1
|
Chen J, Dai XY, Li XW, Tang YX, Xu XW, Li JL. Lycopene mitigates atrazine-induced hypothalamic neural stem cell senescence by modulating the integrated stress response pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156114. [PMID: 39418974 DOI: 10.1016/j.phymed.2024.156114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Atrazine, a widely used herbicide, has become a major pollutant in agricultural water bodies. Pesticide contamination, including atrazine, is linked to a high incidence of age-related neurodegenerative diseases, suggesting its neurotoxic potential. Lycopene, a potent antioxidant, is renowned for its diverse pharmacological effects, especially its neuroprotective properties. However, the underlying pharmacological mechanisms of lycopene and its impact on potential pathways against atrazine-induced hypothalamic damage have not been elucidated. PURPOSE Our study aimed to elucidate how lycopene ameliorates hypothalamic injury triggered by atrazine exposure, with a special focus on the pluripotency of neural stem cells (NSCs) and pathways involved in cell senescence. METHODS Mice were administered lycopene and/or atrazine via gavage for 21 days. The C17.2 NSC cell line and specific molecular inhibitors were utilized to examine the potential protective effects of lycopene in vitro. Morphological changes and ultrastructural damage in the hypothalamus were observed by hematoxylin-eosin staining and transmission electron microscopy, respectively. The mechanisms of action of lycopene were explored through various methods, including senescence β-galactosidase staining, multiplex immunofluorescence, Western blotting and qRT‒PCR. RESULTS Our results indicated that lycopene notably ameliorated atrazine-induced histological and ultrastructural damage, as well as the loss of intact and mature neurons in mouse hypothalami. Additionally, hypothalamic NSCs (HtNSCs) and microglia were recruited to areas of neuronal injury after atrazine exposure; intriguingly, lycopene treatment reduced this recruitment. Through in vivo and in vitro assays, we elucidated the outcomes of atrazine-induced HtNSC recruitment and neuronal loss, along with the neuroprotective mechanisms of lycopene. Mechanistically, lycopene prevents atrazine-induced senescence in HtNSCs and enhances their proliferation and differentiation by inhibiting the integrated stress response (ISR) signaling pathway, thus promoting the renewal of damaged neurons in the hypothalamus. CONCLUSIONS Collectively, the results of the present study reveal, for the first time, that lycopene mitigates atrazine-induced HtNSC senescence by modulating the ISR signaling pathway. These findings offer novel insights into the role of lycopene in preventing and alleviating NSC senescence and suggest its potential development as a new therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Li P, Song W, Xu N, Wang Z, Pang H, Wang D. Soybean isoflavones protect dopaminergic neurons from atrazine damage by inhibiting VPS13A to increase autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117225. [PMID: 39427538 DOI: 10.1016/j.ecoenv.2024.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Atrazine (ATR) is a broad-spectrum herbicide with dopaminergic (DAergic) neurotoxicity that can cause Parkinson's disease (PD)-like syndrome. However, research on preventing ATR neurotoxicity is unclear. Soybean isoflavones (SI) are natural plant compounds with neuroprotective effects. In this study, we found that pre-administration of SI prevented ATR-induced motor dysfunction and substantia nigra pathological damage. RNA-seq datasets revealed that the neuroprotective effect of SI was related to autophagy. Further experiments showed that ATR inhibited autophagy, and SI pre-administration before ATR exposure increased autophagy. In addition, single-cell data analysis combined with experimental verification showed that the gene VPS13A was a key target by which SI protected DAergic neurons from ATR damage, and inhibiting VPS13A-induced autophagy was a key mechanism enabling SI prevention of neuron damage. Together, these findings provide new insights for the development of preventive measures and intervention targets protecting against functional neuronal damage caused by ATR and other herbicides.
Collapse
Affiliation(s)
- Peng Li
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nuo Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zijie Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Haoying Pang
- First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dandan Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistic and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Jiang FW, Guo JY, Lin J, Zhu SY, Dai XY, Saleem MAU, Zhao Y, Li JL. MAPK/NF-κB signaling mediates atrazine-induced cardiorenal syndrome and antagonism of lycopene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171015. [PMID: 38369134 DOI: 10.1016/j.scitotenv.2024.171015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Atrazine (ATZ) is the most prevalent herbicide that has been widely used in agriculture to control broadleaf weeds and improve crop yield and quality. The heavy use of ATZ has caused serious environmental pollution and toxicity to human health. Lycopene (LYC), is a carotenoid that exhibits numerous health benefits, such as prevention of cardiovascular diseases and nephropathy. However, it remains unclear that whether ATZ causes cardiorenal injury or even cardiorenal syndrome (CRS) and the beneficial role of LYC on it. To test this hypothesis, mice were treated with LYC and/or ATZ for 21 days by oral gavage. This study demonstrated that ATZ exposure caused cardiorenal morphological alterations, and several inflammatory cell infiltrations mediated by activating NF-κB signaling pathways. Interestingly, dysregulation of MAPK signaling pathways and MAPK phosphorylation caused by ATZ have been implicated in cardiorenal diseases. ATZ exposure up-regulated cardiac and renal injury associated biomarkers levels that suggested the occurrence of CRS. However, these all changes were reverted, and the phenomenon of CAR was disappeared by LYC co-treatment. Based on our findings, we postulated a novel mechanism to elucidate pesticide-induced CRS and indicated that LYC can be a preventive and therapeutic agent for treating CRS by targeting MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jian-Ying Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | | | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Liu L, Li MZ, Yao MH, Yang TN, Tang YX, Li JL. Melatonin inhibits atrazine-induced mitochondrial impairment in cerebellum of mice: Modulation of cGAS-STING-NLRP3 axis-dependent cell pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168924. [PMID: 38036146 DOI: 10.1016/j.scitotenv.2023.168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
The global prevalence of Neurological disorders has increased alarmingly in response to environmental and lifestyle changes. Atrazine (ATZ) is a difficult to degrade soil and water pollutant with well-known neurotoxicity. Melatonin (MT), an antioxidant with chemoprotective properties, has a potential therapeutic effect on cerebellar damage caused by ATZ exposure. The aim of this study was to explore the effects and underlying mechanisms of MT on the cerebellar inflammatory response and pyroptosis induced by ATZ exposure. In this study, C57BL/6J mice were treated with ATZ (170 mg/kg BW/day) and MT (5 mg/kg BW/day) for 28 days. Our results revealed that MT alleviated the histopathological changes, ultrastructural damage, oxidative stress and decrease of mitochondrial membrane potential (ΔΨm) in the cerebellum induced by ATZ exposure. ATZ exposure damaged the mitochondria leading to release of mitochondrial DNA (mtDNA) to the cytoplasm, MT activated the cyclic GMP-AMP synthetase interferon gene stimulator (cGAS-STING) axis to alleviate inflammation and pyroptosis caused by ATZ exposure. In general, our study provided new evidence that the cGAS-STING-NLRP3 axis plays an important role in the treatment of ATZ-induced cerebellar injury by MT.
Collapse
Affiliation(s)
- Lin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Hui Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Zhu SY, Li XN, Zhao Y, Dai XY, Guo JY, Li JL. Lycopene Ameliorate Atrazine-Induced Oxidative Damage in the B Cell Zone via Targeting the miR-27a-3p/Foxo1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12502-12512. [PMID: 36134885 DOI: 10.1021/acs.jafc.2c05103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lycopene, a natural bioactive component, has potential to reduce the risk of environmental factors inducing chronic diseases. It is important to explore lycopene's health benefits and its mechanism. The uncontrolled use of atrazine in agriculture causes critical environmental pollution issues worldwide. Exposure to atrazine through water and food chains is a risk to humans. In this study, mice were orally treated with lycopene and/or different concentrations of atrazine for 21 days to explore the influence of atrazine on the spleen and the role of lycopene's protection in atrazine exposure. The work found that atrazine exerted its toxic role in the B cell zone of the spleen by inducing Foxo1 deficiency. Atrazine caused ROS generation and Pink1/Parkin dysfunction via inducing Foxo1 deficiency, which led to apoptosis in the B cell zone. Additionally, the work revealed that lycopene ameliorates atrazine-induced apoptosis in the B cell zone of the spleen via regulating the miR-27a-3p/Foxo1 pathway. The finding also underscored a novel target of lycopene in maintaining homeostasis during B cell maturation.
Collapse
Affiliation(s)
| | | | | | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | | | | |
Collapse
|
6
|
Zhu SY, Guo JY, Li JY, Dai XY, Li XN, Li JL. Lycopene ameliorates atrazine-induced pyroptosis in spleen by suppressing the Ox-mtDNA/Nlrp3 inflammasome pathway. Food Funct 2022; 13:3551-3560. [PMID: 35260874 DOI: 10.1039/d1fo02857j] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nlrp3 is a vital integration point of diverse extracellular stimuli and cellular stress. However, the inappropriate activation of Nlrp3 results in the progression of autoinflammatory and metabolic disorders. Atrazine, which is used widely in the agricultural sector, is toxic to humans. Herein, this study found that atrazine could induce oxidative stress and the expression of Nfkb and IRF1 in spleen, promoting the ox-mtDNA formation. Also, production and release of ox-mtDNA stimulated the Nlrp3 inflammasome. Lastly, atrazine induced pyroptosis in spleen, mediating the activation of Nlrp3 inflammasome. In addition, lycopene, a kind of carotenoid, is natural bioactive component in fruits and vegetables, which is applied toward reducing oxidative stress. It was found that lycopene could ameliorate the pyroptosis induced by atrazine via the inhibition of ox-mtDNA production. The results also provided evidence that lycopene had a potential role in the prevention of Nlrp3 inflammasome activation by depleting the ox-mtDNA.
Collapse
Affiliation(s)
- Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jian-Ying Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China. .,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
7
|
Atrazine-induced environmental nephrosis was mitigated by lycopene via modulating nuclear xenobiotic receptors-mediated response. J Nutr Biochem 2018; 51:80-90. [DOI: 10.1016/j.jnutbio.2017.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/01/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
|
8
|
Foradori CD, Zimmerman AD, Coder PS, Peachee VL, Handa RJ, Kimber I, Pruett SB, Breckenridge CB. Lack of immunotoxic effects of repeated exposure to atrazine associated with the adaptation of adrenal gland activation. Regul Toxicol Pharmacol 2017; 89:200-214. [PMID: 28736286 DOI: 10.1016/j.yrtph.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/09/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022]
Abstract
T cell-dependent IgM antibody production and natural killer cell (NKC) activity were assessed in SD rats orally administered atrazine for 28 days to males (0, 6.5, 25, or 100 mg/kg/day) or females (0, 3, 6, or 50 mg/kg/day), or 30 or 500 ppm in diet (3 or 51 mg/kg/day). Anti-asialo GM1 antibodies (NKC) and cyclophosphamide (antibody-forming cell assay [AFC]) served as positive controls. Pituitary (ACTH, prolactin), adrenal (corticosterone, progesterone, aldosterone), and gonadal (androgens, estrogens) hormones were assessed after 1, 7, and/or 28 days of treatment. Food intake and body weights were significantly reduced in the highest dosed males, and transiently affected in females. Urinary corticosterone levels were not increased in atrazine-treated groups in either sex at any time point measured (10, 22, or 24 days). Corticosterone and progesterone were elevated in males after a single atrazine dose ≥6.5 mg/kg/day, but not after 7, 14, or 28 doses. There were no effects on adrenal, pituitary, or gonadal hormones in females. Atrazine did not suppress the AFC response or decrease NKC function after 28 days in males or females. Atrazine had no effect on spleen weights or spleen cell numbers in males or females, although thymus weights were elevated in males receiving the highest dose. The lack of immunotoxic effect of atrazine was associated with diminished adrenal activation over time in males, and no effects on adrenal hormones in females.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Arthur D Zimmerman
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Pragati S Coder
- Charles River Laboratories Ashland LLC, Ashland, OH, United States
| | | | - Robert J Handa
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ian Kimber
- Faculty of Life Sciences, University of Manchester, UK
| | - Stephen B Pruett
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States
| | | |
Collapse
|
9
|
Lee EJ, Jang Y, Kang K, Song DH, Kim R, Chang HW, Lee DE, Song CKE, Choi B, Kang MJ, Chang EJ. Atrazine induces endoplasmic reticulum stress-mediated apoptosis of T lymphocytes via the caspase-8-dependent pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:998-1008. [PMID: 25640594 DOI: 10.1002/tox.22109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Atrazine (ATR) is one of the most commonly applied broad-spectrum herbicides. Although ATR is well known to be a biologically hazardous molecule with potential toxicity in the immune system, the molecular mechanisms responsible for ATR-induced immunotoxicity remain unclear. In this study, we found that the immunotoxic properties of ATR were mediated through the induction of apoptotic changes in T lymphocytes. Mice exposed to ATR for 4 weeks exhibited a significant decrease in the number of spleen CD3(+) T lymphocytes, while CD19(+) B lymphocytes and nonlymphoid cells were unaffected. ATR exposure also led to inhibition of cell growth and induction of apoptosis in human Jurkat T-cells. Importantly, ATR triggered the activation of caspase-3 and the cleavage of caspase-8 and PARP, whereas it did not affect the release of cytochrome c from the mitochondria in Jurkat T-cells. In addition, ATR activated the unfolded protein response signaling pathway, as indicated by eIF2α phosphorylation and CHOP induction. Our results demonstrate that ATR elicited an immunotoxic effect by inducing ER stress-induced apoptosis in T-cells, therefore providing evidence for the molecular mechanism by which ATR induces dysregulation of the immune system. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 998-1008, 2016.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Youngsaeng Jang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Kwonyoon Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Da-Hyun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Rihyun Kim
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Hee-Won Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Dong Eil Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Claire Ka-Eun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| |
Collapse
|
10
|
Mokarizadeh A, Faryabi MR, Rezvanfar MA, Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences. Toxicol Mech Methods 2016; 25:258-78. [PMID: 25757504 DOI: 10.3109/15376516.2015.1020182] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, in many communities, there is a growing concern about possible adverse effects of pesticides on human health. Reports indicate that during environmental or occupational exposure, pesticides can exert some intense adverse effects on human health through transient or permanent alteration of the immune system. There is evidence on the relation between pesticide-induced immune alteration and prevalence of diseases associated with alterations of the immune response. In the present study, direct immunotoxicity, endocrine disruption and antigenicity have been introduced as the main mechanisms working with pesticides-induced immune dysregulation. Moreover, the evidence on the relationship between pesticide exposure, dysregulation of the immune system and predisposition to different types of psychiatric disorders, cancers, allergies, autoimmune and infectious diseases are criticized.
Collapse
Affiliation(s)
- Aram Mokarizadeh
- a Department of Immunology, Faculty of Medicine , Cellular and Molecular Research Center, Kurdistan University of Medical Sciences , Sanandaj , Iran and
| | | | | | | |
Collapse
|
11
|
Chen JY, Song Y, Zhang LS. Immunotoxicity of atrazine in Balb/c mice. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:637-45. [PMID: 23638890 DOI: 10.1080/03601234.2013.777308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The present study was designed to investigate the immunotoxicity of atrazine (ATZ) in male Balb/c mice. ATZ (175, 87.5, and 43.75 mg/kg bw/day) was administered by gavage method for 28 days. The following indexes were determined in various groups of mice: body and organ weight; antibody aggregation of serum hemolysin; proliferative response of splenocytes to ConA; delayed-type hypersensitivity (DTH); natural killer cell activity; clearance of neutral red and nitric oxide (NO) release from peritoneal macrophages; apostosis and necrosis of splenocytes and thymocytes; cytokine production; and serum lysozyme. Results showed that cell-mediated, humoral immunity, and non-specific immune function in the high-dose ATZ group were suppressed; NO release and interferon-γ(IFN-γ)/interleukin-4 (IL-4) were also significantly decreased in the high-dose group. In the medium-dose group, the proliferation response and IFN-γ production was significantly decreased. In the low-dose group, the proliferation response was significantly decreased. Serum lysozyme was decreased in the ATZ-treated groups. The percentage of early apoptosis in thymocytes was increased significantly in high- and medium-dose ATZ groups. In conclusion, ATZ elicited an inhibitory effect on cell-mediated immunity, humoral immunity, and non-specific immune function of mice.
Collapse
Affiliation(s)
- Jin Y Chen
- West China School of Public Health, Sichuan University, P. R. China
| | | | | |
Collapse
|
12
|
Corsini E, Sokooti M, Galli CL, Moretto A, Colosio C. Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence. Toxicology 2012; 307:123-35. [PMID: 23116691 DOI: 10.1016/j.tox.2012.10.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/23/2012] [Accepted: 10/22/2012] [Indexed: 01/04/2023]
Abstract
The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In Western countries pesticides, together with new and modified patterns of exposure to chemicals, have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, certain autoimmune diseases and cancers. Xenobiotics may initiate, facilitate or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors, modifying immune tolerance and activation pathways. The purpose of this article is to update the evidence of pesticide immunotoxicity. Even if experimental data as well as sporadic human studies indicate that some pesticides can affect the immune system, overall, existing epidemiological studies are inadequate to raise conclusions on the immunotoxic risk associated to pesticide exposure. The available studies on the effects of pesticides on human immune system have several limitations including poor indication on exposure levels, multiple chemical exposures, heterogeneity of the approach, and difficulty in giving a prognostic significance to the slight changes often observed. Further studies are necessary, and they should be preferably carried out through comparison of pre and post-exposure findings in the same group of subjects with a matched control group. Attempt should be made to define the prognostic significance of slight changes often observed. Animal and in vitro studies are also important and necessary to scientifically support epidemiological evidences on pesticide-induced immunotoxicity.
Collapse
Affiliation(s)
- E Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
13
|
Mojzisova J, Massányi P, Danko J, Trbolova A, Petrovova E, Mazensky D, Vdoviakova K, Luptakova L, Torma N. Changes of the immunological and haematological parameters in rabbits after bendiocarbamate application. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1244-1248. [PMID: 22540647 DOI: 10.1080/10934529.2012.672078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effect of bendiocarbamate application (5 mg/kg b.w.) on the haematological and immunological parameters in rabbits was evaluated. Total leukocyte cell count, erythrocyte cell count, differential cell count were determined during the period of three months of bendiocarbamate application and compared with those in healthy animals. The immunotoxic effect was evaluated by the test of ingestion ability of phagocytes (phagocytic activity and index of phagocytic activity) and proliferation activity of lymphocytes after mitogen stimulation. The significant decrease of total leukocytes, lymphocytosis and neutropaenia were found after bendiocarbamate application. The functional activities of phagocytes (expressed as phagocytic activity) and lymphocytes (proliferative activity) were significantly suppressed in rabbits treated with bendiocarbamate compared with those in control groups and values before the experiment.
Collapse
Affiliation(s)
- Jana Mojzisova
- Department of Epizootology and Parasitology, University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR), is the most commonly applied broad-spectrum herbicide in the world. Unintentional overspray of ATR poses an immune function health hazard. The biomolecular mechanisms responsible for ATR-induced immunotoxicity, however, are little understood. This study presents on our investigation into the apoptosis of splenocytes in mice exposed to ATR as we explore possible immunotoxic mechanisms. METHODS Oral doses of ATR were administered to BALB/C mice for 21 days. The histopathology, lymphocyte apoptosis and the expression of apoptosis-related proteins from the Fas/Fas ligand (FasL) apoptotic pathway were examined from spleen samples. RESULTS Mice administered ATR exhibited a significant decrease in spleen and thymus weight. Electron microscope histology of ultrathin sections of spleen revealed degenerative micromorphology indicative of apoptosis of splenocytes. Flow cytometry revealed that the percentage of apoptotic lymphocytes increased in a dose-dependent manner after ATR treatment. Western blots identified increased expression of Fas, FasL and active caspase-3 proteins in the treatment groups. CONCLUSIONS ATR is capable of inducing splenocytic apoptosis mediated by the Fas/FasL pathway in mice, which could be the potential mechanism underlying the immunotoxicity of ATR.
Collapse
|
15
|
Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ. Effects of Atrazine on Fish, Amphibians, and Aquatic Reptiles: A Critical Review. Crit Rev Toxicol 2008; 38:721-72. [DOI: 10.1080/10408440802116496] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Rowe AM, Brundage KM, Barnett JB. Developmental immunotoxicity of atrazine in rodents. Basic Clin Pharmacol Toxicol 2008; 102:139-45. [PMID: 18226067 DOI: 10.1111/j.1742-7843.2007.00175.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is a substantial literature reporting that the developing immune system is more sensitive to toxic insult and that the measurable phenotype resulting from prenatal/neonatal exposure often differs from that seen in adult exposure models (reviewed in Holladay and Steven, and Smialowicz et al.). Atrazine is a common herbicidal contaminant of groundwater in agricultural areas in the USA. The potential immunotoxicity of atrazine has been extensively studied using adult-exposure models; however, few studies have explored its immunotoxicity in a prenatal and/or lactational exposure model. Prenatal/lactational atrazine exposure affects the function of young adult rodent immune systems in both sex- and age-dependant manners. In our studies, the humoural and cell-mediated immune responses of offspring from atrazine-exposed dams were assessed at two ages, 3 and 6 months of age to test the hypothesis that prenatal/lactational atrazine exposure would cause greater health complications as the mice aged. Male offspring showed a significant immunopotentiation at three moa that was not apparent at 6 months. Three-month-old female offspring showed no significant difference in immune response from controls. However, at 6 months, female litter mates showed a significant depression in their immune function. These results indicate a decreasing trend in immune capacity. Rooney et al. showed a significant depression of the immune function of young male rat exposure prenatally and lactationally to atrazine. These results demonstrate a sex- and age-dependant effect of prenatal exposure to atrazine on the immune system of the adult offspring using two rodent strains.
Collapse
Affiliation(s)
- Alexander M Rowe
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506-9177, USA
| | | | | |
Collapse
|
17
|
Rowe AM, Brundage KM, Barnett JB. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release. Toxicol Appl Pharmacol 2007; 221:179-88. [PMID: 17475299 PMCID: PMC1950779 DOI: 10.1016/j.taap.2007.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 11/23/2022]
Abstract
The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.
Collapse
Affiliation(s)
- Alexander M. Rowe
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Kathleen M. Brundage
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506
- Center for Immunopathology and Microbial Pathogenesis, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| | - John B. Barnett
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506
- Center for Immunopathology and Microbial Pathogenesis, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
18
|
Rowe AM, Brundage KM, Schafer R, Barnett JB. Immunomodulatory effects of maternal atrazine exposure on male Balb/c mice. Toxicol Appl Pharmacol 2006; 214:69-77. [PMID: 16443249 PMCID: PMC2034295 DOI: 10.1016/j.taap.2005.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/02/2005] [Accepted: 12/05/2005] [Indexed: 11/19/2022]
Abstract
Atrazine is a widely used herbicide applied to corn, sugar and other crops as a broad leaf weed inhibitor. Using the Balb/c mouse model, we have determined that prenatal/lactational exposure to atrazine alters adult immune function. Pregnant Balb/c dams were exposed subcutaneously for 21 days via time release pellets to 700 microg per day of atrazine beginning between days 10 and 12 of pregnancy. Prenatal/Lactational exposure caused no overt physical malformations in the offspring and had no effect on the number of litters carried to term or the litter size. Upon reaching early adulthood (approximately 3 months of age), the state of their immune system was evaluated. There were no changes in body weight or in the organ to body weight ratio of the spleen. Additionally, no changes were observed in the number of CD8+ T cell, CD4+ T cell, or B220+ B cell subpopulations in the spleen. T cell function was assessed by measuring proliferation and cytolytic activity after in vitro allogeneic stimulation. Male mice which had been prenatally/lactationally exposed to atrazine had an increase in both T cell proliferation and cytolytic activity. The humoral immune response was assessed after immunization with heat killed Streptococcus pneumoniae (HKSP). There was a significant increase in the number of HKSP-specific IgM secreting B cells in the spleen of prenatal/lactational exposed male mice. Inasmuch as atrazine is a widespread environmental contaminant, this immunopotentiation raises concerns that it may potentiate clinical diseases, such as autoimmune disease and hypersensitivity, and needs to be carefully monitored and studied.
Collapse
|
19
|
Bharadwaj L, Dhami K, Schneberger D, Stevens M, Renaud C, Ali A. Altered gene expression in human hepatoma HepG2 cells exposed to low-level 2,4-dichlorophenoxyacetic acid and potassium nitrate. Toxicol In Vitro 2005; 19:603-19. [PMID: 15878651 DOI: 10.1016/j.tiv.2005.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 11/24/2022]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) and nitrate are agricultural contaminants found in rural ground water. It is not known whether levels found in groundwater pose a human or environmental health risk, nor is the mechanism of toxicity at the molecular/cellular level understood. This study focused on determining whether 2,4-D or nitrate at environmentally realistic levels elicit gene expression changes in exposed cells. cDNA microarray technology was used to determine the impact of 2,4-D and nitrate in an in vitro model of exposure. Human hepatoma HepG2 cells were incubated with 2,4-D or nitrate alone for 24 h. Cell viability (neutral red assay) and proliferation (BrdU incorporation) were assessed following exposure. Total RNA from treated and control cells were isolated, reverse transcribed and reciprocal labelled with Cy3 or Cy5 dyes, and hybridized to a human cDNA microarray. The hybridized microarray chips were scanned, quantified and analyzed to identify genes affected by 2,4-D or nitrate exposure based on a two-fold increase or decrease in gene expression and reproducibility (affected in three or more treatments). Following filtering, normalization and hierarchical clustering initial data indicate that numerous genes were found to be commonly expressed in at least three or more treatments of 2,4-D or nitrate tested. The affected genes indicate that HepG2 cells respond to environmental, low-level exposure and produce a cellular response that is associated with alterations in the expression of many genes. The affected genes were characterized as stress response, cell cycle control, immunological and DNA repair genes. These findings serve to highlight new pathway(s) in which to further probe the effects of environmental levels of 2,4-D and nitrate.
Collapse
Affiliation(s)
- Lalita Bharadwaj
- Department of Medicine and Toxicology Group, Institute of Agricultural Rural and Environmental Health, University of Saskatchewan, 103 Hospital Drive, P.O. Box 120, Royal University Hospital, Saskatoon, Sask., Canada S7N 0W8.
| | | | | | | | | | | |
Collapse
|
20
|
Filipov NM, Pinchuk LM, Boyd BL, Crittenden PL. Immunotoxic Effects of Short-term Atrazine Exposure in Young Male C57BL/6 Mice. Toxicol Sci 2005; 86:324-32. [PMID: 15888671 DOI: 10.1093/toxsci/kfi188] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The herbicide atrazine (ATR) is a very widely used pesticide; yet the immunotoxicological potential of ATR has not been studied extensively. Our objective was to examine the effect of ATR on selected immune parameters in juvenile mice. ATR (up to 250 mg/kg) was administered by oral gavage for 14 days to one-month-old male C57BL/6 mice. One day, one week, and seven weeks after the last ATR dose, mice were sacrificed, and blood, spleens, and thymuses were collected and processed for cell counting and flow cytometry. Thymus and spleen weights were decreased by ATR, with the thymus being more sensitive than the spleen; this effect was still present at seven days, but not at seven weeks after the last ATR dose. Similarly, organ cellularity was persistently decreased in the thymus and in the spleen, with the splenic, but not thymic cellularity still being depressed at seven weeks post ATR. Peripheral blood leukocyte counts were not affected by ATR. There were also alterations in the cell phenotypes in that ATR exposure decreased all phenotypes in the thymus, with the number of CD4(+)/CD8(+) being affected the least. At the higher doses, the decreases in the thymic T-cell populations were still present one week after the last ATR dose. In the spleen, the CD8(+) were increased and MHC-II(+) and CD19(+) cells were decreased one day after the last ATR dose. Also, ATR treatment decreased the number of splenic naïve T helper and T cytotoxic cells, whereas it increased the percentage of highly activated cytotoxic/memory T cells. Interestingly, the proportion of mature splenic dendritic cells (DC; CD11c(high)), was also decreased and it persisted for at least one week, suggesting that ATR inhibited DC maturation. In the circulation, ATR exposure decreased CD4(+) lymphocytes at one day, whereas at seven days after the last ATR dose, in addition to the decrease in CD4(+) lymphocytes, the MHC-II(+) cells were also decreased at the 250 mg/kg dose. Thus, ATR exposure appears to be detrimental to the immune system of juvenile mice by decreasing cellularity and affecting lymphocyte distribution, with certain effects persisting long after exposure has been terminated.
Collapse
Affiliation(s)
- Nikolay M Filipov
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762-6100, USA.
| | | | | | | |
Collapse
|
21
|
Karrow NA, McCay JA, Brown RD, Musgrove DL, Guo TL, Germolec DR, White KL. Oral exposure to atrazine modulates cell-mediated immune function and decreases host resistance to the B16F10 tumor model in female B6C3F1 mice. Toxicology 2005; 209:15-28. [PMID: 15725510 DOI: 10.1016/j.tox.2004.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 11/29/2004] [Accepted: 12/01/2004] [Indexed: 11/23/2022]
Abstract
Atrazine (ATZ) is used throughout North America to control annual broadleaf weeds and grasses in various crops including; corn, sorghum, and sugar cane. Unfortunately, contamination of surface and ground water has occurred as a result of ATZ's chemical and physical properties, and its widespread use throughout the U.S. Midwest. A study of ATZ's immunomodulatory properties was conducted using female B6C3F1 mice and a panel of immune assays and host resistance models designed to evaluate cell-mediated and antibody-mediated immunity. Mice were administered ATZ by gavage (0, 24, 250, and 500 mg/kg/day) for 14 days then evaluated for immune responsiveness. ATZ treatment significantly increased the number of splenic CD8+ T cells, cytotoxic T cell and mixed leukocyte responses, and dose-dependently reduced host resistance to B16F10 melanoma. Thymus and spleen weights, total spleen cell numbers and fixed macrophage function was also reduced in mice that were exposed to ATZ. These results demonstrate that oral ATZ exposure is sufficient to alter cell-mediated immune function and disease resistance in female B6C3F1 mice.
Collapse
Affiliation(s)
- N A Karrow
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-6013, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Rusiecki JA, De Roos A, Lee WJ, Dosemeci M, Lubin JH, Hoppin JA, Blair A, Alavanja MCR. Cancer Incidence Among Pesticide Applicators Exposed to Atrazine in the Agricultural Health Study. J Natl Cancer Inst 2004; 96:1375-82. [PMID: 15367570 DOI: 10.1093/jnci/djh264] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Atrazine is the most heavily applied agricultural pesticide for crop production in the United States. Both animal and human studies have suggested that atrazine is possibly carcinogenic, but results have been mixed. We evaluated cancer incidence in atrazine-exposed pesticide applicators among 53,943 participants in the Agricultural Health Study, a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. METHODS We obtained detailed pesticide exposure information using a self-administered questionnaire completed at the time of enrollment (1993-1997). Cancer incidence was followed through December 31, 2001. We used adjusted Poisson regression to calculate rate ratios (RRs) and 95% confidence intervals (CIs) of multiple types of cancer among atrazine exposed applicators. P(trend) values were calculated using atrazine exposure as a continuous variable, and all statistical tests were two-sided. Two exposure metrics were used: quartiles of lifetime days of exposure and quartiles of intensity-weighted lifetime days of exposure. RESULTS 36,513 (68%) applicators reported ever using atrazine; exposure was not associated with overall cancer incidence. Comparisons of cancer incidence in applicators with the highest atrazine exposure and those with the lowest exposure, assessed by lifetime days (RR(LD)) and intensity-weighted lifetime days (RR(IWLD)) of exposure yielded the following results: prostate cancer, RR(LD) = 0.88, 95% CI = 0.63 to 1.23, P(trend) =.26, and RR(IWLD) = 0.89, 95% CI = 0.63 to 1.25, P(trend) =.35; lung cancer, RR(LD) = 1.91, 95% CI = 0.93 to 3.94, P(trend) =.08, and RR(IWLD) = 1.37, 95% CI = 0.65 to 2.86, P(trend) =.19; bladder cancer, RR(LD) = 3.06, 95% CI = 0.86 to 10.81, P(trend) =.18, and RR(IWLD) = 0.85, 95% CI = 0.24 to 2.94, P(trend) =.71; non-Hodgkin lymphoma, RR(LD) = 1.61, 95% CI = 0.62 to 4.16, P(trend) =.35, and RR(IWLD) = 1.75, 95% CI = 0.73 to 4.20, P(trend) =.14; and multiple myeloma, RR(LD) = 1.60, 95% CI = 0.37 to 7.01, P(trend) =.41, and RR(IWLD) = 2.17, 95% CI = 0.45 to 10.32, P(trend) =.21. CONCLUSIONS Our analyses did not find any clear associations between atrazine exposure and any cancer analyzed. However, further studies are warranted for tumor types in which there was a suggestion of trend (lung, bladder, non-Hodgkin lymphoma, and multiple myeloma).
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20892-7240, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Choi SM, Yoo SD, Lee BM. Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:1-24. [PMID: 14681080 DOI: 10.1080/10937400490253229] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is generally accepted that endocrine-disrupting chemicals (EDCs) play a role in a variety of adverse health effects in an intact organism or its progeny as a consequence of changes in the endocrine system. Primary toxic effects of EDCs were reported to be related to infertility, reduction in sperm count, and teratogenicity, but other important toxic effects of EDCs such as carcinogenicity and mutagenicity have also been demonstrated. The aim of the present study was to systematically analyze the toxicological characteristics of EDCs in pesticides, industrial chemicals, and metals. A comprehensive literature survey on the 48 EDCs classified by the Centers for Disease Control and Prevention (CDC) was conducted using a number of databases which included Medline, Toxline, and Toxnet. The survey results revealed that toxicological characteristics of EDCs were shown to produce developmental toxicity (81%), carcinogenicity (79%, when positive in at least one animal species; 48%, when classified based on IARC evaluation), mutagenicity (79%), immunotoxicity (52%), and neurotoxicity (50%). Regarding the hormone-modulating effects of the 48 EDCs, estrogenic effects were the most predominant in pesticides, while effects on thyroid hormone were found for heavy metals. EDCs showing estrogen-modulating effects were closely related to carcinogenicity or mutagenicity with a high degree of sensitivity. Systematic information on the toxicological characteristics of the EDCs will be useful for future research directions on EDCs, the development of new screening methods, legal regulation, and for investigations of their mechanism of action.
Collapse
Affiliation(s)
- Seul Min Choi
- Division of Toxicology/Pharmacokinetics, College of Pharmacy, Sungkyunkwan University, Suwon, Kyonggi-do, South Korea
| | | | | |
Collapse
|
24
|
Kim KR, Son EW, Hee-Um S, Kim BO, Rhee DK, Pyo S. Immune alterations in mice exposed to the herbicide simazine. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:1159-1173. [PMID: 12791541 DOI: 10.1080/15287390306358] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Simazine, a triazine herbicide, was investigated for its in vivo immunomodulatory properties. Male C57Bl/6 mice were treated with vehicle or 300 or 600 mg/kg body weight (bw) simazine daily orally for 4 wk. The immune system was evaluated by the antibody response to sheep red blood cells (SRBC; plaque assay and serum immunoglobulin G), natural killer (NK) and macro-phage activities, lymphocyte subpopulations in the spleen and thymus, and concanavalin A (Con A)- and lipopolysaccharide (LPS)-stimulated lymphocyte proliferation using splenocytes. Body weight and spleen and thymus weight decreased generally in simazine-treated mice, while the weight of adrenal glands was higher than in the control. Simazine treatment (600 mg/kg) induced an increase in the percentage of CD4(+) cells in spleen and CD8 + in thymus. Simazine inhibited the IgM plaque-forming cell numbers and lowered the level of IgG and the proliferation of mitogen-stimulated B cells and T cells. In addition, splenic NK and peritoneal macrophage activities in exposed mice were significantly decreased. Exposure to simazine also decreased cytokine production by macrophages, such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha (TNF-alpha). Taken together, data indicate that the immune system was suppressed by oral simazine exposure.
Collapse
Affiliation(s)
- Kyung-Ran Kim
- Division of Immunopharmacology, College of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-do, South Korea
| | | | | | | | | | | |
Collapse
|
25
|
Pistl J, Kovalkovicová N, Holovská V, Legáth J, Mikula I. Determination of the immunotoxic potential of pesticides on functional activity of sheep leukocytes in vitro. Toxicology 2003; 188:73-81. [PMID: 12748042 DOI: 10.1016/s0300-483x(03)00046-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of eight pesticides with different chemical structure (atrazine, bentazone, chloridazone, dichlofluanid, endosulfan, MCPA, simazine, triallate) on sheep peripheral blood phagocytes and lymphocytes was examined under in vitro conditions by iodo-nitro-tetrazolium reductase test and leukocyte migration-inhibition assay. The pesticides, dissolved in DMSO, were tested at the concentrations of 10(-1)-10(-6) M. The significant suppression of metabolic activity of phagocytic cells was registered after exposure to dichlofluanid (10(-1)-10(-3) M), endosulfan, simazine and triallate (10(-1) M). The significant cytotoxic effect (the decrease of spontaneous migration of leukocytes) was registered for bentazone, dichlofluanid, endosulfan and MCPA (10(-1) M); chloridazone (10(-1) M-10(-2) M) and triallate (10(-1)-10(-5) M). The significant immunotoxic effect (the decrease of lymphocyte activation with PHA) was observed for atrazine (10(-1)-10(-2) M); bentazone (10(-2)-10(-4) M); dichlofluanid, endosulfan (10(-2)-10(-3) M); MCPA (10(-2)-10(-6) M) and simazine (10(-1)-10(-4) M). Three of the pesticides tested suppressed both, the metabolic activity of phagocytes and mitogenic activation of lymphocytes (dichlofluanid, endosulfan and simazine). Triallate suppressed the metabolic activity of phagocytes and showed a strong cytotoxic effect. Pesticides atrazine, bentazone and MCPA influenced the mitogenic activation of lymphocytes and chloridazone showed a significant cytotoxic effect. The different chemical structure of pesticides influenced the metabolic activity of phagocytic cells as well as mitogenic activation of lymphocytes to various intensity.
Collapse
Affiliation(s)
- Juraj Pistl
- Department of Microbiology and Immunology, University of Veterinary Medicine, 041 81, Kosice, Slovakia.
| | | | | | | | | |
Collapse
|
26
|
Kim KR, Son EW, Rhee DK, Pyo S. The immunomodulatory effects of the herbicide simazine on murine macrophage functions in vitro. Toxicol In Vitro 2002; 16:517-23. [PMID: 12206818 DOI: 10.1016/s0887-2333(02)00047-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We examined the immunomodulating effects of simazine, a triazine herbicide, on murine peritoneal macrophages after in vitro pre-exposure. When thioglycollate-elicited macrophages pre-exposed to simazine were stimulated with lipopolysaccharide (LPS), the antitumor activity induced by LPS was suppressed by simazine. Simazine also inhibited poly I:C-induced antiviral activity and interferon (IFN) production in macrophages. In addition, the production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) which have been known to be major effector molecules in macrophage-mediated cytotoxicity was decreased by simazine pretreatment in a dose-dependent manner. However, simazine had little effect on phagocytosis and the level of hydrogen peroxide (H(2)O(2)), interleukin-1 (IL-1) and IL-6 by LPS-stimulated macrophages. Taken together, these data indicate that simazine has a differential immunomodulating effect on macrophage secretory and cellular activities.
Collapse
Affiliation(s)
- Kyung-Ran Kim
- Division of Immunopharmacology, College of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-do 440-746, South Korea
| | | | | | | |
Collapse
|
27
|
Fournier M, Pellerin J, Lebeuf M, Brousseau P, Morin Y, Cyr D. Effects of exposure of Mya arenaria and Mactromeris polynyma to contaminated marine sediments on phagocytic activity of hemocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2002; 59:83-92. [PMID: 12088635 DOI: 10.1016/s0166-445x(01)00240-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two species of bivalves, Mya arenaria and Mactromeris polynima, were exposed to contaminated marine sediments from Baie des Anglais, Quebec, for a period of 10 and 12 weeks, respectively, in order to determine if there was an effect on the phagocytic activity of hemocytes from each species. These sediments contain elevated levels of both PAHs and PCBs. Uncontaminated beach sand was used as control sediments. After a period of 4 weeks, each species of bivalves were sampled and hemocyte phagocytic activity was monitored by flow cytometry. While phagocytosis by hemocytes from M. polytiyma was significantly suppressed, those from M. arenaria were not different from beach sand-exposed controls. At the end of the exposure period, the phagocytic activity of hemocytes from both species was suppressed. Physiological parameters such as mantle proteins or malondialdehyde levels, total protein and total glycogen levels in the digestive gland were not affected by exposure to contaminated sediments. Moreover, the suppression of phagocytosis was well correlated with the transfer of contaminants from the sediments to the bivalves and their subsequent bioaccumulation, as demonstrated by the PCB body burden. These results support the use of bivalves as good sentinel species to survey sediment contamination and the usefulness of hemocyte phagocytic activity as a sensitive biomarker of exposure to organic contaminants.
Collapse
Affiliation(s)
- M Fournier
- INRS-Institut Armand-Frappier Santé humaine, 245 Hymus Boul., Que., Pointe-Claire, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Brousseau P, Pellerin J, Morin Y, Cyr D, Blakley B, Boermans H, Fournier M. Flow cytometry as a tool to monitor the disturbance of phagocytosis in the clam Mya arenaria hemocytes following in vitro exposure to heavy metals. Toxicology 2000; 142:145-56. [PMID: 10685514 DOI: 10.1016/s0300-483x(99)00165-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effectiveness of toxicology biomonitoring programs could be improved by the addition of sensitive biomarkers. In this study the cell viability and sensitivity of phagocytic function of phagocytes from bivalves (Mya arenaria) to selected heavy metals were measured by flow cytometry, a novel approach. Hemocytes (phagocytes) collected from bivalves by puncture of the posterior adductor muscle were incubated in vitro for 18 h in hemolymph containing 10(-9)-10(-3)M of cadmium chloride, zinc chloride, mercuric chloride, methylmercury chloride or silver nitrate, before determining their capacity to phagocytose fluorescent latex beads by flow cytometry. Heterogeneity of the hemocyte cell population was determined by forward scatter (FSC) and side scatter (SSC) cytometric profile which showed two distinct cell populations. At low doses (10(-9), 10(-8) M), all the metal compounds studied stimulated phagocytic activity except silver nitrate. At higher levels of exposure (10(-6), 10(7) M), all metals caused a significant concentration-related decrease in hemocyte phagocytosis activity. From the concentration of each metal inducing 50% suppression (IC50) of the phagocytic activity, the immunotoxic potential of metals with respect to phagocytic function can be ranked in the following increasing order: ZnCl2 < CdCl2 < AgNO3 < HgCl2 < CH3HgCl. Parallel analysis of hemocyte viability showed that suppression of phagocytosis by heavy metals was not solely related to a decreased cell viability. These results reveal the high but different degree of sensitivity of the phagocytosis activity of bivalves with respect to heavy metals, as measured by flow cytometry, and demonstrate that flow cytometry is a potentially useful tool in ecotoxicological monitoring.
Collapse
Affiliation(s)
- P Brousseau
- INRS-Institut Armand-Frappier, Santé Humaine, Pointe-Claire, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Sawicki B, Durand G, Dewitte J, Ratanasavanh D, Riche C, Léglise M. Myelosuppressive activity of two herbicides, atrazine and dinoterb, on human haematopoietic progenitor cells: An in vitro assay to evaluate the effects of intermediate or long-term exposure. Toxicol In Vitro 1998; 12:183-90. [DOI: 10.1016/s0887-2333(97)00109-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/1997] [Indexed: 10/18/2022]
|
30
|
Vial T, Nicolas B, Descotes J. Clinical immunotoxicity of pesticides. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1996; 48:215-29. [PMID: 8656446 DOI: 10.1080/009841096161294] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Because of the wide use of pesticides for domestic and industrial purposes, the evaluation of their immunotoxic effects is of major concern for public health. Despite the large amount of experimental data describing pesticide-induced immunosuppression, evidence that pesticides may severely impair immune functions in humans is lacking or scarce. Contact hypersensitivity is a well-identified immunotoxic effect of pesticides but remains a rare complaint in pesticide-exposed workers. By contrast, immunologically mediated systemic reactions have been described only as debatable case reports. The association between autoimmune diseases and pesticide exposure has more recently been suggested. Despite the lack of convincing human data, a potential risk for the immune system should not be excluded, especially during chronic exposure to pesticides or in otherwise (immuno) compromised patients (malnutrition, children, old patients). Epidemiological studies including markers of exposure and the assessment of immune competence in exposed individuals, or registries of sentinel diseases related to immunosuppression (e.g., non-Hodgkin's lymphoma, opportunistic infections) or autoimmunity (e.g. lupus erythematosus, rheumatoid arthritis), are warranted.
Collapse
Affiliation(s)
- T Vial
- Department of Pharmacology and Medical Toxicology, INSERM U80, Laennec Faculty of Medicine, Lyon, France
| | | | | |
Collapse
|
31
|
Bhatia A, Kaur J. Recent advances in immunomodulatory effects of some chemical pollutants — a review. ACTA ACUST UNITED AC 1993. [DOI: 10.1080/00207239308710880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|