1
|
Chemistry of Molecular Imaging: An Overview. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
3
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
4
|
Bisso S, Degrassi A, Brambilla D, Leroux JC. Poly(ethylene glycol)-alendronate coated nanoparticles for magnetic resonance imaging of lymph nodes. J Drug Target 2018; 27:659-669. [DOI: 10.1080/1061186x.2018.1545235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofia Bisso
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Anna Degrassi
- Department of Biology, Nerviano Medical Sciences Srl, Milan, Italy
| | - Davide Brambilla
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
6
|
Skupin-Mrugalska P, Sobotta L, Warowicka A, Wereszczynska B, Zalewski T, Gierlich P, Jarek M, Nowaczyk G, Kempka M, Gapinski J, Jurga S, Mielcarek J. Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer. J Inorg Biochem 2018; 180:1-14. [DOI: 10.1016/j.jinorgbio.2017.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
|
7
|
Abstract
Magnetic resonance (MR) is one of the most widely used imaging modalities in contemporary medicine to obtain images of pathological areas. Still, there is a big effort to facilitate the accumulation of contrast in the required zone and further increase a local spatial concentration of a contrast agent for better imaging. Certain particulate carriers able to carry multiple contrast moieties can be used for an efficient delivery of contrast agents to areas of interest and enhancing a signal from these areas. Among those carriers, liposomes draw special attention because of their easily controlled properties and good pharmacological characteristics. To enhance the signal intensity from a given reporter metal in liposomes, one may attempt to increase the net quantity of carrier-associated reporter metal by using polylysine (PLL)-based polychelating amphiphilic polymers (PAP). In addition to heavy load of reporter metal onto the pharmaceutical nanocarrier (liposome), the accumulation of the contrast nanoparticles in organs and tissues of interest (such as tumors) can be significantly enhanced by targeting such particles both "passively," via the so-called enhanced permeability and retention (EPR) effect, or "actively," using various target-specific ligands, such as monoclonal antibodies. Combining three different properties-heavy load with gadolinium (Gd) via the liposome membrane-incorporated PAP and tumor specificity mediated by the liposome-attached mAb 2C5-in a single nanoparticle of long-circulating (PEGylated) liposomes could provide a new contrast agent for highly specific and efficient tumor MRI.
Collapse
Affiliation(s)
- Suna Erdogan
- Faculty of Pharmacy, Department of Radiopharmacy, Hacettepe University, Sıhhıye, Ankara, 06100, Turkey.
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| |
Collapse
|
8
|
|
9
|
Thorek DLJ, Ulmert D, Diop NFM, Lupu ME, Doran MG, Huang R, Abou DS, Larson SM, Grimm J. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun 2015; 5:3097. [PMID: 24445347 DOI: 10.1038/ncomms4097] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/12/2013] [Indexed: 11/09/2022] Open
Abstract
The invasion status of tumour-draining lymph nodes (LNs) is a critical indicator of cancer stage and is important for treatment planning. Clinicians currently use planar scintigraphy and single-photon emission computed tomography (SPECT) with (99m)Tc-radiocolloid to guide biopsy and resection of LNs. However, emerging multimodality approaches such as positron emission tomography combined with magnetic resonance imaging (PET/MRI) detect sites of disease with higher sensitivity and accuracy. Here we present a multimodal nanoparticle, (89)Zr-ferumoxytol, for the enhanced detection of LNs with PET/MRI. For genuine translational potential, we leverage a clinical iron oxide formulation, altered with minimal modification for radiolabelling. Axillary drainage in naive mice and from healthy and tumour-bearing prostates was investigated. We demonstrate that (89)Zr-ferumoxytol can be used for high-resolution tomographic studies of lymphatic drainage in preclinical disease models. This nanoparticle platform has significant translational potential to improve preoperative planning for nodal resection and tumour staging.
Collapse
Affiliation(s)
- Daniel L J Thorek
- 1] Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, 601 N. Caroline Street, JHOC 3223, Baltimore, Maryland 21287, USA [2] Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA
| | - David Ulmert
- 1] Department of Surgery, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA [2] Department of Urology, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Ndeye-Fatou M Diop
- Department of Biomedical Engineering, The City College of New York, ST-401, 160 Convent Avenue, New York, New York 10031, USA
| | - Mihaela E Lupu
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA
| | - Michael G Doran
- Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA
| | - Ruimin Huang
- Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA
| | - Diane S Abou
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, 601 N. Caroline Street, JHOC 3223, Baltimore, Maryland 21287, USA
| | - Steven M Larson
- 1] Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA [2] Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA
| | - Jan Grimm
- 1] Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA [2] Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Street, Box 248, New York, New York 10065, USA
| |
Collapse
|
10
|
Muhanna N, Cui L, Chan H, Burgess L, Jin CS, MacDonald TD, Huynh E, Wang F, Chen J, Irish JC, Zheng G. Multimodal Image-Guided Surgical and Photodynamic Interventions in Head and Neck Cancer: From Primary Tumor to Metastatic Drainage. Clin Cancer Res 2015; 22:961-70. [PMID: 26463705 DOI: 10.1158/1078-0432.ccr-15-1235] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/24/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The low survival rate of head and neck cancer (HNC) patients is attributable to late disease diagnosis and high recurrence rate. Current HNC staging has inadequate accuracy and low sensitivity for effective diagnosis and treatment management. The multimodal porphyrin lipoprotein-mimicking nanoparticle (PLP), intrinsically capable of positron emission tomography (PET), fluorescence imaging, and photodynamic therapy (PDT), shows great potential to enhance the accuracy of HNC staging and potentially HNC management. EXPERIMENTAL DESIGN Using a clinically relevant VX-2 buccal carcinoma rabbit model that is able to consistently develop metastasis to regional lymph nodes after tumor induction, we investigated the abilities of PLP for HNC diagnosis and management. RESULTS PLPs facilitated accurate detection of primary tumor and metastatic nodes (their PET image signal to surrounding muscle ratios were 10.0 and 7.3, respectively), and provided visualization of the lymphatic drainage from tumor to regional lymph nodes by both preoperative PET and intraoperative fluorescence imaging, allowing the identification of unknown primaries and recurrent tumors. PLP-PDT significantly enhanced cell apoptosis in mouse tumors (73.2% of PLP-PDT group vs 7.1% of PLP alone group) and demonstrated complete eradication of primary tumors and obstruction of tumor metastasis in HNC rabbit model without toxicity in normal tissues or damage to adjacent critical structures. CONCLUSIONS PLPs provide a multimodal imaging and therapy platform that could enhance HNC diagnosis by integrating PET/computed tomography and fluorescence imaging, and improve HNC therapeutic efficacy and specificity by tailoring treatment via fluorescence-guided surgery and PDT.
Collapse
Affiliation(s)
- Nidal Muhanna
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Canada
| | - Liyang Cui
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Medical Isotopes Research Center, Peking University, Beijing, China
| | - Harley Chan
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Canada
| | - Laura Burgess
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Cheng S Jin
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Thomas D MacDonald
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Elizabeth Huynh
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Fan Wang
- Medical Isotopes Research Center, Peking University, Beijing, China
| | - Juan Chen
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada.
| | - Jonathan C Irish
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Canada.
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Wauthoz N, Bastiat G, Moysan E, Cieślak A, Kondo K, Zandecki M, Moal V, Rousselet MC, Hureaux J, Benoit JP. Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1237-45. [DOI: 10.1016/j.nano.2015.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/12/2015] [Accepted: 02/14/2015] [Indexed: 12/19/2022]
|
12
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1009] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
13
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
14
|
Schütz G, Lohrke J, Pietsch H. Lymph node staging using dedicated magnetic resonance contrast agents--the accumulation mechanism revisited. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:238-49. [PMID: 25266498 DOI: 10.1002/wnan.1290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/15/2014] [Accepted: 07/20/2014] [Indexed: 11/12/2022]
Abstract
When diagnosing cancer, assessing the nodal stage is tremendously important in determining the patient's prognosis. Computed tomography (CT) and magnetic resonance (MR) imaging (MRI) assessments of the regional lymph node (LN) size and shape are currently used for the initial nodal staging in clinical settings, although this approach has a rather low sensitivity, and biopsy often leads to restaging of the LNs. Acknowledging the great medical need to accurately stage LNs, scientists and clinicians have been working since the late 1980s on MR contrast agents that provide more reliable staging results. Different types of molecules (i.e., iron oxide nanoparticles and Gd-based contrast agent) have shown promising LN accumulation and imaging results, but no clinically approved, dedicated LN staging contrast agent is currently available. The literature describes a mechanism of contrast agent accumulation in the LNs that considers some but not all published experimental evidence. However, confidence in the mechanism of LN accumulation is a prerequisite for the directed synthesis of compounds for accurate and sensitive LN staging. To improve our understanding of the LN contrast agent accumulation mechanism, we reviewed the published data on the enrichment of colloidal MR contrast agent candidates in LNs, and we suggest an extended mechanism for contrast agent enrichment in LNs. For further clarification, physiology and results from drug targeting studies are considered where applicable.
Collapse
|
15
|
Murtaza G, Gao K, Liu T, Tariq I, Sajjad A, Akram MR, Niu M, Liu G, Mehmood Z, Tian G. Current and future lymphatic imaging modalities for tumor staging. BIOMED RESEARCH INTERNATIONAL 2014; 2014:714674. [PMID: 24757671 PMCID: PMC3976799 DOI: 10.1155/2014/714674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/17/2022]
Abstract
Tumor progression is supported by the lymphatic system which should be scanned efficiently for tumor staging as well as the enhanced therapeutic outcomes. Poor resolution and low sensitivity is a limitation of traditional lymphatic imaging modalities; thus new noninvasive approaches like nanocarriers, magnetic resonance imaging, positron-emission tomography, and quantum dots are advantageous. Some newer modalities, which are under development, and their potential uses will also be discussed in this review.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Kuo Gao
- Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chao Yang District, Beijing 100029, China
| | - Tiegang Liu
- Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chao Yang District, Beijing 100029, China
| | - Imran Tariq
- University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Ashif Sajjad
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | | | - Meiying Niu
- Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chao Yang District, Beijing 100029, China
| | - Guokai Liu
- Beijing University of Chinese Medicine, Dongzhimen Hospital, Dong Cheng District, Beijing 100700, China
| | - Zahid Mehmood
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Guihua Tian
- Beijing University of Chinese Medicine, Dongzhimen Hospital, Dong Cheng District, Beijing 100700, China
| |
Collapse
|
16
|
Kozlowska D, Biswas S, Fox EK, Wu B, Bolster F, Edupuganti OP, Torchilin V, Eustace S, Botta M, O'Kennedy R, Brougham DF. Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI contrast agent for human multiple myeloma and non Hodgkin's lymphoma (human Burkitt's lymphoma). RSC Adv 2014. [DOI: 10.1039/c3ra45400b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
17
|
Crawley N, Thompson M, Romaschin A. Theranostics in the Growing Field of Personalized Medicine: An Analytical Chemistry Perspective. Anal Chem 2013; 86:130-60. [DOI: 10.1021/ac4038812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Niall Crawley
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Michael Thompson
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Alexander Romaschin
- Keenan Research Centre and
Clinical Biochemistry, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
18
|
Expansion of the lymphatic vasculature in cancer and inflammation: New opportunities for in vivo imaging and drug delivery. J Control Release 2013; 172:550-7. [DOI: 10.1016/j.jconrel.2013.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
|
19
|
Xing R, Liu G, Zhu J, Hou Y, Chen X. Functional magnetic nanoparticles for non-viral gene delivery and MR imaging. Pharm Res 2013; 31:1377-89. [PMID: 24065595 DOI: 10.1007/s11095-013-1205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/12/2013] [Indexed: 01/11/2023]
Abstract
Gene therapy is becoming a promising strategy to treat various kinds of genetic and acquired diseases. However, the development of safe, efficient, and targetable gene delivery systems remains a major challenge in gene therapy. The unique material characteristics of magnetic nanoparticles (MNPs), including high surface area, facile surface modification, controllable size, and excellent magnetic properties, make them promising candidates for gene delivery. The engineered MNPs with modifiable functional surfaces and bioactive cores can result in several advantageous diagnostic and therapeutic properties including enhanced magnetic resonance imaging (MRI) signal intensity, long permeation and retention in the circulatory system, specific delivery of therapeutic genes to target sites. In this review, the updated research on the preparation and surface modification of MNPs for gene delivery is summarized.
Collapse
Affiliation(s)
- Ruijun Xing
- Department of Materials Science and Engineering College of Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
20
|
Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.
Collapse
Affiliation(s)
- Monique R Bernsen
- Department of Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bailey MJ, van der Weegen R, Klemm PJ, Baker SL, Helms BA. Stealth rare earth oxide nanodiscs for magnetic resonance imaging. Adv Healthc Mater 2012. [PMID: 23184774 DOI: 10.1002/adhm.201200039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Configuring RE(2) O(3) nanocrystals with pseudo-2D morphologies confers substantive gains in relaxivities over equivalent spherical counterparts. The most promising arises from Gd(2) O(3) whose ionic transverse and longitudinal relaxivities were as high as r(1) = 12.7 mM(-1) s(-1) and r(2) = 17.2 mM(-1) s(-1) (dispersed in H(2) O, T = 37 °C & B(0) = 1.41 T), pointing to new opportunities to achieve high contrast MRI while concomitantly affording longer half-life potential in vivo.
Collapse
Affiliation(s)
- Mark J Bailey
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
22
|
Li S, Goins B, Zhang L, Bao A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 2012; 23:1322-32. [PMID: 22577859 DOI: 10.1021/bc300175d] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Liposomes are effective lipid nanoparticle drug delivery systems, which can also be functionalized with noninvasive multimodality imaging agents with each modality providing distinct information and having synergistic advantages in diagnosis, monitoring of disease treatment, and evaluation of liposomal drug pharmacokinetics. We designed and constructed a multifunctional theranostic liposomal drug delivery system, which integrated multimodality magnetic resonance (MR), near-infrared (NIR) fluorescent and nuclear imaging of liposomal drug delivery, and therapy monitoring and prediction. The premanufactured liposomes were composed of DSPC/cholesterol/Gd-DOTA-DSPE/DOTA-DSPE with the molar ratio of 39:35:25:1 and having ammonium sulfate/pH gradient. A lipidized NIR fluorescent tracer, IRDye-DSPE, was effectively postinserted into the premanufactured liposomes. Doxorubicin could be effectively postloaded into the multifunctional liposomes. The multifunctional doxorubicin-liposomes could also be stably radiolabeled with (99m)Tc or (64)Cu for single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, respectively. MR images displayed the high-resolution micro-intratumoral distribution of the liposomes in squamous cell carcinoma of head and neck (SCCHN) tumor xenografts in nude rats after intratumoral injection. NIR fluorescent, SPECT, and PET images also clearly showed either the high intratumoral retention or distribution of the multifunctional liposomes. This multifunctional drug carrying liposome system is promising for disease theranostics allowing noninvasive multimodality NIR fluorescent, MR, SPECT, and PET imaging of their in vivo behavior and capitalizing on the inherent advantages of each modality.
Collapse
Affiliation(s)
- Shihong Li
- Department of Radiology and ‡Department of Otolaryngology - Head and Neck Surgery, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | | | |
Collapse
|
23
|
Abstract
Noninvasive in vivo imaging of lymphatic vessels and lymphatic nodes is expected to fulfill the purpose of analyzing lymphatic vessels and their function, understanding molecular mechanisms of lymphangiogenesis and lymphatic spread of tumors, and utilizing lymphatic molecular markers as a prognostic or diagnostic indicator. In this review, we provide a comprehensive summary of in vivo imaging modalities for detecting lymphatic vessels, lymphatic drainage, and lymphatic nodes, which include conventional lymphatic imaging techniques such as dyes and radionuclide scintigraphy as well as novel techniques for lymphatic imaging such as optical imaging, computed tomography, magnetic resonance imaging, ultrasound, positron emission tomography using lymphatic biomarkers, photoacoustic imaging, and combinations of multiple modalities. The field of lymphatic imaging is ever evolving, and technological advances, combined with the development of new contrast agents, continue to improve the research of lymphatic vascular system in health and disease states as well as to improve the accuracy of diagnosis in the relevant diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
24
|
Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev 2011; 63:901-8. [PMID: 21712055 DOI: 10.1016/j.addr.2011.05.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/09/2011] [Indexed: 12/01/2022]
Abstract
The lymphatic system plays a crucial role in the immune system's recognition and response to disease, and most solid cancers initially spread from the primary site via the tumor's surrounding lymphatics before hematological dissemination. Hence, the lymphatic system is an important target for developing new vaccines, cancer treatments, and diagnostic agents. Targeting the lymphatic system by subcutaneous, intestinal, and pulmonary routes has been evaluated and subsequently utilized to improve lymphatic penetration and retention of drug molecules, reduce drug-related systemic toxicities, and enhance bioavailability of poorly soluble and unstable drugs. Lymphatic imaging is an essential tool for the detection and staging of cancer. New nano-based technologies offer improved detection and characterization of the nodal diseases, while new delivery devices can better target and confine treatments to tumors within the nodal space while sparing healthy tissues. This manuscript reviews recent advances in the field of lymphatic drug delivery and imaging and focuses specifically on the development of liposomes and solid lipid nanoparticles for lymphatic introduction via the subcutaneous, intestinal, and pulmonary routes.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Pharmaceutical Chemistry, University of Kansas, USA
| | | | | | | |
Collapse
|
25
|
RGD-targeted paramagnetic liposomes for early detection of tumor: in vitro and in vivo studies. Eur J Radiol 2011; 80:598-606. [PMID: 21316892 DOI: 10.1016/j.ejrad.2011.01.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/03/2011] [Indexed: 01/25/2023]
Abstract
Magnetic resonance molecular imaging has emerged as a potential approach for tumor diagnosis in the last few decades. This approach consists of the delivery of MR contrast agents to the tumor by specific targeted carriers. For this purpose, a lipopeptide was constructed by using a cyclic RGD peptide headgroup coupled to palmitic acid anchors via a KGG tripeptide spacer. Targeted paramagnetic liposomes were then prepared by the incorporation of RGD-coupled-lipopeptides into lipid bilayers for specific bounding to tumor. In vitro, study demonstrated that RGD-targeted liposomes exhibited a better binding affinity to targeted cells than non-targeted liposomes. MR imaging of mice bearing A549 tumors with the RGD-targeted paramagnetic liposomes also resulted in a greater signal enhancement of tumor compared to non-targeted liposomes and pure contrast agents groups. In addition, biodistribution study also showed specific tumor targeting of RGD-targeted paramagnetic liposomes in vivo. Therefore, RGD-targeted paramagnetic liposomes prepared in the present study may be a more promising method for early tumor diagnosis.
Collapse
|
26
|
Design and synthesis of novel functional lipid-based bioconjugates for drug delivery and other applications. Methods Mol Biol 2011; 751:357-78. [PMID: 21674343 DOI: 10.1007/978-1-61779-151-2_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The modification of biologicals such as proteins/peptides, small molecules, and other polymers with lipids provides an efficient method for mediating their insertion into liposomes and lipid-core micellar nanocarriers. In this chapter, we describe several representative protocols developed in our laboratory for the bioconjugation of liposomes and lipid-core micelles for drug/gene delivery and diagnostic imaging applications.
Collapse
|
27
|
Bui T, Stevenson J, Hoekman J, Zhang S, Maravilla K, Ho RJY. Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging. PLoS One 2010; 5. [PMID: 20927340 PMCID: PMC2948015 DOI: 10.1371/journal.pone.0013082] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/30/2010] [Indexed: 12/04/2022] Open
Abstract
Background Gadolinium (Gd), with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA), or other derivatives (at 0.1 mmole/kg recommended dose), distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF), particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety. Methodology/Principal Findings To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP) containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T1) relaxivity, r1, constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs. Conclusions/Significance The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Tot Bui
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Jeff Stevenson
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - John Hoekman
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Shanrong Zhang
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Kenneth Maravilla
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Rodney J. Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62:1052-1063. [PMID: 20709124 DOI: 10.1016/j.addr.2010.08.004] [Citation(s) in RCA: 762] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023]
Abstract
Nanoparticle technologies are significantly impacting the development of both therapeutic and diagnostic agents. At the intersection between treatment and diagnosis, interest has grown in combining both paradigms into clinically effective formulations. This concept, recently coined as theranostics, is highly relevant to agents that target molecular biomarkers of disease and is expected to contribute to personalized medicine. Here we review state-of-the-art nanoparticles from a therapeutic and a diagnostic perspective and discuss challenges in bringing these fields together. Major classes of nanoparticles include, drug conjugates and complexes, dendrimers, vesicles, micelles, core-shell particles, microbubbles, and carbon nanotubes. Most of these formulations have been described as carriers of either drugs or contrast agents. To observe these formulations and their interactions with disease, a variety of contrast agents have been used, including optically active small molecules, metals and metal oxides, ultrasonic contrast agents, and radionuclides. The opportunity to rapidly assess and adjust treatment to the needs of the individual offers potential advantages that will spur the development of theranostic agents.
Collapse
Affiliation(s)
- Siti M Janib
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Ara S Moses
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| |
Collapse
|
29
|
Choi SH, Moon WK. Contrast-enhanced MR imaging of lymph nodes in cancer patients. Korean J Radiol 2010; 11:383-94. [PMID: 20592922 PMCID: PMC2893309 DOI: 10.3348/kjr.2010.11.4.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 02/25/2010] [Indexed: 11/15/2022] Open
Abstract
The accurate identification and characterization of lymph nodes by modern imaging modalities has important therapeutic and prognostic significance for patients with newly diagnosed cancers. The presence of nodal metastases limits the therapeutic options, and it generally indicates a worse prognosis for the patients with nodal metastases. Yet anatomic imaging (CT and MR imaging) is of limited value for depicting small metastatic deposits in normal-sized nodes, and nodal size is a poor criterion when there is no extracapsular extension or focal nodal necrosis to rely on for diagnosing nodal metastases. Thus, there is a need for functional methods that can be reliably used to identify small metastases. Contrast-enhanced MR imaging of lymph nodes is a non-invasive method for the analysis of the lymphatic system after the interstitial or intravenous administration of contrast media. Moreover, some lymphotrophic contrast media have been developed and used for detecting lymph node metastases, and this detection is independent of the nodal size. This article will review the basic principles, the imaging protocols, the interpretation and the accuracies of contrast-enhanced MR imaging of lymph nodes in patients with malignancies, and we also focus on the recent issues cited in the literature. In addition, we discuss the results of several pre-clinical studies and animal studies that were conducted in our institution.
Collapse
Affiliation(s)
- Seung Hong Choi
- Department of Radiology, Clinical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 110-744, Korea
| | | |
Collapse
|
30
|
Abstract
Magnetic resonance (MR) is one of the most widely used imaging modalities in contemporary medicine to obtain images of pathological areas. Still, there is a big effort to facilitate the accumulation of contrast in the required zone and further increase a local spatial concentration of a contrast agent for better imaging. Certain particulate carriers able to carry multiple contrast moieties can be used for an efficient delivery of contrast agents to areas of interest and enhancing a signal from these areas. Among those carriers, liposomes draw special attention because of their easily controlled properties and good pharmacological characteristics. To enhance the signal intensity from a given reporter metal in liposomes, one may attempt to increase the net quantity of carrier-associated reporter metal by using polylysine (PLL)-based polychelating amphiphilic polymers (PAP). In addition to heavy load of reporter metal onto the pharmaceutical nanocarrier (liposome), the accumulation of the contrast nanoparticles in organs and tissues of interest (such as tumors) can be significantly enhanced by targeting such particles both "passively," via the so-called enhanced permeability and retention (EPR) effect, or "actively," using various target-specific ligands, such as monoclonal antibodies. Combining three different properties--heavy load with Gd via the liposome membrane-incorporated PAP and tumor specificity mediated by the liposome-attached mAb 2C5--in a single nanoparticle of long-circulating (PEGylated) liposomes could provide a new contrast agent for highly specific and efficient tumor MRI.
Collapse
|
31
|
Kozlowska D, Foran P, MacMahon P, Shelly MJ, Eustace S, O'Kennedy R. Molecular and magnetic resonance imaging: The value of immunoliposomes. Adv Drug Deliv Rev 2009; 61:1402-11. [PMID: 19796661 DOI: 10.1016/j.addr.2009.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 01/30/2023]
Abstract
Molecular imaging has the potential to transform the field of diagnostic imaging through enabling far more detailed investigation and characterisation of disease processes than is currently possible. Magnetic resonance imaging (MRI) is capable of three-dimensional non-invasive imaging of opaque tissues at near cellular resolution. Among the imaging techniques available today, MRI has, perhaps, the greatest potential to exploit the possibilities that molecular imaging presents. Nanoparticles are the focus of intense research, due to a wide variety of potential applications in the biomedical, optical, and electronic fields. In this article we examine the progress made in the development of nanoparticles as targeted contrast agents for molecular magnetic resonance imaging. In particular, we will examine the potential of antibody-targeted liposomes (immunoliposomes) as vehicles for delivering MRI contrast agents to cellular biomarkers, thus enabling visualisation of structures and processes at the molecular level. We will address some of the challenges that must be faced by researchers in this field before the progress made in the laboratory can be translated into improved clinical diagnostics and therapeutics.
Collapse
|
32
|
Cheng Z, Thorek DLJ, Tsourkas A. Porous Polymersomes with Encapsulated Gd-labeled Dendrimers as Highly Efficient MRI Contrast Agents. ADVANCED FUNCTIONAL MATERIALS 2009; 19:3753-3759. [PMID: 23293575 PMCID: PMC3536029 DOI: 10.1002/adfm.200901253] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of nanovesicles with encapsulated Gd as MR contrast agents has largely been ignored due to the detrimental effects of the slow water exchange rate through the vesicle bilayer on the relaxivity of encapsulated Gd. Here, we describe the facile synthesis of a composite MR contrast platform, consisting of dendrimer conjugates encapsulated in porous polymersomes. These nanoparticles exhibit improved permeability to water flux and a large capacity to store chelated Gd within the aqueous lumen, resulting in enhanced longitudinal relaxivity. The porous polymersomes, ~130 nm in diameter, were produced through the aqueous assembly of the polymers, polyethylene oxide-b-polybutadiene (PBdEO), and polyethylene oxide-b-polycaprolactone (PEOCL). Subsequent hydrolysis of the caprolactone (CL) block resulted in a highly permeable outer membrane. To prevent the leakage of small Gd-chelate through the pores, Gd was conjugated to PAMAM dendrimer via diethylenetriaminepentaacetic acid dianhydride (DTPA dianhydride) prior to encapsulation. As a result of the slower rotational correlation time of Gd-labeled dendrimers, the porous outer membrane of the nanovesicle, and the high Gd payload, these functional nanoparticles were found to exhibit a relaxivity (R1) of 292,109 mM(-1) s(-1) per particle. The polymersomes were also found to exhibit unique pharmacokinetics with a circulation half-life of >3.5 hrs and predominantly renal clearance.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104 (USA)
| | | | | |
Collapse
|
33
|
Xie Y, Bagby TR, Cohen MS, Forrest ML. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 2009; 6:785-92. [PMID: 19563270 DOI: 10.1517/17425240903085128] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cancer is the second leading cause of death in the US. Currently, protocols for cancer treatment include surgery to remove diseased and suspect tissues, focused radiation, systemic chemotherapy, immunotherapy and their combinations. With conventional chemotherapy, it is almost impossible to deliver anticancer drugs specifically to the tumor cells without damaging healthy organs or tissues. Over the past several decades, efforts have been made to improve drug delivery technologies that target anticancer drugs specifically to tumor cells. It has been known for over four decades that the lymphatics are the first site of metastasis for most solid cancers; however, few efforts have been made to localize chemotherapies to lymphatic tissues. Trials of several systemic targeted drug delivery systems based on nanoparticles containing chemotherapeutic agents (e.g., liposomal doxorubicin) have shown similar antitumor activity but better patient tolerance compared with conventional formulations. Animal studies have demonstrated that nanoparticles made of natural or synthetic polymers and liposomal carriers have higher accumulation in the lymph nodes and surrounding lymphatics compared to conventional intravenous therapies. This combination has the potential to both reduce nonspecific organ toxicities and increase the chemotherapeutic dose to the most likely sites of locoregional cancer metastasis.
Collapse
Affiliation(s)
- Yumei Xie
- University of Kansas, Department of Pharmaceutical Chemistry, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
34
|
Supramolecular aggregates containing lipophilic Gd(III) complexes as contrast agents in MRI. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
|
36
|
Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2008; 71:431-44. [PMID: 18977297 DOI: 10.1016/j.ejpb.2008.09.026] [Citation(s) in RCA: 441] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022]
Abstract
Currently used pharmaceutical nanocarriers, such as liposomes, micelles, and polymeric nanoparticles, demonstrate a broad variety of useful properties, such as longevity in the body; specific targeting to certain disease sites; enhanced intracellular penetration; contrast properties allowing for direct carrier visualization in vivo; stimuli-sensitivity, and others. Some of those pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. In certain cases, the pharmaceutical nanocarriers combine several of the listed properties. Long-circulating immunoliposomes capable of prolonged residence in the blood and specific target recognition represent one of the examples of this kind. The engineering of multifunctional pharmaceutical nanocarriers combining several useful properties in one particle can significantly enhance the efficacy of many therapeutic and diagnostic protocols. This paper considers the current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration, contrast loading, and stimuli-sensitivity.
Collapse
Affiliation(s)
- Vladimir Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, MA 02115, USA
| |
Collapse
|
37
|
Terreno E, Delli Castelli D, Cabella C, Dastrù W, Sanino A, Stancanello J, Tei L, Aime S. Paramagnetic Liposomes as Innovative Contrast Agents for Magnetic Resonance (MR) Molecular Imaging Applications. Chem Biodivers 2008; 5:1901-1912. [DOI: 10.1002/cbdv.200890178] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
|
39
|
|
40
|
Kostarelos K, Emfietzoglou D. Liposomes as Carriers of Radionuclides: From Imaging to Therapy. J Liposome Res 2008. [DOI: 10.3109/08982109909035546] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Torchilin V, Babich J, Weissig V. Liposomes and Micelles to Target the Blood Pool for Imaging Purposes. J Liposome Res 2008. [DOI: 10.3109/08982100009031113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Determination of water permeability of paramagnetic liposomes of interest in MRI field. J Inorg Biochem 2008; 102:1112-9. [DOI: 10.1016/j.jinorgbio.2008.01.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/21/2022]
|
43
|
Nafee N, Schneider M, Lehr CM. Charge Modification of Pharmaceutical Nanocarriers: Biological Implications. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
44
|
Thoracic Esophageal Cancer. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Abstract
Angiogenesis has long been established as a key element in the pathophysiology of tumor growth and metastasis. Increasingly, new molecularly targeted antiangiogenic drugs are being developed in the fight against cancer. These drugs bring with them a need for an accurate means of diagnosing tumor angiogenesis and monitoring response to treatment. Imaging techniques can offer this in a noninvasive way, while also providing functional information about the tumor. Among the many clinical imaging techniques available, MRI alone can provide relatively good spatial resolution and specificity, without ionizing radiation and with limited side effects. Arterial spin labeling (ASL) and blood oxygenation level-dependent (BOLD) imaging techniques can be employed to confer indirect measures of angiogenesis, such as blood flow and blood volume, without the need for external contrast agents. Dynamic contrast-enhanced (DCE)-MRI is rapidly emerging as a standard method for directly measuring angiogenesis during angiogenesis-inhibitor drug trials. As macromolecular MR contrast agents become available, they will inevitably be utilized in the assessment of tumor perfusion and vessel permeability. Meanwhile, technological advances have made imaging at a molecular level a possibility. They have brought the potential to directly target MR contrast agents to markers of angiogenesis, such as the alpha(v)beta(3) integrin. Before this is used clinically, however, substantial gains in sensitivity brought about by improved coils, pulse sequences, and contrast agents will be needed. Herein we discuss the techniques currently available for MRI of angiogenesis, along with their respective advantages and disadvantages, and what the future holds for this evolving field of imaging.
Collapse
Affiliation(s)
- Tristan Barrett
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland 20892-1088, USA
| | | | | | | |
Collapse
|
46
|
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS JOURNAL 2007; 9:E128-47. [PMID: 17614355 PMCID: PMC2751402 DOI: 10.1208/aapsj0902015] [Citation(s) in RCA: 550] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The use of various pharmaceutical nanocarriers has become one of the most important areas of nanomedicine. Ideally, such carriers should be specifically delivered (targeted) to the pathological area to provide the maximum therapeutic efficacy. Among the many potential targets for such nanocarriers, tumors have been most often investigated. This review attempts to summarize currently available information regarding targeted pharmaceutical nanocarriers for cancer therapy and imaging. Certain issues related to some popular pharmaceutical nanocarriers, such as liposomes and polymeric micelles, are addressed, as are different ways to target tumors via specific ligands and via the stimuli sensitivity of the carriers. The importance of intracellular targeting of drug- and DNA-loaded pharmaceutical nanocarriers is specifically discussed, including intracellular delivery with cell-penetrating peptides.
Collapse
Affiliation(s)
- Vladimir P Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Sharma P, Brown SC, Walter G, Santra S, Scott E, Ichikawa H, Fukumori Y, Moudgil BM. Gd nanoparticulates: from magnetic resonance imaging to neutron capture therapy. ADV POWDER TECHNOL 2007. [DOI: 10.1163/156855207782515030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Ayyagari AL, Zhang X, Ghaghada KB, Annapragada A, Hu X, Bellamkonda RV. Long-circulating liposomal contrast agents for magnetic resonance imaging. Magn Reson Med 2006; 55:1023-9. [PMID: 16586449 DOI: 10.1002/mrm.20846] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a dynamic technique for imaging vasculature. However, the currently used gadolinium (Gd) chelates, such as Gd-DTPA, restrict the time window for image acquisition due to their rapid elimination from blood and their rapid diffusion into the extravascular space, which prevents their use in steady-state imaging, particularly for MR angiography (MRA). The goal of this study was to prepare long-circulating polyethylene glycol-bearing ((PEG)ylated) liposomes encapsulating Gd chelate, and characterize and demonstrate their utility for MRA. The liposomes were prepared by hydrating a mixture of lipids with gadodiamide (Omniscan). The liposomes were sized down to around 100 nm by extruder and exhaustively dialysed to remove the unencapsulated gadodiamide. The Gd liposomes exhibited a significant sustained (>4 hr) contrast enhancement of the vasculature with improved spatial details in a rat model with little leakage relative to Gd-DTPA controls as shown by MRI. We suggest that such long-circulating liposomal formulations allow for high spatial resolution imaging without the confounding effects of clearance and extravascular diffusion of the agent complicating the data and image analysis.
Collapse
Affiliation(s)
- Ananta Laxmi Ayyagari
- WHC Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia 30332-0535, USA
| | | | | | | | | | | |
Collapse
|
49
|
Barrett T, Kobayashi H, Brechbiel M, Choyke PL. Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 2006; 60:353-66. [PMID: 16930905 DOI: 10.1016/j.ejrad.2006.06.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 06/11/2006] [Accepted: 06/14/2006] [Indexed: 11/21/2022]
Abstract
Angiogenesis has long been accepted as a vital process in the growth and metastasis of tumors. As a result it is the target of several novel anti-cancer medications. Consequently, there is an urgent clinical need to develop accurate, non-invasive imaging techniques to improve the characterization of tumor angiogenesis and the monitoring of the response to anti-angiogenic therapy. Macromolecular MR contrast media (MMCM) offer this diagnostic potential by preferentially exploiting the inherent hyperpermeable nature of new tumor vessels compared with normal vessels. Over the last 10-15 years many classes of MMCM have been developed. When evaluated with dynamic contrast enhanced (DCE) MRI, a number of MMCM have demonstrated in vivo imaging properties that correlate with ex vivo histological features of angiogenesis. The enhancement patterns with some MMCM have been reported to correlate with tumor grade, as well as show response to anti-angiogenic and anti-vascular drugs. Future applications of MMCM include targeted angiogenesis imaging and drug delivery of anti-cancer 'payloads'. Herein we discuss the best known MMCMs along with their advantages and disadvantages.
Collapse
Affiliation(s)
- Tristan Barrett
- Molecular Imaging Program and Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, Building 10, Room 1B40, Bethesda, MD 20892-1088, USA
| | | | | | | |
Collapse
|
50
|
Misselwitz B. MR contrast agents in lymph node imaging. Eur J Radiol 2006; 58:375-82. [PMID: 16464554 DOI: 10.1016/j.ejrad.2005.12.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 12/26/2005] [Accepted: 12/30/2005] [Indexed: 11/23/2022]
Abstract
The detection of tumor metastases in lymph nodes is clinically important for tumor staging and therapy planning in cancer patients. However, differentiating between malignant and benign lymph nodes is still a problem because current imaging modalities rely only on the size and shape of the lymph nodes. Thus, small metastases in normal-sized lymph nodes can be missed, and it is difficult to differentiate enlarged nodes (benign hyperplasia versus malignant disease). Therefore, a specific lymphotropic contrast agent is needed to obtain a high contrast between functional and metastatic tissue. Contrast-enhanced MR lymphography is a noninvasive method for the analysis of the lymphatic system after interstitial (intracutaneous or subcutaneous) or intravenous application of contrast media. Interstitial MR lymphography using extracellular, liposomal, polymeric, lipophilic or particulate contrast agents results in high accumulation in regional lymph nodes. The systemic administration of a lymphotropic contrast medium is needed to address each individual lymph node. Ultrasmall superparamagnetic iron oxide particles are in late-stage clinical development for this indication, but they take 24h to show sufficient contrast. Recently, a gadolinium-type contrast agent (Gadofluorine M) was described that detected lymph node metastases within 60 min of intravenous injection.
Collapse
Affiliation(s)
- Bernd Misselwitz
- Research Laboratories of Schering AG, CRBA Diagnostics and Radiopharmaceuticals, MRI and X-Ray Research, Müllerstrasse 178, D-13342 Berlin, Germany.
| |
Collapse
|