1
|
Chandel M, Sharma AK, Thakur K, Sharma D, Brar B, Mahajan D, Kumari H, Pankaj PP, Kumar R. Poison in the water: Arsenic's silent assault on fish health. J Appl Toxicol 2024; 44:1282-1301. [PMID: 38262619 DOI: 10.1002/jat.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 01/25/2024]
Abstract
Arsenic occurs across the world in freshwater and marine environments, menacing the survival of aquatic organisms. Organic and inorganic forms of this substance can be found, in which the inorganic form is more hazardous than the organic form. Most aquatic bodies contain inorganic arsenic species, but organic species are believed to be the dominant form of arsenic in the majority of fish. Natural and anthropogenic both are the sources of water contamination with arsenic. Its bioaccumulation and transfer from one trophic level to another in the aquatic food chain make arsenic a vital environmental issue. Continuous exposure to low concentrations of arsenic in aquatic organisms including fish leads to its bioaccumulation, which may affect organisms of higher trophic levels including large fishes or humans. Humans can be exposed to arsenic through the consumption of fish contaminated with arsenic. Hence, the present review facilitates our understanding about sources of arsenic, its bioaccumulation, food chain transfer, and its effect on the fish health. Also, "Poison in the Water: Arsenic's Silent Assault on Fish Health" serves as a wake-up call to recognize the pressing need to address arsenic contamination in water bodies. By understanding its devastating impact on fish health, we can strive to implement sustainable practices and policies that safeguard our precious aquatic environments and ensure the well-being of both wildlife and human communities that depend on them.
Collapse
Affiliation(s)
- Meenakshi Chandel
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Hishani Kumari
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Pranay Punj Pankaj
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
2
|
Gogoi B, Acharjee SA, Bharali P, Sorhie V, Walling B, Alemtoshi. A critical review on the ecotoxicity of heavy metal on multispecies in global context: A bibliometric analysis. ENVIRONMENTAL RESEARCH 2024; 248:118280. [PMID: 38272294 DOI: 10.1016/j.envres.2024.118280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Heavy metals (HMs) have become a significant concern in the current era, with deleterious effects on diverse living organisms when exposed beyond threshold concentrations. Both nature and human beings have been constantly casting out HMs into environmental matrices through various activities. Innumerable cases of threatened diseases such as cancer, respiratory ailments, reproductive defects, skin diseases, and several others have been a cause of significant concern for humans as the number of instances has been increasing with each decade. HMs migrates via several pathways to infiltrate biological organisms and amass within them. Even though numerous treatment approaches are available for remediating HM pollution, however, they are expensive, along with other setbacks. Due to such constraints, combating HM contamination requires environmentally conscious strategies like bioremediation, which employs an array of biological systems to remove HMs from the environment. Nonetheless, to address the current global HM pollution situation, it is critical to comprehend not only how these hazardous HMs cause toxicity in various living organisms but also the knowledge gaps that currently exist concerning the subject of HM ecotoxicity. In the present investigation, data was extracted from Google Scholar using software program called Harzing's Publish or Perish. The collected information has been subsequently displayed as a network file using the VOSViewer software tool. Thus, the current review presents a significant insight with the inclusion of a readily accessible bibliometric analysis to comprehend the present status of HMs research, global research trends, existing knowledge discrepancies, and research challenges. Further, it also provides an in-depth review of HMs ecotoxicity, with a focus on arsenic (As), cadmium (Cd), and lead (Pb). Thus, as indicated by the bibliometric study, the present review will assist future investigators studying HMs ecotoxicity by providing baseline data concerning a wide range of living organisms and by addressing research gaps.
Collapse
Affiliation(s)
- Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India.
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| |
Collapse
|
3
|
Celino-Brady FT, Lerner DT, Seale AP. Experimental Approaches for Characterizing the Endocrine-Disrupting Effects of Environmental Chemicals in Fish. Front Endocrinol (Lausanne) 2020; 11:619361. [PMID: 33716955 PMCID: PMC7947849 DOI: 10.3389/fendo.2020.619361] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing industrial and agricultural activities have led to a disturbing increase of pollutant discharges into the environment. Most of these pollutants can induce short-term, sustained or delayed impacts on developmental, physiological, and behavioral processes that are often regulated by the endocrine system in vertebrates, including fish, thus they are termed endocrine-disrupting chemicals (EDCs). Physiological impacts resulting from the exposure of these vertebrates to EDCs include abnormalities in growth and reproductive development, as many of the prevalent chemicals are capable of binding the receptors to sex steroid hormones. The approaches employed to investigate the action and impact of EDCs is largely dependent on the specific life history and habitat of each species, and the type of chemical that organisms are exposed to. Aquatic vertebrates, such as fish, are among the first organisms to be affected by waterborne EDCs, an attribute that has justified their wide-spread use as sentinel species. Many fish species are exposed to these chemicals in the wild, for either short or prolonged periods as larvae, adults, or both, thus, studies are typically designed to focus on either acute or chronic exposure at distinct developmental stages. The aim of this review is to provide an overview of the approaches and experimental methods commonly used to characterize the effects of some of the environmentally prevalent and emerging EDCs, including 17 α-ethinylestradiol, nonylphenol, BPA, phthalates, and arsenic; and the pervasive and potential carriers of EDCs, microplastics, on reproduction and growth. In vivo and in vitro studies are designed and employed to elucidate the direct effects of EDCs at the organismal and cellular levels, respectively. In silico approaches, on the other hand, comprise computational methods that have been more recently applied with the potential to replace extensive in vitro screening of EDCs. These approaches are discussed in light of model species, age and duration of EDC exposure.
Collapse
Affiliation(s)
- Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
- *Correspondence: Andre P. Seale,
| |
Collapse
|
4
|
Dezfouli MGZ, Eissazadeh S, Zade SMAS. Histological and histometrical study of the protective role of α-tocopherol against sodium arsenite toxicity in rat ovaries. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1167-1179. [PMID: 24735566 DOI: 10.1017/s1431927614000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study examines histometrical changes induced by sodium arsenite (SA), as an environmental pollutant, and investigates the protective effect of α-tocopherol on ovaries of SA-treated rats during the prenatal stage until sexual maturity. Rats were classified into groups: control, SA (8 ppm/day), α-tocopherol (100 ppm/day), and SA+α-tocopherol. Treatment was performed from pregnancy until maturation when the rats and ovaries were weighed. The Cavalieri method was used to estimate volume of the ovaries, cortex, medulla, and corpus luteum. The mean diameter of oocytes, granulosa cells, and nuclei were measured and volume was estimated using the Nucleator method. The number of oocytes and thickness of the zona pellucida (ZP) were determined using an optical dissector and orthogonal intercept method, respectively. SA reduced the body and ovary weight, the number of secondary, antral and Graafian oocytes, volume of the ovaries, cortex, medulla and corpus luteum, mean diameter and volume of oocytes in primordial and primary follicles, mean diameter and volume of oocyte nuclei in all types of follicles, and mean thickness of the ZP in secondary and antral follicles. Also, the mean diameter and volume of granulosa cells and their nuclei in antral and Graafian follicles decreased significantly. Vacuolization and vascular congestion in the corpus luteum and an increase in the number of atretic oocytes were seen in the SA group. Most of these parameters were unchanged from the control level in the SA+α-tocopherol group. It was concluded that α-tocopherol supplementation reduced the toxic effects of SA exposure on ovarian tissue in rats.
Collapse
Affiliation(s)
- Maryam Ghandi Zadeh Dezfouli
- 1Department of Biology, Faculty of Basic Science,Arak University,Shahid Beheshti Street,Arak,Markazi Province,3945-5-38138Iran
| | - Samira Eissazadeh
- 2Department of Cellular and Molecular Biology, Faculty of Biotechnology and Biomolecular Science,Serding,Selangor,Darul Ehsan,43400Malaysia
| | - Sayed Mohammad Ali Shariat Zade
- 1Department of Biology, Faculty of Basic Science,Arak University,Shahid Beheshti Street,Arak,Markazi Province,3945-5-38138Iran
| |
Collapse
|
5
|
Yamaguchi S, Celino FT, Ito A, Agusa T, Tanabe S, Tuyen BC, Miura C, Miura T. Effects of arsenic on gonadal development in freshwater crab, Somanniathelphusa pax, in Vietnam and Geothelphusa dehaani in Japan. ECOTOXICOLOGY (LONDON, ENGLAND) 2008; 17:772-780. [PMID: 18548346 DOI: 10.1007/s10646-008-0228-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
To estimate the influence of water contamination by arsenic (As) on reproduction of crustaceans in Vietnam, we collected wild freshwater crab Somanniathelphusa pax from the Mekong Delta area in Vietnam, investigated gonadal development, and measured As concentration in hepatopancreas. In female crab, vitellogenesis was delayed in association with the increase of As accumulation in hepatopancreas, whereas there was no significant correlation between testicular development and As accumulation in male crab. To clarify the effects of As on gonadal development of crustaceans, we investigated the effects of oral As administration on gonadal development in Japanese freshwater crab Geothelphusa dehaani. In male crab, the occurrence of spermatids and spermatozoa were predominantly observed in the control group, whereas the occurrence of spermatocytes increased after administration of 10 microg/crab As for 3 months. On the other hand, in females, secondary yolk globule stages mainly occupied ovary of the control group. However, the primary yolk globule stage gradually increased after 10 microg/crab As administration. Together these results indicate that it is possible that As contamination in water or food causes the delay of spermatogenesis and vitellogenesis in crustaceans.
Collapse
Affiliation(s)
- Sonoko Yamaguchi
- Research Group for Reproductive Physiology, South Ehime Fisheries Research Center, Ehime University, 1289-1, Funakoshi, Ainan, Ehime 798-4292, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Boyle D, Brix KV, Amlund H, Lundebye AK, Hogstrand C, Bury NR. Natural arsenic contaminated diets perturb reproduction in fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5354-60. [PMID: 18754393 DOI: 10.1021/es800230w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The toxicological effect of natural diets elevated in metals on reproduction in fish is poorly understood. The reproductive output of zebrafish fed the polychaete Nereis diversicolor collected from a metal-impacted estuary, Restronguet Creek, Cornwall, UK, was compared to fish fed N. diversicolor collected from a nonmetal impacted estuary, Blackwater, Essex, UK. Fish fed the metal laden N. diversicolorfor 68 days showed reduced reproductive output, characterized by reduced cumulative egg production (47%), cumulative number of spawns (30%), as well as reduced average number of eggs produced per spawn and % hatch rate. The mRNA transcript levels of the egg-yolk protein vitellogenin was also reduced 1.5 fold in the livers of female fish fed metal-laden N. diversicolor. No difference was seen between the lipid, protein, or moisture content of the two diets and no difference in growth was seen between the two fish populations. The Restronguet Creek polychaetes have elevated arsenic, cadmium, copper, zinc, lead, and silver body burdens, but the only element found to accumulate in the tissues of zebrafish fed this diet was As. The As in these N. diversicolor was found to be predominantly potentially toxic inorganic As species, 58% of total As content, which is unusual for aquatic organisms where arsenic is typically biotransformed into less toxic organoarsenical compounds. These results demonstrate that reproduction in fish is a sensitive target of exposure to a natural diet contaminated with As and this exposure route could be of significance to the health of fish populations.
Collapse
Affiliation(s)
- David Boyle
- King's College London, Nutritional Sciences Division, Franklin-Wilkins Building, 150 Stamford Street, London
| | | | | | | | | | | |
Collapse
|
7
|
Aguilar C, González-Sansón G, Hernández I, MacLatchy DL, Munkittrick KR. Effects-based assessment in a tropical coastal system: status of bicolor damselfish (Stegastes partitus) on the north shore of Cuba. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 67:459-71. [PMID: 16857259 DOI: 10.1016/j.ecoenv.2006.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 05/16/2006] [Accepted: 05/30/2006] [Indexed: 05/10/2023]
Abstract
The research was carried out to determine whether there are individual-level differences in the bicolor damselfish (Stegastes partitus) within the altered fish communities located on the north coast of Havana, Cuba. There was strong evidence of changes in some morphological and physiological characteristics associated with the impact of land-based pollution in the coastal zone. A combination of impaired recruitment due to habitat degradation with increased food supply due to eutrophication seems to be the best explanation for fishes being heavier and longer at polluted sites. The change in the proportion of color patterns and a very high number of atretic oocytes in the ovaries of fish caught near the mouth of the Almendares River strongly support the idea that not only is the pollution of river waters affecting the marine life in the coastal zone, but also that this pollution has greater effects than the pollution coming from the discharge of Havana Harbor.
Collapse
Affiliation(s)
- Consuelo Aguilar
- Centro de Investigaciones Marinas, Universidad de La Habana, 16 No. 114, Playa 1300, Habana, Cuba
| | | | | | | | | |
Collapse
|
8
|
Waalkes MP, Keefer LK, Diwan BA. Induction of proliferative lesions of the uterus, testes, and liver in swiss mice given repeated injections of sodium arsenate: possible estrogenic mode of action. Toxicol Appl Pharmacol 2000; 166:24-35. [PMID: 10873715 DOI: 10.1006/taap.2000.8963] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inorganic arsenic (As) is a human carcinogen but has not been unequivocally proven carcinogenic in rodents. For instance, one older study indicates that repeated iv injections of sodium arsenate might induce lymphomas in Swiss mice (58% incidence) (Osswald and Goerttler, Verh. Dtsch. Ges. Pathol. 55, 289-293, 1971), but it was considered inadequate for critical evaluation of carcinogenic potential largely because of issues in experimental design. Therefore, we studied repeated iv sodium arsenate injection and neoplastic response in male and female Swiss mice. Groups (n = 25) of mice received sodium arsenate (0.5 mg/kg, iv) or saline (control) once/week for 20 weeks and were observed for a total of 96 weeks when the study ended. Differences in survival and body weights were unremarkable. In females, arsenate induced marked increases in the incidence and severity of cystic hyperplasia of the uterus compared against controls. Arsenate also was associated with a rare adenocarcinoma of the uterus. Hyperplastic uterine epithelium from arsenate-exposed animals showed strong positive immunostaining for the proliferating cell nuclear antigen (PCNA). There was also an upregulation of estrogen receptor (ER) immunoreactive protein in the early lesions of uterine luminal and glandular hyperplasia, although a progressive decrease in its expression was seen in the severe hyperplastic or neoplastic epithelium. In common with the preneoplastic and neoplastic gynecological lesions in humans, the levels of immunoreactive inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine-containing proteins were greater in the uterine hyperplastic epidermis and their intensity was positively correlated with the severity of the lesions. Arsenate-induced uterine hyperplastic lesions also showed a strong upregulation of cyclin D1, an estrogen-associated gene product essential for progression through the G1 phase of the cell cycle. In other tissues, arsenate increased testicular interstitial cell hyperplasia incidence and severity over control but without affecting the incidence of tubular degeneration. Arsenate also induced increases in hepatic proliferative lesions (HPL; foci of alteration + neoplasia), but only in females. Significant skin changes (incidence of hyperkeratotic lesions) and renal lesions (severity of nephropathy) also occurred in arsenate-treated females. Thus, repeated arsenate exposure, though not outright tumorigenic in the present study, was associated with proliferative, preneoplastic lesions of the uterus, testes, and liver. Estrogen treatment has been associated with proliferative lesions and tumors of the uterus, female liver, and testes in other studies, supporting a hypothesis that arsenate might somehow act through an estrogenic mode of action.
Collapse
Affiliation(s)
- M P Waalkes
- Inorganic Carcinogenesis Section, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
9
|
Shukla JP, Shukla KN, Dwivedi UN. Survivality and Impaired Growth in Arsenic Treated Fingerlings ofChanna punctatus, a Fresh Water Murrel. ACTA ACUST UNITED AC 1987. [DOI: 10.1002/aheh.19870150310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Shukla JP, Pandey K. Impaired spermatogenesis in arsenic treated freshwater fish, Colisa fasciatus (Bl. and Sch.). Toxicol Lett 1984; 21:191-5. [PMID: 6719501 DOI: 10.1016/0378-4274(84)90205-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The testicular architecture of Colisa fasciatus was studied after 15 and 30 days of exposure to 14.0 or 2.0 mg/l arsenic(III) oxide. Marked alterations occurred at 14.0 mg/l after 30 days of treatment, while 2.0 mg/l (the concentration in Lake Chilwa) produced little change. In addition to the degenerative changes in the lobules, the interstitial Leydig cells (steroid-secreting cells) underwent significant reduction (P less than 0.01) in diameter. Varying degrees of necrosis and pyknosis suggested reduced secretory levels. Such changes may be correlated with the corresponding altered spermatogenesis.
Collapse
|