1
|
Hényková E, Kaleta M, Klíčová K, Gonzalez G, Novák O, Strnad M, Kaňovský P. Quantitative Determination of Endogenous Tetrahydroisoquinolines, Potential Parkinson's Disease Biomarkers, in Mammals. ACS Chem Neurosci 2022; 13:3230-3246. [PMID: 36375023 DOI: 10.1021/acschemneuro.2c00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current diagnostic options for Parkinson's disease are very limited and primarily based on characteristic clinical symptoms. Thus, there are urgent needs for reliable biomarkers that enable us to diagnose the disease in the early stages, differentiate it from other atypical Parkinsonian syndromes, monitor its progression, increase knowledge of its pathogenesis, and improve the development of potent therapies. A promising group of potential biomarkers are endogenous tetrahydroisoquinoline metabolites, which are thought to contribute to the multifactorial etiology of Parkinson's disease. The aim of this critical review is to highlight trends and limitations of available traditional and modern analytical techniques for sample pretreatment (extraction and derivatization procedures) and quantitative determination of tetrahydroisoquinoline derivatives in various types of mammalian fluids and tissues (urine, plasma, cerebrospinal fluid, brain tissue, liver tissue). Particular attention is paid to the most sensitive and specific analytical techniques, involving immunochemistry and gas or liquid chromatography coupled with mass spectrometric, fluorescence, or electrochemical detection. The review also includes a discussion of other relevant agents proposed and tested in Parkinson's disease.
Collapse
Affiliation(s)
- Eva Hényková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Michal Kaleta
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic.,Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Cao Y, Li B, Ismail N, Smith K, Li T, Dai R, Deng Y. Neurotoxicity and Underlying Mechanisms of Endogenous Neurotoxins. Int J Mol Sci 2021; 22:12805. [PMID: 34884606 PMCID: PMC8657695 DOI: 10.3390/ijms222312805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson's disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.
Collapse
Affiliation(s)
- Yanlu Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nafissa Ismail
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin Smith
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
| | - Tianmei Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| |
Collapse
|
3
|
Enantioseparation of ß-carboline, tetrahydroisoquinoline and benzazepine analogues of pharmaceutical importance: Utilization of chiral stationary phases based on polysaccharides and sulfonic acid modified Cinchonaalkaloids in high-performance liquid and subcritical fluid chromatography. J Chromatogr A 2020; 1615:460771. [DOI: 10.1016/j.chroma.2019.460771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
|
4
|
Roddan R, Ward JM, Keep NH, Hailes HC. Pictet-Spenglerases in alkaloid biosynthesis: Future applications in biocatalysis. Curr Opin Chem Biol 2020; 55:69-76. [PMID: 31978651 DOI: 10.1016/j.cbpa.2019.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Pictet-Spenglerases provide a key role in the biosynthesis of many biologically active alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic synthetic methods as they provide stereoselective and regioselective control under mild conditions. Products from these enzymes also contain privileged drug scaffolds (such as tetrahydroisoquinoline or β-carboline moieties), so there is interest in the characterization and use of these enzymes as versatile biocatalysts to synthesize analogs of the corresponding natural products for drug discovery. This review discusses all known Pictet-Spenglerase enzymes and their applications as biocatalysts.
Collapse
Affiliation(s)
- Rebecca Roddan
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 8HX, UK; Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, UK
| | - Nicholas H Keep
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 8HX, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
5
|
Bajtai A, Lajkó G, Németi G, Szatmári I, Fülöp F, Péter A, Ilisz I. High-performance liquid chromatographic and subcritical fluid chromatographic separation of α-arylated ß-carboline, N-alkylated tetrahydroisoquinolines and their bioisosteres on polysaccharide-based chiral stationary phases. J Sep Sci 2019; 42:2779-2787. [PMID: 31216124 DOI: 10.1002/jssc.201900228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023]
Abstract
New, pharmacologically interesting chiral amino compounds, namely, stereoisomers of α-hydroxynaphthyl-ß-carboline, benz[d]azepine and benz[c]azepine analogs as well as N-α-hydroxynaphthylbenzyl-substituted isoquinolines were enantioseparated by high-performance liquid chromatographic and subcritical fluid chromatographic methods on polysaccharide-based chiral stationary phases. Separation of the stereoisomers was optimized in both subcritical fluid chromatography and normal phase liquid chromatographic modes by investigating the effects of the composition of the bulk solvent, temperature, and the structures of the analytes and selectors. Both normal phase liquid chromatography and subcritical fluid chromatography exhibited satisfactory performance, albeit with somewhat different effectiveness in the separation of the stereoisomers studied. The optimized methods offer the possibility to apply preparative-scale separations thereby enabling further pharmacological investigations of the enantiomers.
Collapse
Affiliation(s)
- Attila Bajtai
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Gyula Lajkó
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Gábor Németi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Antal Péter
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Chen X, Zheng X, Ali S, Guo M, Zhong R, Chen Z, Zhang Y, Qing H, Deng Y. Isolation and Sequencing of Salsolinol Synthase, an Enzyme Catalyzing Salsolinol Biosynthesis. ACS Chem Neurosci 2018; 9:1388-1398. [PMID: 29602279 DOI: 10.1021/acschemneuro.8b00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), a derivate of dopamine, is suspected to be the most probable neurotoxin in the degeneration of dopaminergic neurons. Numerous hypotheses regarding its pathophysiological roles have been raised, especially related to Parkinson's disease and alcohol addiction. In the mammalian brain, salsolinol may be enzymatically synthesized by salsolinol synthase from dopamine and acetaldehyde. However, the direct evidence of its biosynthesis was still missing. In this study, we purified salsolinol synthase from rat brain by a systematical procedure involving acid precipitation, ultrafiltration, and hydrophilic interaction chromatography. The molecular weight of salsolinol synthase determined by MALDI-TOF MS is 8622.29 Da, comprising 77 amino acids (MQIFVKTLTG KTITLEVEPS DTIKNVKAKI QDKEGIPPDQ QRLIFAGKQL EDGRTLSDYN IQKKSTLHLV LRLRVDY). Homology analysis showed that the enzyme is a ubiquitin-like protein, with a difference of four amino acids, which suggests it is a novel protein. After it was overexpressed in eukaryotic cells, the production of salsolinol was significantly increased as compared with control, confirming the catalytic function of this enzyme. To our knowledge, it is the first systematic purification and sequencing of salsolinol synthase. Together, this work reveals a formerly anonymous protein and urges further exploration of its possible prognostic value and implications in Parkinson's disease and other related disorders.
Collapse
Affiliation(s)
- Xuechai Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Xiaotong Zheng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Sakhawat Ali
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Minjun Guo
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Zixuan Chen
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Yongqian Zhang
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Hong Qing
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| | - Yulin Deng
- School of Life Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People’s Republic of China
| |
Collapse
|
7
|
Kurnik-Łucka M, Panula P, Bugajski A, Gil K. Salsolinol: an Unintelligible and Double-Faced Molecule-Lessons Learned from In Vivo and In Vitro Experiments. Neurotox Res 2017; 33:485-514. [PMID: 29063289 PMCID: PMC5766726 DOI: 10.1007/s12640-017-9818-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland.
| | - Pertti Panula
- Department of Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| |
Collapse
|
8
|
Berríos-Cárcamo P, Quintanilla ME, Herrera-Marschitz M, Vasiliou V, Zapata-Torres G, Rivera-Meza M. Racemic Salsolinol and its Enantiomers Act as Agonists of the μ-Opioid Receptor by Activating the Gi Protein-Adenylate Cyclase Pathway. Front Behav Neurosci 2017; 10:253. [PMID: 28167903 PMCID: PMC5253357 DOI: 10.3389/fnbeh.2016.00253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Background: Several studies have shown that the ethanol-derived metabolite salsolinol (SAL) can activate the mesolimbic system, suggesting that SAL is the active molecule mediating the rewarding effects of ethanol. In vitro and in vivo studies suggest that SAL exerts its action on neuron excitability through a mechanism involving opioid neurotransmission. However, there is no direct pharmacologic evidence showing that SAL activates opioid receptors. Methods: The ability of racemic (R/S)-SAL, and its stereoisomers (R)-SAL and (S)-SAL, to activate the μ-opioid receptor was tested in cell-based (light-emitting) receptor assays. To further characterizing the interaction of SAL stereoisomers with the μ-opioid receptor, a molecular docking study was performed using the crystal structure of the μ-opioid receptor. Results: This study shows that SAL activates the μ-opioid receptor by the classical G protein-adenylate cyclase pathway with an half-maximal effective concentration (EC50) of 2 × 10−5 M. The agonist action of SAL was fully blocked by the μ-opioid antagonist naltrexone. The EC50 for the purified stereoisomers (R)-SAL and (S)-SAL were 6 × 10−4 M and 9 × 10−6 M respectively. It was found that the action of racemic SAL on the μ-opioid receptor did not promote the recruitment of β-arrestin. Molecular docking studies showed that the interaction of (R)- and (S)-SAL with the μ-opioid receptor is similar to that predicted for the agonist morphine. Conclusions: It is shown that (R)-SAL and (S)-SAL are agonists of the μ-opioid receptor. (S)-SAL is a more potent agonist than the (R)-SAL stereoisomer. In silico analysis predicts a morphine-like interaction between (R)- and (S)-SAL with the μ-opioid receptor. These results suggest that an opioid action of SAL or its enantiomers is involved in the rewarding effects of ethanol.
Collapse
Affiliation(s)
- Pablo Berríos-Cárcamo
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, University of ChileSantiago, Chile; Department of Environmental Health Sciences, Yale School of Public HealthNew Haven, CT, USA
| | - María E Quintanilla
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health New Haven, CT, USA
| | - Gerald Zapata-Torres
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile Santiago, Chile
| | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile Santiago, Chile
| |
Collapse
|
9
|
Quintanilla ME, Rivera-Meza M, Berríos-Cárcamo P, Cassels BK, Herrera-Marschitz M, Israel Y. (R)-Salsolinol, a product of ethanol metabolism, stereospecifically induces behavioral sensitization and leads to excessive alcohol intake. Addict Biol 2016; 21:1063-1071. [PMID: 26032572 DOI: 10.1111/adb.12268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ethanol is oxidized in the brain to acetaldehyde, which can condense with dopamine to generate (R/S)-salsolinol [(RS)-SAL]. Racemic salsolinol [(RS)-SAL] is self-infused by rats into the posterior ventral tegmental area (VTA) at significantly lower concentrations than those of acetaldehyde, suggesting that (RS)-SAL is a most active product of ethanol metabolism. Early studies showed that repeated intraperitoneal or intra-VTA administration of (RS)-SAL (10 mg/kg) induced conditioned place preference, led to locomotor sensitization and increased voluntary ethanol consumption. In the present study, we separated the (R)- and (S)-enantiomers from a commercial (RS)-SAL using a high-performance liquid chromatography with electrochemical detection system fitted with a β-cyclodextrin-modified column. We injected (R)-SAL or (S)-SAL (30 pmol/1.0 μl) into the VTA of naïve UChB rats bred as alcohol drinkers to study whether one or both SAL enantiomers are responsible for the motivated behavioral effects, sensitization and increase in voluntary ethanol intake. The present results show that repeated administration of (R)-SAL leads to (1) conditioned place preference; (2) locomotor sensitization; and (3) marked increases in binge-like ethanol intake. Conversely, (S)-SAL did not influence any of these parameters. Overall, data indicate that (R)-SAL stereospecifically induces motivational effects, behavioral sensitization and increases ethanol intake.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Chile
| | - Mario Rivera-Meza
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Chile
- Millennium Institute BNI; Faculty of Medicine; University of Chile; Chile
| | - Pablo Berríos-Cárcamo
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Chile
| | - Bruce K. Cassels
- Department of Chemistry; Faculty of Sciences; University of Chile; Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Chile
- Millennium Institute BNI; Faculty of Medicine; University of Chile; Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Chile
| |
Collapse
|
10
|
Grecsó N, Ilisz I, Gecse Z, Schönstein L, Fülöp F, Péter A. High-performance liquid chromatographic enantioseparation of amino alcohol analogues possessing 1,2,3,4-tetrahydroisoquinoline skeleton on polysaccharide-based chiral stationary phases. Biomed Chromatogr 2014; 29:788-96. [DOI: 10.1002/bmc.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/03/2014] [Accepted: 09/19/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Nóra Grecsó
- Department of Inorganic and Analytical Chemistry; University of Szeged; H-6720 Szeged Dóm tér 7 Hungary
- Institute of Pharmaceutical Chemistry; University of Szeged; H-6720 Szeged Eötvös u. 6 Hungary
| | - István Ilisz
- Department of Inorganic and Analytical Chemistry; University of Szeged; H-6720 Szeged Dóm tér 7 Hungary
| | - Zsanett Gecse
- Department of Inorganic and Analytical Chemistry; University of Szeged; H-6720 Szeged Dóm tér 7 Hungary
- Institute of Pharmaceutical Chemistry; University of Szeged; H-6720 Szeged Eötvös u. 6 Hungary
| | - László Schönstein
- Institute of Pharmaceutical Chemistry; University of Szeged; H-6720 Szeged Eötvös u. 6 Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; H-6720 Szeged Eötvös u. 6 Hungary
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry; University of Szeged; H-6720 Szeged Dóm tér 7 Hungary
| |
Collapse
|
11
|
High-performance liquid chromatographic enantioseparation of cationic 1,2,3,4-tetrahydroisoquinoline analogs on Cinchona alkaloid-based zwitterionic chiral stationary phases. Anal Bioanal Chem 2014; 407:961-72. [DOI: 10.1007/s00216-014-8247-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022]
|
12
|
Chen XC, Chen Y, Wu GS, Lu JQ, Iqbal J, Qing H, Deng YL. Existence and characterization of Salsolinol synthase in neuronal cells and rat brain. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413030045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ilisz I, Gecse Z, Szatmári I, Fülöp F, Péter A. High-performance liquid chromatographic enantioseparation of naphthol-substituted tetrahydroisoquinolines on polysaccharide-based chiral stationary phases. Biomed Chromatogr 2013; 28:142-51. [DOI: 10.1002/bmc.3002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/11/2022]
Affiliation(s)
- István Ilisz
- Department of Inorganic and Analytical Chemistry; University of Szeged; H-6720 Szeged Dóm tér 7 Hungary
| | - Zsanett Gecse
- Department of Inorganic and Analytical Chemistry; University of Szeged; H-6720 Szeged Dóm tér 7 Hungary
- Institute of Pharmaceutical Chemistry and Research Group for Stereochemistry, Hungarian Academy of Sciences; University of Szeged; H-6720 Szeged Eötvös u. 6 Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Research Group for Stereochemistry, Hungarian Academy of Sciences; University of Szeged; H-6720 Szeged Eötvös u. 6 Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and Research Group for Stereochemistry, Hungarian Academy of Sciences; University of Szeged; H-6720 Szeged Eötvös u. 6 Hungary
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry; University of Szeged; H-6720 Szeged Dóm tér 7 Hungary
| |
Collapse
|
14
|
|
15
|
de los Ángeles Juricic M, Berríos-Cárcamo PA, Acevedo ML, Israel Y, Almodóvar I, Cassels BK. Salsolinol and isosalsolinol: Condensation products of acetaldehyde and dopamine. Separation of their enantiomers in the presence of a large excess of dopamine. J Pharm Biomed Anal 2012; 63:170-4. [DOI: 10.1016/j.jpba.2012.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/24/2022]
|
16
|
Enzymatic condensation of dopamine and acetaldehyde: a salsolinol synthase from rat brain. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0134-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Hipólito L, Sánchez-Catalán MJ, Martí-Prats L, Granero L, Polache A. Revisiting the controversial role of salsolinol in the neurobiological effects of ethanol: old and new vistas. Neurosci Biobehav Rev 2011; 36:362-78. [PMID: 21802444 DOI: 10.1016/j.neubiorev.2011.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
Abstract
The possible involvement of salsolinol (Sal), an endogenous condensation product of ACD (the first metabolite of ethanol) and dopamine, in the neurochemical basis underlying ethanol action has been repeatedly suggested although it has not been unequivocally established, still being a controversial matter of debate. The main goal of this review is to evaluate the presumed contribution of Sal to ethanol effects summarizing the reported data since the discovery in the 1970s of Sal formation in vitro during ethanol metabolism until the more recent studies characterizing its behavioral and neurochemical effects. Towards this end, we first analyze the production and detection of Sal, in different brain areas, in basal conditions and after alcohol consumption, highlighting its presence in regions especially relevant in regulating ethanol-drinking behaviour and the importance of the newly developed methods to differentiate both enantiomers of Sal which could help to explain some previous negative findings. Afterwards, we review the behavioral and neurochemical studies. Finally, we present and discuss the previous and current enunciated mechanisms of action of Sal in the CNS.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
18
|
Cai M, Liu YM. Quantification of salsolinol enantiomers by stable isotope dilution liquid chromatography with tandem mass spectrometric detection. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:4171-4177. [PMID: 19034892 PMCID: PMC2839069 DOI: 10.1002/rcm.3847] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Salsolinol, 1-methyl-6,7-dihydroxy-2,3,4,5-tetrahydroisoquinoline (SAL), is a precursor of a Parkinsonian neurotoxin, N-methysalsolinol (N-methyl-SAL). Previous studies have shown that individual enantiomers of N-methyl-SAL possess distinct neurotoxicological properties. In this work, a chiral high-performance liquid chromatography (HPLC) method with electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the quantification of (R/S)-SAL enantiomers. Enantioseparation was achieved on a beta-cyclodextrin-bonded silica gel column, and the resolved enantiomers were detected by ESI-MS/MS operated in positive ion mode. The ESI collision-induced dissociation (CID) mass spectrum of SAL was studied together with that of its deuterium-labeled analog (i.e. salsolinol-alpha,alpha,alpha,1-d(4), SAL-d(4)) so that the fragmentation pathways could be elucidated. Further, using SAL-d(4) as internal standard in HPLC/MS/MS analysis of SAL improved significantly assay accuracy and reliability. Determination of (R/S)-SAL enantiomers present in food samples such as dried banana chips was demonstrated.
Collapse
Affiliation(s)
| | - Yi-Ming Liu
- Correspondence to: Y.-M. Liu, Department of Chemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217, USA.,
| |
Collapse
|
19
|
The formation of catechol isoquinolines in PC12 cells exposed to manganese. Neurosci Lett 2008; 444:122-6. [PMID: 18722506 DOI: 10.1016/j.neulet.2008.07.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/19/2008] [Accepted: 07/28/2008] [Indexed: 11/23/2022]
Abstract
Chronic exposure to manganese causes parkinsonian symptoms and has been implicated as an environmental factor in the pathogenesis of Parkinson's disease (PD). Here we show that manganese inhibits the proliferation of PC12 cells and induces apoptosis through the formation of catechol isoquinolines. Manganese induces the production of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal) and N-methyl-salsolinol (NMSal) in PC12 cells, and increases the levels of malondialdehyde (MDA) in a dose-dependent manner. The data indicates that the formation of catechol isoquinolines due to oxidative stress induced by MnCl(2) may be a mechanism by which manganese causes degeneration of dopaminergic neurons.
Collapse
|
20
|
Zhao SL, Shen JS. Enantiomeric Separation and Determination ofR,S-Salsolinol by Capillary Electrophoresis. CHINESE J CHEM 2006. [DOI: 10.1002/cjoc.200690084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Péter A, Péter M, Ilisz I, Fülöp F. Comparison of column performances in direct high-performance liquid chromatographic enantioseparation of 1- or 3-methyl-substituted tetrahydroisoquinoline analogs. Application of direct and indirect methods. Biomed Chromatogr 2005; 19:459-65. [PMID: 15856487 DOI: 10.1002/bmc.512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The enantioseparability of 1- or 3-methyl-substituted tetrahydroisoquinolines was investigated by direct and indirect high-performance liquid chromatography. Alpha- and beta-cyclodextrin-, macrocyclic glycopeptide- and cellulose-based chiral columns and isothiocyanate- and Sanger-type chiral derivatizing agents (CDAs) were applied to attain satisfactory enantioseparation. Of the chiral columns, beta-cyclodextrin-, vancomycin- and teicoplanin-containing macrocyclic glycopeptide-based columns appeared to be most suitable; of the CDAs, (1S,2R)-1-acetoxy-1-phenyl-2-propyl isothiocyanate was most favorable. The differences between the selectivities of the columns and CDAs were compared and optimized to yield the best resolution.
Collapse
Affiliation(s)
- Antal Péter
- Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 7, Hungary.
| | | | | | | |
Collapse
|
22
|
Musshoff F. Chromatographic methods for the determination of markers of chronic and acute alcohol consumption. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:457-80. [PMID: 12450674 DOI: 10.1016/s1570-0232(02)00691-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development in chromatographic methods for the determination of markers of alcohol consumption is summarized in this review. The markers included in this article are ethanol in body fluids, ethanol congeners, fatty acid ethyl esters (FAEEs), ethyl glucuronide (EtG), cocaethylene (CE), carbohydrate-deficient transferrin (CDT), phosphatidylethanol (PEth), 5-hydroxytryptophol (5-HTOL), dolichol, ketone bodies, acetaldehyde-protein adducts, and salsolinol (SAL). Some of these markers for alcohol consumption do not only indicate previous ethanol ingestion, but also approximate the amount of intake and the time when ethanol ingestion last occurred. Basic information about the procedures, work-up, and chromatographic conditions are summarized in tables. Also the main metabolic pathways and reaction schemes are demonstrated in figures. Some examples of typical applications are presented. The author points out that in many of the reviewed papers validation data of the procedures as well as specificities and sensitivities were not clearly presented and consequently were not comparable.
Collapse
Affiliation(s)
- Frank Musshoff
- Institute of Legal Medicine, Rheinische Friedrich-Wilhelms-University, Stiftsplatz 12, 53111 Bonn, Germany.
| |
Collapse
|
23
|
Tóth BE, Bodnár I, Homicskó KG, Fülöp F, Fekete MIK, Nagy GM. Physiological role of salsolinol: its hypophysiotrophic function in the regulation of pituitary prolactin secretion. Neurotoxicol Teratol 2002; 24:655-66. [PMID: 12200196 DOI: 10.1016/s0892-0362(02)00216-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently observed that 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) produced by hypothalamic neurons can selectively release prolactin from the anterior lobe (AL) of the pituitary gland. Moreover, high affinity binding sites for SAL have been detected in areas, like median eminence (ME) and the neuro-intermediate lobe (NIL) that are known terminal fields of the tuberoinfundibular DAergic (TIDA) and tuberohypophysial (THDA)/periventricular (PHDA) DAergic systems of the hypothalamus, respectively. However, the in situ biosynthesis and the mechanism of action of SAL are still enigmatic, these observations clearly suggest that sites other than the AL might be targets of SAL action. Based on our recent observations it may be relevant to postulate that an "autosynaptocrine" regulatory mechanism functioning at the level of the DAergic terminals localized in both the ME and NIL, may play a role in the hypophyseotrophic regulation of PRL secretion. Furthermore, SAL may be a key player in these processes. The complete and precise mapping of these intra-terminal mechanisms should help us to understand the tonic DAerg regulation of PRL secretion. Moreover, it may also give insight into the role of pre-synaptic processes that most likely have distinct and significant functional as well as pathological roles in other brain areas using DAergic neurotransmission, like striatonigral and mesolimbic systems.
Collapse
Affiliation(s)
- Béla E Tóth
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Semmelweis University, Tuzoltó u. 58, Budapest H-1094, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
Tóth BE, Homicskó K, Radnai B, Maruyama W, DeMaria JE, Vecsernyés M, Fekete MI, Fülöp F, Naoi M, Freeman ME, Nagy GM. Salsolinol is a putative endogenous neuro-intermediate lobe prolactin-releasing factor. J Neuroendocrinol 2001; 13:1042-50. [PMID: 11722700 DOI: 10.1046/j.1365-2826.2001.00725.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isolation and identification of a prolactin-releasing factor (PRF) from the neuro-intermediate lobe of the pituitary gland has been pursued for over a decade. Using high-pressure liquid chromatography with electrochemical detection (HPLC-ECD) and gas chromatography/mass spectrometry (GC/MS) (R)-salsolinol (SAL) (a dopamine-related stereo-specific tetrahydroisoquinoline) was found to be present in neuro-intermediate lobe as well as median eminence extracts of male, intact-, and ovariectomized female rats. Moreover, analysis of SAL concentrations in neuro-intermediate lobe revealed parallel increases with plasma prolactin in lactating rats exposed to a brief (10 min) suckling stimulus following 4-h separation. SAL appears to be a selective and potent stimulator of prolactin secretion in vivo and it was without effect on the secretion of other pituitary hormones. We have also found that SAL can elevate prolactin release, although to a lesser extent, in pituitary cell cultures as well as in hypophysectomized rats bearing anterior lobe transplants under the kidney capsule. Lack of interference of SAL with [3H]-spiperone binding to AP homogenates indicates that SAL does not act at the dopamine D2 receptor. Moreover, [3H]-SAL binds specifically to homogenate of AL as well as neuro-intermediate lobe obtained from lactating rats. Taken together, our data clearly suggest that SAL is synthesized in situ and this compound can play a role in the regulation of pituitary prolactin secretion.
Collapse
Affiliation(s)
- B E Tóth
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001; 65:135-72. [PMID: 11403877 DOI: 10.1016/s0301-0082(01)00003-x] [Citation(s) in RCA: 893] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a preferential loss of the dopaminergic neurons of the substantia nigra pars compacta. Although the etiology of PD is unknown, major biochemical processes such as oxidative stress and mitochondrial inhibition are largely described. However, despite these findings, the actual therapeutics are essentially symptomatical and are not able to block the degenerative process. Recent histological studies performed on brains from PD patients suggest that nigral cell death could be apoptotic. However, since post-mortem studies do not allow precise determination of the sequence of events leading to this apoptotic cell death, the molecular pathways involved in this process have been essentially studied on experimental models reproducing the human disease. These latter are created by using neurotoxic compounds such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or dopamine (DA). Extensive study of these models have shown that they mimick, in vitro and in vivo, the histological and/or the biochemical characteristics of PD and thus help to define important cellular actors of cell death presumably critical for the nigral degeneration. This review reports recent data concerning the biochemical and molecular apoptotic mechanisms underlying the experimental models of PD and correlates them to the phenomena occurring in human disease.
Collapse
Affiliation(s)
- D Blum
- Unité Mixte INSERM/UJF E0108, Neurodégénérescence et plasticité, CHU Michallon, Pavillon de Neurologie, BP217, 38043 Cedex 9, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem 2001; 76:1010-21. [PMID: 11181820 DOI: 10.1046/j.1471-4159.2001.00096.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent etiological study in twins (Tanner et al. 1999) strongly suggests that environmental factors play an important role in typical, non-familial Parkinson's disease (PD), beginning after age 50. Epidemiological risk factor analyses of typical PD cases have identified several neurotoxicants, including MPP(+) (the active metabolite of MPTP), paraquat, dieldrin, manganese and salsolinol. Here, we tested the hypothesis that these neurotoxic agents might induce cell death in our nigral dopaminergic cell line, SN4741 (Son et al. 1999) through a common molecular mechanism. Our initial experiments revealed that treatment with both MPP(+) and the other PD-related neurotoxicants induced apoptotic cell death in SN4741 cells, following initial increases of H(2)O(2)-related ROS activity and subsequent activation of JNK1/2 MAP kinases. Moreover, we have demonstrated that during dopaminergic cell death cascades, MPP(+), the neurotoxicants and an oxidant, H(2)O(2) equally induce the ROS-dependent events. Remarkably, the oxidant treatment alone induced similar sequential molecular events: ROS increase, activation of JNK MAP kinases, activation of the PITSLRE kinase, p110, by both Caspase-1 and Caspase-3-like activities and apoptotic cell death. Pharmacological intervention using the combination of the antioxidant Trolox and a pan-caspase inhibitor Boc-(Asp)-fmk (BAF) exerted significant neuroprotection against ROS-induced dopaminergic cell death. Finally, the high throughput cDNA microarray screening using the current model identified downstream response genes, such as heme oxygenase-1, a constituent of Lewy bodies, that can be the useful biomarkers to monitor the pathological conditions of dopaminergic neurons under neurotoxic insult.
Collapse
Affiliation(s)
- H S Chun
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University at The W.M. Burke Medical Research Institute, New York, USA
| | | | | | | | | | | |
Collapse
|
27
|
Naoi M, Maruyama W, Akao Y, Zhang J, Parvez H. Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons. Toxicology 2000; 153:123-41. [PMID: 11090952 DOI: 10.1016/s0300-483x(00)00309-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A dopamine-derived neurotoxin, 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2, 3,4-tetrahydroisoquinoline [N-methyl(R)salsolinol] was found to cause parkinsonian in rats and to deplete selectively dopamine neurons in the substantia nigra after infusion in the striatum. This isoquinoline occurs enantio-specifically in the nigra-striatum of human brains. The biosynthesis from dopamine is catalyzed by two enzymes, (R)salsolinol synthase and (R)salsolinol N-methyltransferase. The isoquinoline increases in the cerebrospinal fluid from parkinsonian patients, and the increase is ascribed to high activity of its synthesizing neutral (R)salsolinol N-methyltransferase, as shown by analyses in lymphocytes. The cell death caused by this neurotoxin in dopaminergic human neuroblastoma SH-SY5Y cells proved to be apoptotic. Apoptosis by this neurotoxin is mediated by intracellular sequential process, loss of mitochondrial membrane potential, activation of caspases and DNA fragmentation. These results are discussed in relation to the role of apoptosis in neurodegenerative diseases and the involvement of the endogenous toxin in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- M Naoi
- Department of Brain Sciences, Institute of Applied Biochemistry, Yagi Memorial Park, Mitake, Gifu, Japan.
| | | | | | | | | |
Collapse
|
28
|
Pagel P, Blome J, Wolf HU. High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson's disease. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 746:297-304. [PMID: 11076082 DOI: 10.1016/s0378-4347(00)00348-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The work presented here describes an optimised, reversed-phase high-performance liquid chromatographic (RP-HPLC) method for separating 46 biogenic compounds, which, as neurotoxins or as their precursors or derivatives, may be relevant in the pathomechanism of Parkinson's disease. In some cases, the physico-chemical properties of these substances are very similar, in other cases they differ greatly. In order to facilitate their detection in one chromatographic run, ion-pair chromatography was uniquely combined with a gradient elution. A diode array or a dual wavelength detector was used in combination with a fluorescence detector to verify the identity of the compounds.
Collapse
Affiliation(s)
- P Pagel
- Abteilung Pharmakologie und Toxikologie der Universität Ulm, Germany
| | | | | |
Collapse
|
29
|
Musshoff F, Schmidt P, Dettmeyer R, Priemer F, Wittig H, Madea B. A systematic regional study of dopamine and dopamine-derived salsolinol and norsalsolinol levels in human brain areas. Forensic Sci Int 1999; 105:1-11. [PMID: 10605071 DOI: 10.1016/s0379-0738(99)00110-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dopamine and the dopamine-derived tetrahydroisoquinoline alkaloids salsolinol and norsalsolinol were measured by high-performance liquid chromatography with electrochemical detection in 15 regions of the human brain. The regional distribution of dopamine in 32 brains was similar to previous reports with highest concentrations in the basal ganglia, especially in the striatum, followed by the substantia nigra and the hypothalamus. Significant amounts of salsolinol and norsalsolinol were only found in these dopamine-rich areas, whereas in the other regions no alkaloids were detected. These findings suggest that the concentration of the substrate dopamine may determine the alkaloid level during in vivo formation.
Collapse
Affiliation(s)
- F Musshoff
- Institute of Legal Medicine, Rheinische Friedrich-Wilhelms-University, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
McIninch JK, Geiser F, Prickett KB, May SW. Determination of the absolute configuration of alpha-hydroxyglycine derivatives by enzymatic conversion and chiral high-performance liquid chromatography. J Chromatogr A 1998; 828:191-8. [PMID: 9916305 DOI: 10.1016/s0021-9673(98)00651-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe an approach for facile determination of the absolute configuration of enantiomerically chromatographed racemates by combining enzymatic conversion and chiral chromatography. The method involves initial rapid development of chiral HPLC methods using polar organic eluents with polysaccharide chiral phases. We present here evidence for using the stereospecific peptidylamidoglycolate lyase (PGL, E.C. 4.3.2.5) to determine the absolute configuration of alpha-hydroxyglycine derivatives. The racemic solute was incubated with PGL, lyophilized and then enantiomerically chromatographed using the CHIRALPAK AD column. Based on the specificity of the enzyme reaction, the unreacted enantiomer was assigned the absolute configuration R.
Collapse
Affiliation(s)
- J K McIninch
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA
| | | | | | | |
Collapse
|
31
|
Deng Y, Zhang J, Tsuda T, Yu PH, Boulton AA, Cassidy RM. Modeling and optimization of enantioseparation by capillary electrochromatography. Anal Chem 1998; 70:4586-93. [PMID: 9823718 DOI: 10.1021/ac980366i] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both electrophoretic and chromatographic transport mechanisms are combined in electrochromatographic separation. In this paper, we developed a model of enantioselectivity in capillary electrochromatography (CEC) which can be applied in the separation of both neutral and ionic compounds. The overall selectivity in enantioseparation is considered to be made up of two contributions: one is the intrinsic difference in formation constants of a pair of enantiomers, and the other is the conversion efficiency of the intrinsic difference into the apparent difference in the migration velocity. The model was illustrated through the chiral separation of (R)- and (S)-salsolinols. Under a positive electric field, enantioseparation of salsolinols was achieved on an ODS column with beta-cyclodextrin as a chiral mobile-phase additive. The experimental results are discussed in relation to the effect of separation parameters, such as the direction and size of electric field and properties of the stationary and mobile phases. It was demonstrated that if both electrophoretic and partitioning mechanisms produce positive effects, high overall selectivity in CEC can be obtained. For pressurized-driven electrochromatography, although the column efficiency is sacrificed due to the introduction of hydrodynamic flow, the increased selectivity significantly reduced the requirement of large column plate numbers for resolution.
Collapse
Affiliation(s)
- Y Deng
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Musshoff F, Daldrup T. Determination of biological markers for alcohol abuse. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 713:245-64. [PMID: 9700562 DOI: 10.1016/s0378-4347(97)00503-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alcoholism is one of the most frequent addictions and an important subject in forensic medicine and clinical toxicology. Several laboratory abnormalities are associated with excessive alcohol consumption. They are useful in the diagnosis of alcoholism especially during the follow-up of various treatment programs. The biological markers mostly used for diagnosis of alcoholism are presented. Especially, methods for the determination of the following diagnostic tools are reviewed: congener alcohols, gamma-glutamyltransferase, aspartate and alanine aminotransferase, beta-hexosaminidase, erythrocyte aldehyde dehydrogenase, alpha-amino-n-butyric acid to leucine ratio, macrocytosis, carbohydrate-deficient transferrin, (apo)lipoproteins, fatty acid ethyl esters, blood acetate, acetaldehyde adducts, 5-hydroxytryptophol, dolichol and condensation products. No laboratory test exists that is reliable enough for the exact diagnosis of alcoholism. The combination of physician interview, questionnaire and laboratory markers is necessary for the diagnosis of alcoholism.
Collapse
Affiliation(s)
- F Musshoff
- Rheinische Friedrich-Wilhelms University, Institute of Legal Medicine, Bonn, Germany
| | | |
Collapse
|
33
|
Naoi M, Maruyama W, Kasamatsu T, Dostert P. Oxidation of N-methyl(R)salsolinol: involvement to neurotoxicity and neuroprotection by endogenous catechol isoquinolines. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 52:125-38. [PMID: 9564615 DOI: 10.1007/978-3-7091-6499-0_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1(R), 2(N)-Dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl(R)salsolinol, is a potent dopaminergic neurotoxin to induce parkinsonism in rats. The cytotoxicity of N-methyl(R)salsolinol proved to be ascribed to its oxidation into cytotoxic 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion with generation of hydroxyl radical. The isoquinolinium ion caused massive necrosis in the striatum, whereas N-methyl(R)salsolinol depleted selectively dopaminergic neurons in the substantia nigra without necrotic tissue reaction. N-Methyl(R)salsolinol induced DNA damage to human neuroblastoma SH-SY5Y cells, which could be prevented by anti-oxidants and cycloheximide. These results suggest that oxidative stress through oxidation of N-methyl(R)salsolinol induces apoptotic cell death. On the other hand, (R)salsolinol proved to scavenge hydroxyl radical produced by oxidation of dopamine. The neurotoxicity and neuroprotection of catechol isoquinolines may be ascribed to their oxidation and scavenging of radicals.
Collapse
Affiliation(s)
- M Naoi
- Department of Biosciences, Nagoya Institute of Technology, Japan
| | | | | | | |
Collapse
|
34
|
Kawai M, Deng Y, Kimura I, Yamamura H, Araki S, Naoi M. Convenient enantioselective preparation of salsolinol-1-carboxylic acid. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0957-4166(97)00149-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Deng Y, Maruyama W, Kawai M, Dostert P, Yamamura H, Takahashi T, Naoi M. Assay for the (R)- and (S)-enantiomers of salsolinols in biological samples and foods with ion-pair high-performance liquid chromatography using beta-cyclodextrin as a chiral mobile phase additive. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 689:313-20. [PMID: 9080316 DOI: 10.1016/s0378-4347(96)00359-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A chromatographic procedure was devised for the quantitative determination of the enantiomers of salsolinol and N-methylsalsolinol, which are biologically important alkaloids. The enantiomers of salsolinol and N-methylsalsolinol were completely separated using beta-cyclodextrin in a reversed-phase ion-pair system. The HPLC method was sensitive enough to detect the isoquinolines at a concentration less than 0.1 pmol per injection. The presence of (R)- and (S)-salsolinol was confirmed in fermented foods and beverages, while N-methylsalsolinol was not detected. On the other hand, the (R)-enantiomers of both salsolinol and N-methylsalsolinol were found to predominate in the human brain.
Collapse
Affiliation(s)
- Y Deng
- Department of Applied Chemistry, Nagoya Institute of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Naoi M, Maruyama W, Dostert P, Hashizume Y. N-methyl-(R)salsolinol as a dopaminergic neurotoxin: from an animal model to an early marker of Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1997; 50:89-105. [PMID: 9120428 DOI: 10.1007/978-3-7091-6842-4_10] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A dopamine-derived 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydrosioquinoline [N-methyl-(R)salsolinol] was found to occur enantioselectively in human brain. This isoquinoline induced parkinsonism in rat after injection in the striatum, and the behavioral, biochemical and pathological changes were very similar to those in Parkinson's disease. N-Methyl-(R)salsolinol depleted dopamine neurons in the rat substantia nigra without necrotic tissue reaction, which may be due to the apoptotic death process, as proved by its induction of DNA damage in dopaminergic neuroblastoma SH-SY5Y cells. N-Methyl-(R)salsolinol was found to increase significantly in the cerebrospinal fluid of parkinsonian patients. All these results suggest that N-methyl-(R)salsolinol may be an endogenous neurotoxin to cause Parkinson's disease and the enzymes involved in its biosynthesis and catabolism may be endogenous factors in the pathogenesis of this disease.
Collapse
Affiliation(s)
- M Naoi
- Department of Biosciences, Nagoya Institute of Technology, Japan
| | | | | | | |
Collapse
|
37
|
Takahashi T, Maruyama W, Deng Y, Dostert P, Nakahara D, Niwa T, Ohta S, Naoi M. Cytotoxicity of endogenous isoquinolines to human dopaminergic neuroblastoma SH-SY5Y cells. J Neural Transm (Vienna) 1997; 104:59-66. [PMID: 9085193 DOI: 10.1007/bf01271294] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endogenous isoquinolines with and without catechol structure have been proposed to be neurotoxins specific for dopamine neurons. In this paper they were examined for the cytotoxicity of human dopaminergic neuroblastoma SH-SY5Y cells. The cytotoxicity was quantitatively determined using Alamar Blue assay, by which the reduction-oxidation potency in the living cells can be measured spectrometrically. 1,2-Dimethyl-6,7-dihydroxyisoquinolinium ion [1,2-DMDHIQ+], an oxidation product of a parkinsonism-inducing isoquinoline, 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahroisoquinoline [N-methyl-(R)salsolinol, NM(R)Sal] was found to be the most potent toxin among isoquinolines examined. In general, catechol isoquinolines were more toxic than isoquinolines without catechol structure. With and without catechol structure, the oxidized isoquinolinium ion having methyl groups at C-1 and N-2 positions proved to be more cytotoxic than the simple isoquinolines. The involvement of 1,2-DMDHIQ+ to the neurotoxicity of NM(R)Sal was suggested and discussed.
Collapse
Affiliation(s)
- T Takahashi
- Department of Food and Nutrition, Konan Women's College, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bressolle F, Audran M, Pham TN, Vallon JJ. Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis: basic principles and new developments. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 687:303-36. [PMID: 9017455 DOI: 10.1016/s0378-4347(96)00263-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Investigation of individual drug enantiomers is required in pharmacokinetic and pharmacodynamic studies of drugs with a chiral centre. Cyclodextrins (CDs) are extensively used in high-performance liquid chromatography as stationary phases bonded to a solid support or as mobile phase additives in HPLC and capillary electrophoresis (CE) for the separation of chiral compounds. We describe here the basis for the liquid chromatographic and capillary electrophoretic resolution of drug enantiomers and the factors affecting their enantiomeric separation. This review covers the use of CDs and some of their derivatives in studies of compounds of pharmacological interest.
Collapse
Affiliation(s)
- F Bressolle
- Laboratoire de Pharmacocinetique, Faculté de Pharmacie, Université de Montpellier I, France
| | | | | | | |
Collapse
|
39
|
Abstract
The principles and applications of chromatographic separation of enantiomers in pharmaceutical analysis have been reviewed. Several of recently reported enantioselective analysis of various racemic drugs using both the 'indirect' and 'direct' methods have been presented.
Collapse
Affiliation(s)
- J Bojarski
- Department of Organic Chemistry, College of Medicine, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
40
|
Deng Y, Maruyama W, Yamamura H, Kawai M, Dostert P, Naoi M. Mechanism of enantioseparation of salsolinols, endogenous neurotoxins in human brain, with ion-pair chromatography using beta-cyclodextrin as a mobile phase additive. Anal Chem 1996; 68:2826-31. [PMID: 8794919 DOI: 10.1021/ac960185l] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel method for direct separation of the enantiomers of salsolinol and N-methylsalsolinol was devised. The enantiomers were completely separated with ion-pair chromatography on a reversed-phase column with beta-cyclodextrin as a chiral mobile phase additive and sodium 1-heptanesulfonate as a counterion. The mechanism for enantioseparation with this ion-pair system containing beta-cyclodextrin was discussed. The effects of beta-cyclodextrin, counterions, pH, ionic strength, and organic solvent on retention were investigated, and a retention model was proposed and proved to be consistent with the experimental data. A preliminary study of the enantiomeric composition of salsolinol and N-methylsalsolinol in banana and in human brain was made as an example of the application of this assay.
Collapse
Affiliation(s)
- Y Deng
- Department of Applied Chemistry, Nagoya Institute of Technology, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Naoi M, Maruyama W, Dostert P, Kohda K, Kaiya T. A novel enzyme enantio-selectively synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl(R)salsolinol. Neurosci Lett 1996; 212:183-6. [PMID: 8843103 DOI: 10.1016/0304-3940(96)12807-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the human brain, only (R)enantiomer of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline ((R)salsolinol) and N-methyl-salsolinol, a dopaminergic neurotoxin, were detected, suggesting their enzymatic biosynthesis. This paper reports the isolation and characterization of a novel enzyme, which enantio-selectively synthesizes (R)salsolinol from dopamine and acetaldehyde. Dopamine, acetaldehyde, formaldehyde and pyruvic acid were the substrates of this synthase, whereas N-methyldopamine, adrenaline, noradrenaline and L-DOPA were not. The possible function of this enzyme under physiological and pathological conditions in the brain is discussed.
Collapse
Affiliation(s)
- M Naoi
- Department of Biosciences, Nagoya Institute of Technology, Japan.
| | | | | | | | | |
Collapse
|
42
|
Naoi M, Maruyama W, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M. Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy- 1,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res 1996; 709:285-95. [PMID: 8833765 DOI: 10.1016/0006-8993(95)01325-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine-derived 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal) and related compounds were examined for their selective neurotoxicity to dopamine neurons by injection into the rat striatum. Among salsolinol analogs examined, only N-methyl-(R)- salsolinol (NM(R)Sal) induced behavioral changes very similar to those in Parkinson's disease: hypokinesia, stiff tail, limb twitching at rest and postural abnormality. Biochemical analysis showed that after NM(R)Sal injection, NM(R)Sal itself and its oxidation product, 1-2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) accumulated in the striatum, and also in the substantia nigra definite amount of DMDHIQ+ was detected. Dopamine and noradrenaline were reduced in the striatum and more markedly in the substantia nigra, whereas serotonin and its metabolite were not affected. Morphological analysis revealed selective reduction of tyrosine hydroxylase (TH)-containing neurons in the substantia nigra after continuous NM(R)Sal administration in the striatum. These results demonstrate the selective cytotoxicity of NM(R)Sal to the dopamine neurons in the substantia nigra, and the possible involvement of this 6,7-dihydroxy-isoquinoline in the pathogenesis of Parkinson's disease is discussed.
Collapse
Affiliation(s)
- M Naoi
- Department of Biosciences, Nagoya Institute of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Gerlach M, Riederer P. Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm (Vienna) 1996; 103:987-1041. [PMID: 9013391 DOI: 10.1007/bf01291788] [Citation(s) in RCA: 327] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Animal models are an important aid in experimental medical science because they enable one to study the pathogenetic mechanisms and the therapeutic principles of treating the functional disturbances (symptoms) of human diseases. Once the causative mechanism is understood, animal models are also helpful in the development of therapeutic approaches exploiting this understanding. On the basis of experimental and clinical findings. Parkinson's disease (PD) became the first neurological disease to be treated palliatively by neurotransmitter replacement therapy. The pathological hallmark of PD is a specific degeneration of nigral and other pigmented brainstem nuclei, with a characteristic inclusion, the Lewy body, in remaining nerve cells. There is now a lot of evidence that degeneration of the dopaminergic nigral neurones and the resulting striatal dopamine-deficiency syndrome are responsible for its classic motor symptoms akinesia and bradykinesia. PD is one of many human diseases which do not appear to have spontaneously arisen in animals. The characteristic features of the disease can however be more or less faithfully imitated in animals through the administration of various neurotoxic agents and drugs disturbing the dopaminergic neurotransmission. The cause of chronic nigral cell death in PD and the underlying mechanisms remain elusive. The partial elucidation of the processes underlie the selective action of neurotoxic substances such as 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has however revealed possible molecular mechanisms that give rise to neuronal death. Accordingly, hypotheses concerning the mechanisms of these neurotoxines have been related to the pathogenesis of nigral cell death in PD. The present contribution starts out by describing some of the clinical, pathological and neurochemical phenomena of PD. The currently most important animal models (e.g. the reserpine model, neuroleptic-induced catalepsy, tremor models, experimentally-induced degeneration of nigrostriatal dopaminergic neurons with 6-OHDA, methamphetamine, MPTP, MPP+, tetrahydroisoquinolines, beta-carbolines, and iron) critically reviewed next, and are compared with the characteristic features of the disease in man.
Collapse
Affiliation(s)
- M Gerlach
- Department of Clinical Neurochemistry, University Neurological Clinic, University of Würzburg, Federal Republic of Germany
| | | |
Collapse
|