonzalez E, Poppinga L, Süssmuth RD, Genersch E. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS One 2014; 9:e108272. [PMID: 25237888 PMCID: PMC4169593 DOI: 10.1371/journal.pone.0108272] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/27/2014] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria.
Collapse
Affiliation(s)
- Gillian Hertlein
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Sebastian Müller
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | - Eva Garcia-Gonzalez
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Lena Poppinga
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | | | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
- Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| |
Collapse
|
9
|
Datta B, Chakrabartty PK. Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 2014; 4:391-401. [PMID: 28324476 PMCID: PMC4145622 DOI: 10.1007/s13205-013-0164-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/12/2013] [Indexed: 11/03/2022] Open
Abstract
Rhizobium BICC 651, a fast-growing strain isolated from root nodule of chickpea (Cicer arietinum L.), produced a catechol siderophore to acquire iron under iron poor condition. A Tn5-induced mutant (B153) of the strain, BICC 651 impaired in siderophore biosynthesis was isolated and characterized. The mutant failed to grow on medium supplemented with iron chelator and grew less efficiently in deferrated broth indicating its higher iron requirement. The mutant produced less number of nodules than its parent strain. The Tn5 insertion in the mutant strain, B153, was located on a 2.8 kb SalI fragment of the chromosomal DNA. DNA sequence analysis revealed that the Tn5-adjoining genomic DNA region contained a coding sequence homologous to agbB gene of Agrobacterium tumefaciens MAFF301001. About 5 kb genomic DNA region of the strain BICC 651 was amplified using the primers designed from DNA sequence of agrobactin biosynthesis genes of A. tumefaciens MAFF 301001 found in the database. From the PCR product of the strain BICC 651, a 4,921 bp DNA fragment was identified which contained four open reading frames. These genes were designated as sid, after siderophore. The genes were identified to be located in the order of sidC, sidE, sidB, and sidA. Narrow intergenic spaces between the genes indicated that they constitute an operon. Phylogenetic analyses of deduced sid gene products suggested their sequence similarity with the sequences of the enzymes involved in biosynthesis of catechol siderophore in other bacteria.
Collapse
Affiliation(s)
- Bejoysekhar Datta
- Department of Botany, University of Kalyani, Nadia, Kalyani, West Bengal 741 235 India
| | - Pran K. Chakrabartty
- Acharya J.C. Bose Biotechnology Innovation Centre, Madhyamgram Experimental Farm, Madhyamgram, Kolkata, West Bengal 700 129 India
| |
Collapse
|
10
|
Mortensen BL, Skaar EP. The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host. Front Cell Infect Microbiol 2013; 3:95. [PMID: 24377089 PMCID: PMC3859900 DOI: 10.3389/fcimb.2013.00095] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023] Open
Abstract
Acinetobacter baumannii is a significant contributor to intensive care unit (ICU) mortality causing numerous types of infection in this susceptible ICU population, most notably ventilator-associated pneumonia. The substantial disease burden attributed to A. baumannii and the rapid acquisition of antibiotic resistance make this bacterium a serious health care threat. A. baumannii is equipped to tolerate the hostile host environment through modification of its metabolism and nutritional needs. Among these adaptations is the evolution of mechanisms to acquire nutrient metals that are sequestered by the host as a defense against infection. Although all bacteria require nutrient metals, there is diversity in the particular metal needs among species and within varying tissue types and bacterial lifecycles. A. baumannii is well-equipped with the metal homeostatic systems required for the colonization of a diverse array of tissues. Specifically, iron and zinc homeostasis is important for A. baumannii interactions with biotic surfaces and for growth within vertebrates. This review discusses what is currently known regarding the interaction of A. baumannii with vertebrate cells with a particular emphasis on the contributions of metal homeostasis systems. Overall, published research supports the utility of exploiting these systems as targets for the development of much-needed antimicrobials against this emerging infectious threat.
Collapse
Affiliation(s)
- Brittany L Mortensen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine Nashville, TN, USA
| |
Collapse
|
11
|
Pelchovich G, Omer-Bendori S, Gophna U. Menaquinone and iron are essential for complex colony development in Bacillus subtilis. PLoS One 2013; 8:e79488. [PMID: 24223955 PMCID: PMC3817097 DOI: 10.1371/journal.pone.0079488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD) in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.
Collapse
Affiliation(s)
- Gidi Pelchovich
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Shira Omer-Bendori
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Giessen TW, Franke KB, Knappe TA, Kraas FI, Bosello M, Xie X, Linne U, Marahiel MA. Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from Actinosynnema mirum. JOURNAL OF NATURAL PRODUCTS 2012; 75:905-914. [PMID: 22578145 DOI: 10.1021/np300046k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study we report the isolation, structure elucidation, and biosynthesis of mirubactin (1), a siderophore containing an unprecedented chemical functionality in natural products, namely, an O-acyl hydroxamic acid ester. Mirubactin represents the first siderophore isolated from the genus Actinosynnema and the first natural product produced by Actinosynnema mirum whose biosynthetic gene cluster could be identified. Structure elucidation was accomplished through a combination of spectroscopic (NMR, IR, and UV/vis) and mass spectrometric methods and revealed the presence of an unusual ester bond between the δ-N-hydroxyl group of δ-N-formyl-δ-N-hydroxyornithine and a 2,3-dihydroxybenzoate moiety. Bioinformatic analysis of the A. mirum genome and subsequent biochemical characterization of the putative biosynthetic machinery identified the gene cluster responsible for mirubactin assembly. The proposed biosynthesis of mirubactin comprises the iterative use of a stand-alone carrier-protein-bound substrate, as well as an ester-bond-forming step catalyzed by a C-terminal condensation domain, thus revealing an interesting system for further biochemical studies to gain a deeper understanding of nonribosomal peptide synthetase-catalyzed siderophore biosynthesis.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Chemistry/Biochemistry, Philipps-University , Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol 2011; 193:3525-36. [PMID: 21602348 DOI: 10.1128/jb.00264-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
N-Acetylglucosamine (GlcNAc) is the most abundant carbon-nitrogen biocompound on earth and has been shown to be an important source of nutrients for both catabolic and anabolic purposes in Bacillus species. In this work we show that the GntR family regulator YvoA of Bacillus subtilis serves as a negative transcriptional regulator of GlcNAc catabolism gene expression. YvoA represses transcription by binding a 16-bp sequence upstream of nagP encoding the GlcNAc-specific EIIBC component of the sugar phosphotransferase system involved in GlcNAc transport and phosphorylation, as well as another very similar 16-bp sequence upstream of the nagAB-yvoA locus, wherein nagA codes for N-acetylglucosamine-6-phosphate deacetylase and nagB codes for the glucosamine-6-phosphate (GlcN-6-P) deaminase. In vitro experiments demonstrated that GlcN-6-P acts as an inhibitor of YvoA DNA-binding activity, as occurs for its Streptomyces ortholog, DasR. Interestingly, we observed that the expression of nag genes was still activated upon addition of GlcNAc in a ΔyvoA mutant background, suggesting the existence of an auxiliary transcriptional control instance. Initial computational prediction of the YvoA regulon showed a distribution of YvoA binding sites limited to nag genes and therefore suggests renaming YvoA to NagR, for N-acetylglucosamine utilization regulator. Whole-transcriptome studies showed significant repercussions of nagR deletion for several major B. subtilis regulators, probably indirectly due to an excess of the crucial molecules acetate, ammonia, and fructose-6-phosphate, resulting from complete hydrolysis of GlcNAc. We discuss a model deduced from NagR-mediated gene expression, which highlights clear connections with pathways for GlcNAc-containing polymer biosynthesis and adaptation to growth under oxygen limitation.
Collapse
|
14
|
Bosello M, Robbel L, Linne U, Xie X, Marahiel MA. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 2011; 133:4587-95. [PMID: 21381663 DOI: 10.1021/ja1109453] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we report the isolation, structural characterization, and the genetic analysis of the biosynthetic origin of rhodochelin, a unique mixed-type catecholate-hydroxamate siderophore isolated from Rhodococcus jostii RHA1. Rhodochelin structural elucidation was accomplished via MS(n)- and NMR-analysis and revealed the tetrapeptide to contain an unusual ester bond between an L-δ-N-formyl-δ-N-hydroxyornithine moiety and the side chain of a threonine residue. Gene deletions within three putative biosynthetic gene clusters abolish rhodochelin production, proving that the ORFs responsible for rhodochelin biosynthesis are located in different chromosomal loci. These results demonstrate the efficient cross-talk between distantly located secondary metabolite gene clusters and outline new insights into the comprehension of natural product biosynthesis.
Collapse
Affiliation(s)
- Mattia Bosello
- Biochemistry, Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Passalacqua KD, Varadarajan A, Byrd B, Bergman NH. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres. PLoS One 2009; 4:e4904. [PMID: 19295911 PMCID: PMC2654142 DOI: 10.1371/journal.pone.0004904] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
Background Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains. Methodology/Principal Findings Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group—a pneumonia-causing B. cereus strain (G9241), an attenuated strain of B. anthracis (Sterne 34F2), and an avirulent B. cereus strain (10987)—during exponential growth in two distinct atmospheric environments: 14% CO2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment. Conclusions/Significance We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and highlights the importance of looking beyond differences in gene content in comparative genomics studies.
Collapse
Affiliation(s)
- Karla D. Passalacqua
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Anjana Varadarajan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Benjamin Byrd
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nicholas H. Bergman
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Raza W, Wu H, Shah MAA, Shen Q. Retracted: A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis. J Basic Microbiol 2008; 48. [PMID: 18785660 DOI: 10.1002/jobm.200800097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retraction: The following article from the Journal of Basic Microbiology, "A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis" by Waseem Raza, Hongsheng Wu, Muhammad Ali Abdullah Shah and Qirong Shen, published online on 11 September 2008 in Wiley InterScience (www.interscience.wiley.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, Erika Kothe, and the publisher Wiley-VCH. The retraction has been agreed due to substantial overlap of the content of this article with previously published articles in other journals.The Journal of Basic Microbiology apologises to our readership.
Collapse
Affiliation(s)
- Waseem Raza
- College of Resource and Environmental Sciences, Nanjing Agriculture University, Nanjing, China
| | | | | | | |
Collapse
|
17
|
The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis. J Bacteriol 2008; 190:5143-52. [PMID: 18502870 DOI: 10.1128/jb.00464-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-affinity iron acquisition in Bacillus subtilis is mediated via the bacillibactin catechole siderophore pathway. Three of the four essential pathway steps, bacillibactin synthesis, Fe-bacillibactin uptake, and Fe-bacillibactin hydrolysis have been characterized previously. The functional and regulatory components for bacillibactin secretion, the second step of the siderophore pathway, remained unknown. In this study, the screening of a B. subtilis exporter mutant library led to the identification of the YmfE major facilitator superfamily (MFS)-type transporter as a target for bacillibactin export. Analysis of iron-limited ymfE mutant cultures displayed an eightfold reduced bacillibactin secretion and, on the other hand, a 25-fold increased secretion of the bacillibactin precursor 2,3-dihydroxybenzoate. Investigation of the regulatory aspect revealed that bacillibactin secretion is, in contrast to all other components of the pathway, independent of the ferric uptake repressor Fur. Indeed, the MerR-type transcriptional regulator Mta was found to activate both bacillibactin secretion and ymfE gene expression, exposing Mta as an additional regulatory member of the bacillibactin pathway.
Collapse
|
18
|
Passalacqua KD, Bergman NH, Lee JY, Sherman DH, Hanna PC. The global transcriptional responses of Bacillus anthracis Sterne (34F2) and a Delta sodA1 mutant to paraquat reveal metal ion homeostasis imbalances during endogenous superoxide stress. J Bacteriol 2007; 189:3996-4013. [PMID: 17384197 PMCID: PMC1913413 DOI: 10.1128/jb.00185-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 03/12/2007] [Indexed: 12/24/2022] Open
Abstract
Microarray analyses were conducted to evaluate the paraquat-induced global transcriptional response of Bacillus anthracis Sterne (34F(2)) to varying levels of endogenous superoxide stress. Data revealed that the transcription of genes putatively involved in metal/ion transport, bacillibactin siderophore biosynthesis, the glyoxalase pathway, and oxidoreductase activity was perturbed most significantly. A B. anthracis mutant lacking the superoxide dismutase gene sodA1 (Delta sodA1) had transcriptional responses to paraquat similar to, but notably larger than, those of the isogenic parental strain. A small, unique set of genes was found to be differentially expressed in the Delta sodA1 mutant relative to the parental strain during growth in rich broth independently of induced oxidative stress. The bacillibactin siderophore biosynthetic genes were notably overexpressed in Sterne and Delta sodA1 cells after treatment with paraquat. The bacillibactin siderophore itself was isolated from the supernatants and lysates of cells grown in iron-depleted medium and was detected at lower levels after treatment with paraquat. This suggests that, while transcriptional regulation of these genes is sensitive to changes in the redox environment, additional levels of posttranscriptional control may exist for bacillibactin biosynthesis, or the enzymatic siderophore pipeline may be compromised by intracellular superoxide stress or damage. The Delta sodA1 mutant showed slower growth in a chelated iron-limiting medium but not in a metal-depleted medium, suggesting a connection between the intracellular redox state and iron/metal ion acquisition in B. anthracis. A double mutant lacking both the sodA1 and sodA2 genes (Delta sodA1 Delta sodA2) was attenuated for growth in manganese-depleted medium, suggesting a slight level of redundancy between sodA1 and sodA2, and a role for the sod genes in manganese homeostasis.
Collapse
Affiliation(s)
- Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
19
|
Lulko AT, Buist G, Kok J, Kuipers OP. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J Mol Microbiol Biotechnol 2007; 12:82-95. [PMID: 17183215 DOI: 10.1159/000096463] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pleiotropic regulator of carbon metabolism in Gram-positive bacteria, CcpA, regulates gene expression by binding to so-called cre elements, which are located either upstream or in promoter regions, or in open-reading frames. In this study we compared the transcriptomes of Bacillus subtilis 168 and its ccpA deletion mutant during growth in glucose-containing rich medium. Although growth was similar, glucose was completely consumed by the wild-type strain in the stationary phase, while it was still present in the culture of the mutant. At that stage, direct and indirect effects on gene expression were observed. During exponential growth, CcpA mainly influences the carbohydrate and energy metabolism, whereas from transition phase onwards its function expands on a broader range of physiological processes including nucleotide metabolism, cell motility and protein synthesis. A genome wide search revealednew putative cre sites, which could function in vivo according to our transcriptome data. Comparison of our data with published transcriptome data of ccpA mutant analysis in the exponential growth phase confirmed earlier identified CcpA regulon members. It also allowed identification of potential new CcpA-repressed genes, amongst others ycgN and the ydh operon. Novel activated members include opuE andthe opuAABC, yhb and man operons, which all have a putative cre site that appears to be dependent on helical topology. A comparative analysis of these genes with the known activated genes i.e.ackA and pta revealed the presence of a possible upstream activating region (UAR) as has been shown to be functional for the activation of ackA. The data suggest that at later growth phases CcpA may regulate gene expression by itself or complexed with other, yet unknown cofactors.
Collapse
Affiliation(s)
- Andrzej T Lulko
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
20
|
Miethke M, Westers H, Blom EJ, Kuipers OP, Marahiel MA. Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in Bacillus subtilis. J Bacteriol 2006; 188:8655-7. [PMID: 17012385 PMCID: PMC1698241 DOI: 10.1128/jb.01049-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron deprivation in bacteria causes the derepression of genes controlled by the ferric uptake regulator (Fur). The present microarray analysis of iron-starved Bacillus subtilis cells grown in minimal medium unveils additional physiological effects on a large number of genes linked to stringent-response regulation and to genes involved in amino acid biosynthesis associated with pathways essential for bacillibactin production.
Collapse
Affiliation(s)
- Marcus Miethke
- Fachbereich Chemie/Biochemie der Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 2006; 61:1413-27. [PMID: 16889643 DOI: 10.1111/j.1365-2958.2006.05321.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon iron limitation, Bacillus subtilis secretes the catecholic trilactone (2,3-dihydroxybenzoate-glycine-threonine)3 siderophore bacillibactin (BB) for ferric iron scavenging. Here, we show that ferri-BB uptake is mediated by the FeuABC transporter and that YuiI, a novel trilactone hydrolase, catalyses ferri-BB hydrolysis leading to cytosolic iron release. Among several Fur-regulated ABC transport mutants, only DeltafeuABC exhibited impaired growth during iron starvation. Quantification of intra- and extracellular (ferri)-BB in iron-depleted DeltafeuABC cultures revealed a fourfold increase of the extracellular siderophore concentration, confirming a blocked ferri-BB uptake in the absence of FeuABC. Ferri-BB was found to bind selectively to the periplasmic binding protein FeuA (Kd = 57 +/- 1 nM), proving high-affinity transport of the iron-charged siderophore. During iron starvation, a DeltayuiI mutant displayed impaired growth and strong intracellular (30-fold) and extracellular (6.5-fold) (ferri)-BB accumulation. Kinetic studies in vitro revealed that YuiI hydrolyses both BB and ferri-BB. While BB hydrolysis led to strong accumulation of the tri- and dimeric reaction intermediates, ferri-BB hydrolysis yielded exclusively the monomeric reaction product and occurred with a 25-fold higher catalytic efficiency than BB single hydrolysis. Thus, ferri-BB was the preferred substrate of the YuiI esterase whose gene locus was designated besA.
Collapse
Affiliation(s)
- Marcus Miethke
- Department of Chemistry, Philipps-Universität Marburg, D-35032 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD. Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 2006; 188:3664-73. [PMID: 16672620 PMCID: PMC1482855 DOI: 10.1128/jb.188.10.3664-3673.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.
Collapse
Affiliation(s)
- Juliane Ollinger
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | |
Collapse
|
23
|
Schmoock G, Pfennig F, Jewiarz J, Schlumbohm W, Laubinger W, Schauwecker F, Keller U. Functional cross-talk between fatty acid synthesis and nonribosomal peptide synthesis in quinoxaline antibiotic-producing streptomycetes. J Biol Chem 2004; 280:4339-49. [PMID: 15569690 DOI: 10.1074/jbc.m411026200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinoxaline antibiotics are chromopeptide lactones embracing the two families of triostins and quinomycins, each having characteristic sulfur-containing cross-bridges. Interest in these compounds stems from their antineoplastic activities and their specific binding to DNA via bifunctional intercalation of the twin chromophores represented by quinoxaline-2-carboxylic acid (QA). Enzymatic analysis of triostin A-producing Streptomyces triostinicus and quinomycin A-producing Streptomyces echinatus revealed four nonribosomal peptide synthetase modules for the assembly of the quinoxalinoyl tetrapeptide backbone of the quinoxaline antibiotics. The modules were contained in three protein fractions, referred to as triostin synthetases (TrsII, III, and IV). TrsII is a 245-kDa bimodular nonribosomal peptide synthetase activating as thioesters for both serine and alanine, the first two amino acids of the quinoxalinoyl tetrapeptide chain. TrsIII, represented by a protein of 250 kDa, activates cysteine as a thioester. TrsIV, an unstable protein of apparent Mr about 280,000, was identified by its ability to activate and N-methylate valine, the last amino acid. QA, the chromophore, was shown to be recruited by a free-standing adenylation domain, TrsI, in conjunction with a QA-binding protein, AcpPSE. Cloning of the gene for the QA-binding protein revealed that it is the fatty acyl carrier protein, AcpPSE, of the fatty acid synthase of S. echinatus and S. triostinicus. Analysis of the acylation reaction of AcpPSE by TrsI along with other A-domains and the aroyl carrier protein AcmACP from actinomycin biosynthesis revealed a specific requirement for AcpPSE in the activation and also in the condensation of QA with serine in the initiation step of QA tetrapeptide assembly on TrsII. These data show for the first time a functional interaction between nonribosomal peptide synthesis and fatty acid synthesis.
Collapse
Affiliation(s)
- Gernot Schmoock
- Institut für Chemie, Arbeitsgruppe Biochemie und Molekularbiologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin-Charlottenburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Härtig E, Geng H, Hartmann A, Hubacek A, Münch R, Ye RW, Jahn D, Nakano MM. Bacillus subtilis ResD induces expression of the potential regulatory genes yclJK upon oxygen limitation. J Bacteriol 2004; 186:6477-84. [PMID: 15375128 PMCID: PMC516614 DOI: 10.1128/jb.186.19.6477-6484.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the yclJK operon, which encodes a potential two-component regulatory system, is activated in response to oxygen limitation in Bacillus subtilis. Northern blot analysis and assays of yclJ-lacZ reporter gene fusion activity revealed that the anaerobic induction is dependent on another two-component signal transduction system encoded by resDE. ResDE was previously shown to be required for the induction of anaerobic energy metabolism. Electrophoretic mobility shift assays and DNase I footprinting experiments showed that the response regulator ResD binds specifically to the yclJK regulatory region upstream of the transcriptional start site. In vitro transcription experiments demonstrated that ResD is sufficient to activate yclJ transcription. The phosphorylation of ResD by its sensor kinase, ResE, highly stimulates its activity as a transcriptional activator. Multiple nucleotide substitutions in the ResD binding regions of the yclJ promoter abolished ResD binding in vitro and prevented the anaerobic induction of yclJK in vivo. A weight matrix for the ResD binding site was defined by a bioinformatic approach. The results obtained suggest the existence of a new branch of the complex regulatory system employed for the adaptation of B. subtilis to anaerobic growth conditions.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, University of Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cendrowski S, MacArthur W, Hanna P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 2004; 51:407-17. [PMID: 14756782 DOI: 10.1046/j.1365-2958.2003.03861.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Systemic anthrax infections can be characterized as proceeding in stages, beginning with an early intracellular establishment stage within phagocytes that is followed by extracelluar stages involving massive bacteraemia, sepsis and death. Because most bacteria require iron, and the host limits iron availability through homeostatic mechanisms, we hypothesized that B. anthracis requires a high-affinity mechanism of iron acquisition during its growth stages. Two putative types of siderophore synthesis operons, named Bacillus anthracis catechol, bac (anthrabactin), and anthrax siderophore biosynthesis, asb (anthrachelin), were identified. Directed gene deletions in both anthrabactin and anthrachelin pathways were generated in a B. anthracis (Sterne) 34F2 background resulting in mutations in asbA and bacCEBF. A decrease in siderophore production was observed during iron-depleted growth in both the DeltaasbA and DeltabacCEBF strains, but only the DeltaasbA strain was attenuated for growth under these conditions. In addition, the DeltaasbA strain was severely attenuated both for growth in macrophages (MPhi) and for virulence in mice. In contrast, the DeltabacCEBF strain did not differ phenotypically from the parental strain. These findings support a requirement for anthrachelin but not anthrabactin in iron assimilation during the intracellular stage of anthrax.
Collapse
Affiliation(s)
- Stephen Cendrowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
26
|
Piraee M, White RL, Vining LC. Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230: genes required for halogenation. Microbiology (Reading) 2004; 150:85-94. [PMID: 14702400 DOI: 10.1099/mic.0.26319-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five ORFs were detected in a fragment from the Streptomyces venezuelae ISP5230 genomic DNA library by hybridization with a PCR product amplified from primers representing a consensus of known halogenase sequences. Sequencing and functional analyses demonstrated that ORFs 11 and 12 (but not ORFs 13-15) extended the partially characterized gene cluster for chloramphenicol (Cm) biosynthesis in the chromosome. Disruption of ORF11 (cmlK) or ORF12 (cmlS) and conjugal transfer of the insertionally inactivated genes to S. venezuelae gave mutant strains VS1111 and VS1112, each producing a similar series of Cm analogues in which unhalogenated acyl groups replaced the dichloroacetyl substituent of Cm. 1H-NMR established that the principal metabolite in the disrupted strains was the alpha-N-propionyl analogue. The sequence of CmlK implicated the protein in adenylation, and involvement in halogenation was inferred from biosynthesis of analogues by the cmlK-disrupted mutant. A role in generating the dichloroacetyl substituent was supported by partial restoration of Cm biosynthesis when a cloned copy of cmlK was introduced in trans into VS1111. Complementation of the mutant also indicated that inactivation of cmlK rather than a polar effect of the disruption on cmlS expression had interfered with dichloroacetyl biosynthesis. The deduced CmlS sequence resembled sequences of FADH2-dependent halogenases. Conjugal transfer of cmlK or cmlS into S. venezuelae cml-2, a chlorination-deficient strain with a mutation mapped genetically to the Cm biosynthesis gene cluster, did not complement the cml-2 lesion, suggesting that one or more genes in addition to cmlK and cmlS is needed to assemble the dichloroacetyl substituent. Insertional inactivation of ORF13 did not affect Cm production, and the products of ORF14 and ORF15 matched Streptomyces coelicolor A3(2) proteins lacking plausible functions in Cm biosynthesis. Thus cmlS appears to mark the downstream end of the gene cluster.
Collapse
Affiliation(s)
- Mahmood Piraee
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - Robert L White
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
| | - Leo C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| |
Collapse
|
27
|
Truglio JJ, Theis K, Feng Y, Gajda R, Machutta C, Tonge PJ, Kisker C. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol Chem 2003; 278:42352-60. [PMID: 12909628 DOI: 10.1074/jbc.m307399200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial enzymes of the menaquinone (Vitamin K2) pathway are potential drug targets because they lack human homologs. MenB, 1,4-dihydroxy-2-naphthoyl-CoA synthase, the fourth enzyme in the biosynthetic pathway leading from chorismate to menaquinone, catalyzes the conversion of O-succinylbenzoyl-CoA (OSB-CoA) to 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA). Based on our interest in developing novel tuberculosis chemotherapeutics, we have solved the structures of MenB from Mycobacterium tuberculosis and its complex with acetoacetyl-coenzyme A at 1.8 and 2.3 A resolution, respectively. Like other members of the crotonase superfamily, MenB folds as an (alpha3)2 hexamer, but its fold is distinct in that the C terminus crosses the trimer-trimer interface, forming a flexible part of the active site within the opposing trimer. The highly conserved active site of MenB contains a deep pocket lined by Asp-192, Tyr-287, and hydrophobic residues. Mutagenesis shows that Asp-192 and Tyr-287 are essential for enzymatic catalysis. We postulate a catalytic mechanism in which MenB enables proton transfer within the substrate to yield an oxyanion as the initial step in catalysis. Knowledge of the active site geometry and characterization of the catalytic mechanism of MenB will aid in identifying new inhibitors for this potential drug target.
Collapse
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, Center for Structural Biology, State University of New York at Stony Brook, NY 11794-5115, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Dorsey CW, Tolmasky ME, Crosa JH, Actis LA. Genetic organization of an Acinetobacter baumannii chromosomal region harbouring genes related to siderophore biosynthesis and transport. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1227-1238. [PMID: 12724384 DOI: 10.1099/mic.0.26204-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Acinetobacter baumannii 8399 clinical isolate secretes dihydroxybenzoic acid (DHBA) and a high-affinity catechol siderophore, which is different from other bacterial iron chelators already characterized. Complementation assays with enterobactin-deficient Escherichia coli strains led to the isolation of a cosmid clone containing A. baumannii 8399 genes required for the biosynthesis and activation of DHBA. Accordingly, the cloned fragment harbours a dhbACEB polycistronic operon encoding predicted proteins highly similar to several bacterial proteins required for DHBA biosynthesis from chorismic acid. Genes encoding deduced proteins related to the E. coli Fes and the Bacillus subtilis DhbF proteins, and a putative Yersinia pestis phosphopantetheinyl transferase, all of them involved in the assembly and utilization of catechol siderophores in other bacteria, were found next to the dhbACEB locus. This A. baumannii 8399 gene cluster also contained the om73, p45 and p114 predicted genes encoding proteins potentially involved in transport of ferric siderophore complexes. The deduced products of the p114 and p45 genes are putative membrane proteins that belong to the RND and MFS efflux pump proteins, respectively. Interestingly, P45 is highly related to the E. coli P43 (EntS) protein that participates in the secretion of enterobactin. Although P114 is similar to other bacterial efflux pump proteins involved in antibiotic resistance, its genetic arrangement within this A. baumannii 8399 locus is different from that described in other bacteria. The product of om73 is a Fur- and iron-regulated surface-exposed outer-membrane protein. These characteristics together with the presence of a predicted TonB box and its high similarity to other siderophore receptors indicate that OM73 plays such a role in A. baumannii 8399. The 184 nt om73-p114 intergenic region contains promoter elements that could drive the expression of these divergently transcribed genes, all of which are in close proximity to almost perfect Fur boxes. This arrangement explains the iron- and Fur-regulated expression of om73, and provides strong evidence for a similar regulation for the expression of p114.
Collapse
Affiliation(s)
- Caleb W Dorsey
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Marcelo E Tolmasky
- Department of Biological Science, School of Natural Science and Mathematics, California State University, Fullerton, CA, USA
| | - Jorge H Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
29
|
May JJ, Kessler N, Marahiel MA, Stubbs MT. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci U S A 2002; 99:12120-5. [PMID: 12221282 PMCID: PMC129408 DOI: 10.1073/pnas.182156699] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synthesis of the catecholic siderophore bacillibactin is accomplished by the nonribosomal peptide synthetase (NRPS) encoded by the dhb operon. DhbE is responsible for the initial step in bacillibactin synthesis, the activation of the aryl acid 2,3-dihydroxybenzoate (DHB). The stand-alone adenylation (A) domain DhbE, the structure of which is presented here, exhibits greatest homology to other NRPS A-domains, acyl-CoA ligases and luciferases. It's structure is solved in three different states, without the ligands ATP and DHB (native state), with the product DHB-AMP (adenylate state) and with the hydrolyzed product AMP and DHB (hydrolyzed state). The 59.9-kDa protein folds into two domains, with the active site at the interface between them. In contrast to previous proposals of a major reorientation of the large and small domains on substrate binding, we observe only local structural rearrangements. The structure of the phosphate binding loop could be determined, a motif common to many adenylate-forming enzymes, as well as with bound DHB-adenylate and the hydrolyzed product DHB*AMP. Based on the structure and amino acid sequence alignments, an adapted specificity conferring code for aryl acid activating domains is proposed, allowing assignment of substrate specificity to gene products of previously unknown function.
Collapse
Affiliation(s)
- Jurgen J May
- Biochemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
30
|
Baichoo N, Wang T, Ye R, Helmann JD. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 2002; 45:1613-29. [PMID: 12354229 DOI: 10.1046/j.1365-2958.2002.03113.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis ferric uptake repressor (Fur) protein coordinates a global transcriptional response to iron starvation. We have used DNA microarrays to define the Fur regulon and the iron starvation stimulon. We identify 20 operons (containing 39 genes) that are derepressed both by mutation of fur and by treatment of cells with the iron chelator 2,2'-dipyridyl. These operons are direct targets of Fur regulation as judged by DNase I footprinting. Analyses of lacZ reporter fusions to six Fur-regulated promoter regions reveal that repression is highly selective for iron. In addition to the Fur regulon, iron starvation induces members of the PerR regulon and leads to reduced expression of cytochromes. However, we did not find any evidence for genes that are directly activated by Fur or repressed by Fur under iron-limiting conditions. Although genome searches using the 19 bp Fur box consensus are useful in identifying candidate Fur-regulated genes, some genes associated with Fur boxes are not demonstrably regulated by Fur, whereas other genes are regulated from sites with little apparent similarity to the conventional Fur consensus.
Collapse
Affiliation(s)
- Noel Baichoo
- Department of Mirobiology, Cornell University, Ithica, NY 14853-8101, USA
| | | | | | | |
Collapse
|
31
|
Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 2002; 66:223-49. [PMID: 12040125 PMCID: PMC120789 DOI: 10.1128/mmbr.66.2.223-249.2002] [Citation(s) in RCA: 566] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory logic of siderophore biosynthetic genes in bacteria involves the universal repressor Fur, which acts together with iron as a negative regulator. However in other bacteria, in addition to the Fur-mediated mechanism of regulation, there is a concurrent positive regulation of iron transport and siderophore biosynthetic genes that occurs under conditions of iron deprivation. Despite these regulatory differences the mechanisms of siderophore biosynthesis follow the same fundamental enzymatic logic, which involves a series of elongating acyl-S-enzyme intermediates on multimodular protein assembly lines: nonribosomal peptide synthetases (NRPS). A substantial variety of siderophore structures are produced from similar NRPS assembly lines, and variation can come in the choice of the phenolic acid selected as the N-cap, the tailoring of amino acid residues during chain elongation, the mode of chain termination, and the nature of the capturing nucleophile of the siderophore acyl chain being released. Of course the specific parts that get assembled in a given bacterium may reflect a combination of the inventory of biosynthetic and tailoring gene clusters available. This modular assembly logic can account for all known siderophores. The ability to mix and match domains within modules and to swap modules themselves is likely to be an ongoing process in combinatorial biosynthesis. NRPS evolution will try out new combinations of chain initiation, elongation and tailoring, and termination steps, possibly by genetic exchange with other microorganisms and/or within the same bacterium, to create new variants of iron-chelating siderophores that can fit a particular niche for the producer bacterium.
Collapse
Affiliation(s)
- Jorge H Crosa
- Department of Molecular Microbiology and Immunology, School of Medicine Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
32
|
Hoffmann T, Schütz A, Brosius M, Völker A, Völker U, Bremer E. High-salinity-induced iron limitation in Bacillus subtilis. J Bacteriol 2002; 184:718-27. [PMID: 11790741 PMCID: PMC139516 DOI: 10.1128/jb.184.3.718-727.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteome analysis of Bacillus subtilis cells grown at low and high salinity revealed the induction of 16 protein spots and the repression of 2 protein spots, respectively. Most of these protein spots were identified by mass spectrometry. Four of the 16 high-salinity-induced proteins corresponded to DhbA, DhbB, DhbC, and DhbE, enzymes that are involved in the synthesis of 2,3-dihydroxybenzoate (DHB) and its modification and esterification to the iron siderophore bacillibactin. These proteins are encoded by the dhbACEBF operon, which is negatively controlled by the central iron regulatory protein Fur and is derepressed upon iron limitation. We found that iron limitation and high salinity derepressed dhb expression to a similar extent and that both led to the accumulation of comparable amounts of DHB in the culture supernatant. DHB production increased linearly with the degree of salinity of the growth medium but could still be reduced by an excess of iron. Such an excess of iron also partially reversed the growth defect exhibited by salt-stressed B. subtilis cultures. Taken together, these findings strongly suggest that B. subtilis cells grown at high salinity experience iron limitation. In support of this notion, we found that the expression of several genes and operons encoding putative iron uptake systems was increased upon salt stress. The unexpected finding that high-salinity stress has an iron limitation component might be of special ecophysiological importance for the growth of B. subtilis in natural settings, in which bioavailable iron is usually scarce.
Collapse
Affiliation(s)
- Tamara Hoffmann
- Department of Biology, Philipps University Marburg, Karl-von-Frisch Strasse, D-35032 Marburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
33
|
Panina EM, Mironov AA, Gelfand MS. Comparative analysis of FUR regulons in gamma-proteobacteria. Nucleic Acids Res 2001; 29:5195-206. [PMID: 11812853 PMCID: PMC97565 DOI: 10.1093/nar/29.24.5195] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Iron is an essential element for the survival and pathogenesis of bacteria. The strict control of iron homeostasis is mediated by the FUR repressor, which is highly conserved among various bacterial species. Here we apply the comparative genomics approach to analyze candidate Fur-binding sites in the genomes of Escherichia coli (K12 and O157:H7), Salmonella typhi, Yersinia pestis and Vibrio cholerae. We describe a number of new loci encoding siderophore biosynthesis and transport proteins. A new regulator of iron-acquisition systems was found in S.typhi. We predict FUR regulation for several virulence systems. We also predict FUR regulation for the chemotaxis system of V.cholerae that is probably involved in the process of pathogenesis.
Collapse
Affiliation(s)
- E M Panina
- State Scientific Center GosNIIGenetika, 1st Dorozhny prospect, Moscow 113545, Russia.
| | | | | |
Collapse
|
34
|
Ogura M, Yamaguchi H, Fujita Y, Tanaka T. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems. Nucleic Acids Res 2001; 29:3804-13. [PMID: 11557812 PMCID: PMC55910 DOI: 10.1093/nar/29.18.3804] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have analyzed the regulons of the Bacillus subtilis two-component regulators DegU, ComA and PhoP by using whole genome DNA microarrays. For these experiments we took the strategy that the response regulator genes were cloned downstream of an isopropyl-beta-D-thiogalactopyranoside-inducible promoter on a multicopy plasmid and expressed in disruptants of the cognate sensor kinase genes, degS, comP and phoR, respectively. The feasibility of this experimental design to detect target genes was demonstrated by the following two results. First, expression of lacZ fusions of aprE, srfA and ydhF, the target genes of DegU, ComA and PhoP, respectively, was stimulated in their cognate sensor kinase-deficient mutants upon overproduction of the regulators. Secondly, by microarray analysis most of the known target genes for the regulators were detected and, where unknown genes were found, the regulator dependency of several of them was demonstrated. As the mutants used were deficient in the kinase genes, these results show that target candidates can be detected without signal transduction. Using this experimental design, we identified many genes whose dependency on the regulators for expression had not been known. These results suggest the applicability of the strategy to the comprehensive transcription analysis of the B.subtilis two-component systems.
Collapse
Affiliation(s)
- M Ogura
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | |
Collapse
|
35
|
Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, Sylva GL, Musser JM. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci U S A 2001; 98:10416-21. [PMID: 11517341 PMCID: PMC56975 DOI: 10.1073/pnas.191267598] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens are exposed to different temperatures during an infection cycle and must regulate gene expression accordingly. However, the extent to which virulent bacteria alter gene expression in response to temperatures encountered in the host is unknown. Group A Streptococcus (GAS) is a human-specific pathogen that is responsible for illnesses ranging from superficial skin infections and pharyngitis to severe invasive infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS survives and multiplies at different temperatures during human infection. DNA microarray analysis was used to investigate the influence of temperature on global gene expression in a serotype M1 strain grown to exponential phase at 29 degrees C and 37 degrees C. Approximately 9% of genes were differentially expressed by at least 1.5-fold at 29 degrees C relative to 37 degrees C, including genes encoding transporter proteins, proteins involved in iron homeostasis, transcriptional regulators, phage-associated proteins, and proteins with no known homologue. Relatively few known virulence genes were differentially expressed at this threshold. However, transcription of 28 genes encoding proteins with predicted secretion signal sequences was altered, indicating that growth temperature substantially influences the extracellular proteome. TaqMan real-time reverse transcription-PCR assays confirmed the microarray data. We also discovered that transcription of genes encoding hemolysins, and proteins with inferred roles in iron regulation, transport, and homeostasis, was influenced by growth at 40 degrees C. Thus, GAS profoundly alters gene expression in response to temperature. The data delineate the spectrum of temperature-regulated gene expression in an important human pathogen and provide many unforeseen lines of pathogenesis investigation.
Collapse
Affiliation(s)
- L M Smoot
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Press CM, Loper JE, Kloepper JW. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. PHYTOPATHOLOGY 2001; 91:593-8. [PMID: 18943949 DOI: 10.1094/phyto.2001.91.6.593] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ABSTRACT Seed treatment with the rhizosphere bacterium Serratia marcescens strain 90-166 suppressed anthracnose of cucumber, caused by Colleto-trichum orbiculare, through induced systemic resistance (ISR). When the iron concentration of a planting mix was decreased by addition of an iron chelator, suppression of cucumber anthracnose by strain 90-166 was significantly improved. Strain 90-166 produced 465 +/- 70 mg/liter of catechol siderophore, as determined by the Rioux assay in deferrated King's medium B. The hypothesis that a catechol siderophore produced by strain 90-166 may be responsible for induction of systemic resistance by this strain was tested by evaluating disease suppression by a mini-Tn5-phoA mutant deficient in siderophore production. Sequence analysis of genomic DNA flanking the mini-Tn5-phoA insertion identified the target gene as entA, which encodes an enzyme in the catechol siderophore biosynthetic pathways of several bacteria. Severity of anthracnose of cucumbers treated with the entA mutant was not significantly different (P = 0.05) from the control, whereas plants treated with wild-type 90-166 had significantly less disease (P = 0.05) than the control. Total (internal and external) population sizes of 90-166 and the entA mutant on roots did not differ significantly (P = 0.05) at any sample time, whereas internal population sizes of the entA mutant were significantly lower (P = 0.05) than those of the wild-type strain at two sampling times. These data suggest that catechol siderophore biosynthesis genes in Serratia marcescens 90-166 are associated with ISR but that this role may be indirect via a reduction in internal root populations.
Collapse
|
37
|
Wyckoff EE, Smith SL, Payne SM. VibD and VibH are required for late steps in vibriobactin biosynthesis in Vibrio cholerae. J Bacteriol 2001; 183:1830-4. [PMID: 11160122 PMCID: PMC95076 DOI: 10.1128/jb.183.5.1830-1834.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae synthesizes the catechol siderophore vibriobactin. In this report, we present the complete map of a vibriobactin gene region containing two previously unreported vibriobactin biosynthetic genes. vibD encodes a phosphopantetheinyl transferase, and vibH encodes a novel nonribosomal peptide synthase. Both VibD and VibH are required for vibriobactin biosynthesis.
Collapse
Affiliation(s)
- E E Wyckoff
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| | | | | |
Collapse
|
38
|
Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 2000; 182:4458-65. [PMID: 10913079 PMCID: PMC94617 DOI: 10.1128/jb.182.16.4458-4465.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.
Collapse
Affiliation(s)
- R W Ye
- Experimental Station E328/148B, DuPont Central Research and Development, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Many low-molecular-weight peptides of microbial origin are synthesized nonribosomally on large multifunctional proteins, termed peptide synthetases. These enzymes contain repeated building blocks in which several defined domains catalyze specific reactions of peptide synthesis. The order of these domains within the enzyme determines the sequence and structure of the peptide product.
Collapse
Affiliation(s)
- D Konz
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Germany
| | | |
Collapse
|
40
|
Expert D. WITHHOLDING AND EXCHANGING IRON: Interactions Between Erwinia spp. and Their Plant Hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 1999; 37:307-334. [PMID: 11701826 DOI: 10.1146/annurev.phyto.37.1.307] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The critical role of iron in plant host-parasite relationships has been elucidated in diseases as different as the soft rot and fire blight incited by Erwinia chrysanthemi and E. amylovora, respectively. As in animal infections, the role of iron and its ligands in the virulence of plant pathogens seems to be more subtle than might be expected, and is intimately related to the life cycle of the pathogen within its host. This review discusses how iron, because of its unique position in biological systems, controls the activities of these plant pathogens. Molecular studies illustrating the key question of iron acquisition and homeostasis during pathogenesis are described. The production of siderophores by pathogens not only represents a powerful strategy to acquire iron from host tissues but may also act as a protective agent against iron toxicity. The need of the host to bind and possibly sequester the metal during pathogenesis is another central issue. Possible modes of iron competition between plant host and pathogen are considered.
Collapse
Affiliation(s)
- D Expert
- Pathologie Végétale, INRA/CNRS, Institut National Agronomique, 16 rue Claude Bernard, Paris, F-75231 France; e-mail:
| |
Collapse
|
41
|
Verberne MC, Muljono RAB, Verpoorte R. Salicylic acid biosynthesis. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60493-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Huang CC, Liao ZM, Hirai M, Ano T, Shoda M. lpa-14, a gene, involved in the production of lipopeptide antibiotics, regulates the production of a siderophore, 2,3-dihydroxybenzoylglycine, in Bacillus subtilis RB14. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(99)80015-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Wyckoff EE, Stoebner JA, Reed KE, Payne SM. Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis. J Bacteriol 1997; 179:7055-62. [PMID: 9371453 PMCID: PMC179647 DOI: 10.1128/jb.179.22.7055-7062.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis.
Collapse
Affiliation(s)
- E E Wyckoff
- Department of Microbiology, University of Texas, Austin 78712-1095, USA
| | | | | | | |
Collapse
|