1
|
Phase-Locking Requires Efficient Ca 2+ Extrusion at the Auditory Hair Cell Ribbon Synapse. J Neurosci 2021; 41:1625-1635. [PMID: 33446517 DOI: 10.1523/jneurosci.1324-18.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/25/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2022] Open
Abstract
Proper perception of sounds in the environment requires auditory signals to be encoded with extraordinary temporal precision up to tens of microseconds, but how it originates from the hearing organs in the periphery is poorly understood. In particular, sound-evoked spikes in auditory afferent fibers in vivo are phase-locked to sound frequencies up to 5 kHz, but it is not clear how hair cells can handle intracellular Ca2+ changes with such high speed and efficiency. In this study, we combined patch-clamp recording and two-photon Ca2+ imaging to examine Ca2+ dynamics in hair cell ribbon synapses in the bullfrog amphibian papilla of both sexes. We found that Ca2+ clearance from single synaptic ribbons followed a double exponential function, and the weight of the fast component, but not the two time constants, was significantly reduced for prolonged stimulation, and during inhibition of the plasma membrane Ca2+ ATPase (PMCA), the mitochondrial Ca2+ uptake (MCU), or the sarcolemma/endoplasmic reticulum Ca2+ ATPase (SERCA), but not the Na+/Ca2+ exchanger (NCX). Furthermore, we found that both the basal Ca2+ level and the Ca2+ rise during sinusoidal stimulation were significantly increased by inhibition of PMCA, MCU, or SERCA. Consistently, phase-locking of synaptic vesicle releases from hair cells was also significantly reduced by blocking PMCA, MCU, or SERCA, but not NCX. We conclude that, in addition to fast diffusion mediated by mobile Ca2+ buffer, multiple Ca2+ extrusion pumps are required for phase-locking at the auditory hair cell ribbon synapse.SIGNIFICANCE STATEMENT Hair cell synapses can transmit sound-driven signals precisely in the kHz range. However, previous studies of Ca2+ handling in auditory hair cells have often been conducted in immature hair cells, with elevated extracellular Ca2+ concentration, or through steady-state stimulation that may not be physiologically relevant. Here we examine Ca2+ clearance from hair cell synaptic ribbons in a fully mature preparation at physiological concentration of external Ca2+ and at physiological temperature. By stimulating hair cells with sinusoidal voltage commands that mimic pure sound tones, we recapitulated the phase-locking of hair cell exocytosis with an in vitro approach. This allowed us to reveal the Ca2+ extrusion mechanisms that are required for phase-locking at auditory hair cell ribbon synapses.
Collapse
|
2
|
Christensen-Dalsgaard J, Tang Y, Carr CE. Binaural processing by the gecko auditory periphery. J Neurophysiol 2011; 105:1992-2004. [PMID: 21325679 DOI: 10.1152/jn.00004.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (∼ 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al. 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions of direct and indirect sound components at the eardrum. Best ITD and click delays match interaural transmission delays, with a range of 200-500 μs. Inserting a mold in the mouth cavity blocks ITD and ILD sensitivity. Thus the neural response accurately reflects tympanic directionality, and most neurons in the auditory pathway should be directional.
Collapse
|
3
|
Christensen-Dalsgaard J, Carr CE. Evolution of a sensory novelty: tympanic ears and the associated neural processing. Brain Res Bull 2007; 75:365-70. [PMID: 18331899 DOI: 10.1016/j.brainresbull.2007.10.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
Abstract
Tympanic hearing is a true evolutionary novelty that appears to have developed independently in at least five major tetrapod groups-the anurans, turtles, lepidosaurs, archosaurs and mammals. The emergence of a tympanic ear would have increased the frequency range and sensitivity of hearing. Furthermore, tympana were acoustically coupled through the mouth cavity and therefore inherently directional in a certain frequency range, acting as pressure difference receivers. In some lizard species, this acoustical coupling generates a 50-fold directional difference, usually at relatively high frequencies (2-4kHz). In ancestral atympanate tetrapods, we hypothesize that low-frequency sound may have been processed by non-tympanic mechanisms like those in extant amphibians. The subsequent emergence of tympanic hearing would have led to changes in the central auditory processing of both high-frequency sound and directional hearing. These changes should reflect the independent origin of the tympanic ears in the major tetrapod groups. The processing of low-frequency sound, however, may have been more conserved, since the acoustical coupling of the ancestral tympanate ear probably produced little sensitivity and directionality at low frequencies. Therefore, tetrapod auditory processing may originally have been organized into low- and high-frequency streams, where only the high-frequency processing was mediated by tympanic input. The closure of the middle ear cavity in mammals and some birds is a derived condition, and may have profoundly changed the operation of the ear by decoupling the tympana, improving the low-frequency response of the tympanum, and leading to a requirement for additional neural computation of directionality in the central nervous system. We propose that these specializations transformed the low- and high-frequency streams into time and intensity pathways, respectively.
Collapse
|
4
|
Sisneros JA, Forlano PM, Deitcher DL, Bass AH. Steroid-Dependent Auditory Plasticity Leads to Adaptive Coupling of Sender and Receiver. Science 2004; 305:404-7. [PMID: 15256672 DOI: 10.1126/science.1097218] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
For seasonally breeding vertebrates, reproductive cycling is often coupled with changes in vocalizations that function in courtship and territoriality. Less is known about changes in auditory sensitivity to those vocalizations. Here, we show that nonreproductive female midshipman fish treated with either testosterone or 17beta-estradiol exhibit an increase in the degree of temporal encoding of the frequency content of male vocalizations by the inner ear that mimics the reproductive female's auditory phenotype. This sensory plasticity provides an adaptable mechanism that enhances coupling between sender and receiver in vocal communication.
Collapse
Affiliation(s)
- Joseph A Sisneros
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
5
|
|
6
|
Abstract
Vertebrate animals gain biologically important information from environmental sounds. Localization of sound sources enables animals to detect and respond appropriately to danger, and it allows predators to detect and localize prey. In many species, rapidly fluctuating sounds are also the basis of communication between conspecifics. This information is not provided directly by the output of the ear but requires processing of the temporal pattern of firing in the tonotopic array of auditory nerve fibers. The auditory nerve feeds information through several parallel ascending pathways. Anatomical and electrophysiological specializations for conveying precise timing, including calyceal synaptic terminals and matching axonal conduction times, are evident in several of the major ascending auditory pathways through the ventral cochlear nucleus and its nonmammalian homologues. One pathway that is shared by all higher vertebrates makes an ongoing comparison of interaural phase for the localization of sound in the azimuth. Another pathway is specifically associated with higher frequency hearing in mammals and is thought to make use of interaural intensity differences for localizing high-frequency sounds. Balancing excitation from one ear with inhibition from the other in rapidly fluctuating signals requires that the timing of these synaptic inputs be matched and constant for widely varying sound stimuli in this pathway. The monaural nuclei of the lateral lemniscus, whose roles are not understood (although they are ubiquitous in higher vertebrates), receive input from multiple pathways that encode timing with precision, some through calyceal endings.
Collapse
Affiliation(s)
- D Oertel
- Department of Physiology, University of Wisconsin, Madison 53706, USA.
| |
Collapse
|
7
|
Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 1997. [PMID: 9096164 DOI: 10.1523/jneurosci.17-09-03312.1997] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The auditory system of the barn owl is an important model for temporal processing on a very fast time scale and for the neural mechanisms and circuitry underlying sound localization. Phase locking has been shown to be the behaviorally relevant temporal code. This study examined the quality and intensity dependence of phase locking in single auditory nerve fibers of the barn owl to define the input to the known brainstem circuit for temporal processing. For direct comparison in the same individuals, recordings were also obtained from the relevant next higher center, the nucleus magnocellularis (NM). Phase locking was regularly seen at sound pressure levels (SPL) below those eliciting an increase in spike rate, thus providing an additional cue for signal detection. The quality of phase locking, expressed as vector strength, decreased with increasing frequency. Auditory nerve fibers showed an unusual step-like decline with a prominent plateau in the mid-frequency range (1.5-3 kHz), indicating that some specialization enables the owl to halt the deterioration and extend phase locking to frequencies up to 10 kHz, above the range commonly observed in other species. Phase locking in the NM was consistently inferior to that of auditory-nerve fibers at frequencies above 1 kHz, suggesting that the synapse plays a limiting role in temporal precision. The response delays, or group delays, derived from the phase-versus-frequency functions of auditory nerve fibers were not consistent with the unusual spatial frequency representation in the owl cochlea. This questions the common assumption that group delays reflect cochlear wave travel times.
Collapse
|
8
|
Abstract
The central projections of the auditory nerve were examined in the barn owl. Each auditory nerve fiber enters the brain and divides to terminate in both the cochlear nucleus angularis and the cochlear nucleus magnocellularis. This division parallels a functional division into intensity and time coding in the auditory system. The lateral branch of the auditory nerve innervates the nucleus angularis and gives rise to a major and a minor terminal field. The terminals range in size and shape from small boutons to large irregular boutons with thorn-like appendages. The medial branch of the auditory nerve conveys phase information to the cells of the nucleus magnocellularis via large axosomatic endings or end bulbs of Held. Each medial branch divides to form 3-6 end bulbs along the rostrocaudal orientation of a single tonotopic band, and each magnocellular neuron receives 1-4 end bulbs. The end bulb envelops the postsynaptic cell body and forms large numbers of synapses. The auditory nerve profiles contain round clear vesicles and form punctate asymmetric synapses on both somatic spines and the cell body.
Collapse
Affiliation(s)
- C E Carr
- Department of Neurobiology and Anatomy, University of Rochester, New York 14642
| | | |
Collapse
|
9
|
Gummer AW. First order temporal properties of spontaneous and tone-evoked activity of auditory afferent neurones in the cochlear ganglion of the pigeon. Hear Res 1991; 55:143-66. [PMID: 1757283 DOI: 10.1016/0378-5955(91)90100-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spontaneous and tone-evoked single-unit activity was recorded from afferent neurones in the cochlear ganglion of the anaesthetized pigeon, and the data analysed in a way that allowed the physics of underlying mechanisms to be described. The periodicity of neural activity was quantified by Fourier analysis of the histogram of successive spike intervals. Spontaneous activity was quasiperiodic for 57% of neurones (average rate: 74 s-1); it was irregular for the remainder of neurones (average rate: 55 s-1). The preferred frequency (PF) of the quasiperiodic spontaneous activity was, on average, equal to the characteristic frequency (CF) of the neurone (70% of cases) or CF/2 (30%). This observation can be explained by supposing that preferred intervals of spontaneous activity are generated by noise passing through a filter tuned to the CF of the neurone; in most cases (70%) discharge was synchronized to CF, but in the others the neurone fired to every second cycle of the filtered signal. Consistent with this interpretation, for 79% of neurones, the modal interval of spontaneous activity was, on average, directly proportional to the CF-period, irrespective of whether preferred intervals were detected. The synchronization index at the PF was inversely related to the PF, and was quantified by the amplitude response of a first-order low-pass filter with cutoff frequency of 48 +/- 18 Hz. The spontaneous activity of 9% of neurones exhibited a second-harmonic component of the PF. For both tone-evoked and spontaneous activity, the observed synchronization indices of harmonics of the stimulus frequency or of the PF were consistent with an underlying exponential spike-generator function. If such a function does indeed govern spike generation, then it implies that the Shannon entropy of the probability density function of the instantaneous firing rate is near its maximum value and suggests that the system is close to statistical equilibrium. Single-tone rate-suppression was detected for 53% of those neurones that exhibited multiple preferred intervals of spontaneous activity. It is conjectured that the phenomena of quasiperiodic spontaneous activity and single-tone rate-suppression are different aspects of a single presynaptic process. According to this model, we would expect to find these two phenomena in animals that have auditory fibres innervating electrically tuned hair cells, and that have stereocilia firmly coupled to a tectorial membrane.
Collapse
Affiliation(s)
- A W Gummer
- Australian National University, Research School of Biological Sciences, Developmental Neurobiology Group, Canberra, Australia
| |
Collapse
|
10
|
Abstract
Action potentials of cochlear nerve fibers are synchronized to the temporal variations of sounds, but this synchronization is attenuated for high-frequency sounds. In cochleas from a number of vertebrates, the frequency dependence of synchronization can be represented as a lowpass filter process whose order is at least three (Weiss and Rose, 1988a); i.e. at least three first-order kinetic processes may be responsible for the loss of synchronization. In this paper we assess the extent to which calcium processes, that are essential for chemical transmission at the hair-cell neuron junction, contribute to this attenuation of synchronization. We analyze a model of calcium processes in hair cells (Lewis, 1985; Hudspeth and Lewis, 1988a) for sinusoidal receptor potentials. We show that: (1) the relation between the receptor potential and the calcium current, which is nonlinear, acts approximately as a first-order lowpass filter whose cut-off frequency decreases with increasing receptor potential magnitude; (2) the relation between calcium current and calcium-concentration is a first-order, lowpass filter with constant cutoff frequency. These two calcium processes plus the lowpass-filter process resulting from the electrical resistance and capacitance of the hair-cell membrane - which limits the rate at which the receptor potential can change (Weiss and Rose, 1988b) - can account for much, although perhaps not for all, of the loss of synchronization of cochlear nerve fibers.
Collapse
Affiliation(s)
- R C Kidd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
11
|
Deutsch S. On the determination of input sound frequencies by the auditory central processor. IEEE Trans Biomed Eng 1990; 37:556-64. [PMID: 2354837 DOI: 10.1109/10.55659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are two schools of thought with regard to how the auditory central processor achieves good frequency resolution. The first is based on the steep 300 dB/oct rolloff; the second on the fact that the action potential (AP) output of neurons associated with hair cells is partially synchronized to the incoming fin or its subharmonics. The main objection to this proposal is that synchronization seems to fail for high-frequency audio inputs. It is shown that this failure may be due to experimental difficulties. It is impossible to avoid trauma to the cochlea and/or auditory nerve. To study synchronization at 10,000 Hz, the interspike-interval (ISI) histogram requires a timing accuracy of 4 microseconds or better despite input AP's that have a rise time of 200 microseconds. Synthetic AP ISI histograms are derived for a) unstimulated; b) fully synchronized; c) low-frequency; and d) high-frequency audio input conditions. The latter are compared with typical experimentally derived data. Hypothetical processing by reverberatory neurons is also considered.
Collapse
Affiliation(s)
- S Deutsch
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620
| |
Collapse
|
12
|
Szpir MR, Sento S, Ryugo DK. Central projections of cochlear nerve fibers in the alligator lizard. J Comp Neurol 1990; 295:530-47. [PMID: 2358519 DOI: 10.1002/cne.902950403] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The auditory (cochlear) ganglion cells of the alligator lizard (Gerrhonotus multicarinatus) give rise to two types of peripheral fibers: tectorial fibers, which contact hair cells covered by a tectorial membrane, and free-standing fibers, which contact hair cells without a tectorial membrane. To determine the central projections of these fibers, we applied intracellular and extracellular injections of horseradish peroxidase (HRP) to the peripheral component of the cochlear nerve. After histological processing with diaminobenzidine, individual cochlear nerve fibers could be traced through serial sections with the aid of a light microscope and drawing tube. The projection patterns formed two morphologically distinct groups. Neurons whose peripheral processes contacted tectorial hair cells in the cochlea projected to three divisions of the cochlear nucleus: nucleus magnocellularis lateralis (NML), nucleus magnocellularis medialis (NMM), and nucleus angularis lateralis (NAL). Neurons whose peripheral processes contacted free-standing hair cells projected primarily to the nucleus angularis medialis (NAM), although some also sent a single, thin branch to the NML; these neurons never projected to NAL or NMM. Morphometric comparisons of tectorial and free-standing fibers demonstrate that tectorial fibers have a larger axonal diameter, form a greater number of terminal swellings, and make proportionally more somatic contacts. By correlating the morphologically defined groups with previously reported physiologically defined groups, we conclude that different divisions of the cochlear nucleus are associated with separate frequency ranges and that stimuli in the different frequency ranges may be processed separately in the brain.
Collapse
Affiliation(s)
- M R Szpir
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
13
|
Peripheral auditory processing in the bobtail lizard Tiliqua rugosa. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1990. [DOI: 10.1007/bf00192412] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Peripheral auditory processing in the bobtail lizard Tiliqua rugosa. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1990. [DOI: 10.1007/bf00192411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Abstract
Despite the independent evolution of birds and mammals, a number of structural similarities of their hearing organs have developed in parallel. By tracing the peripheral origin of functionally-characterized primary neurons, the present study demonstrates functional similarities between the respective hair cell populations of the hearing organs of birds and mammals. The space devoted to one octave on the starling's basilar papilla is not constant over the whole length; rather it increases from the apical low- to the basal high-frequency end. The finding that (with the exception of a specialized area near the apical end) only tall hair cells situated on the neural limbus receive active afferent innervation is a functional parallel to the mammalian inner hair cells. The thresholds of afferents increase with distance of the related hair cells from the neural side of the papilla and cover a range of more than 50 dB within the area of tall hair cells.
Collapse
Affiliation(s)
- O Gleich
- Institut für Zoologie der Technischen Universität München, Garching, F.R.G
| |
Collapse
|
16
|
Weiss TF, Rose C. Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard. Hear Res 1988; 33:167-74. [PMID: 3397326 DOI: 10.1016/0378-5955(88)90029-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Responses to clicks and tone bursts of hair cells and nerve fibers in the free-standing region of the alligator lizard cochlea were compared. The objective was to determine the extent to which the hair-cell processes that produce the receptor potential are also responsible for the attenuation of the synchronized responses of nerve fibers. The AC component of the receptor potential of these hair cells has a high-frequency attenuation of 20 dB/decade [Holton and Weiss (1983) J. Physiol. 345, 205-240], whereas the synchronized response of cochlear neurons is attenuated at a rate of least 80 dB/decade [Rose and Weiss (1988) Hear. Res. 33, 151-166]. Therefore, the processes that link the receptor potential to the nerve discharge act as a lowpass filter with a high-frequency attenuation of at least 60 dB/decade. This could be obtained from a cascade of at least three first-order lowpass filter processes.
Collapse
Affiliation(s)
- T F Weiss
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge
| | | |
Collapse
|
17
|
Abstract
Measurements of the frequency dependence of synchronization of cochlear nerve fibers obtained in different auditory receptor organs are compared. These synchronization filter-functions are lowpass filter-functions and differ primarily in corner frequencies which we estimate to be (in kHz): 2.5 (cat), 1.1 (guinea pig), 0.48 (alligator-lizard tectorial fibers), 0.42 (tree frog), and 0.34 (alligator-lizard free-standing fibers). Some of this variation in corner frequency can be explained by temperature-dependent lowpass-filter mechanisms with a temperature factor of 2.6-3.3 for a change in temperature of 10 degrees C. However, factors in addition to temperature must be involved in producing the differences in corner frequency between cat and guinea pig fibers and between tectorial and free-standing fibers in the alligator lizard.
Collapse
Affiliation(s)
- T F Weiss
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge
| | | |
Collapse
|