1
|
Stuprich CM, Loh M, Nemerth JT, Nagel AM, Uder M, Laun FB. Velocity-compensated intravoxel incoherent motion of the human calf muscle. Magn Reson Med 2024; 92:543-555. [PMID: 38688865 DOI: 10.1002/mrm.30059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE To determine whether intravoxel incoherent motion (IVIM) describes the blood perfusion in muscles better, assuming pseudo diffusion (Bihan Model 1) or ballistic motion (Bihan Model 2). METHODS IVIM parameters were measured in 18 healthy subjects with three different diffusion gradient time profiles (bipolar with two diffusion times and one with velocity compensation) and 17 b-values (0-600 s/mm2) at rest and after muscle activation. The diffusion coefficient, perfusion fraction, and pseudo-diffusion coefficient were estimated with a segmented fit in the gastrocnemius medialis (GM) and tibialis anterior (TA) muscles. RESULTS Velocity-compensated gradients resulted in a decreased perfusion fraction (6.9% ± 1.4% vs. 4.4% ± 1.3% in the GM after activation) and pseudo-diffusion coefficient (0.069 ± 0.046 mm2/s vs. 0.014 ± 0.006 in the GM after activation) compared to the bipolar gradients with the longer diffusion encoding time. Increased diffusion coefficients, perfusion fractions, and pseudo-diffusion coefficients were observed in the GM after activation for all gradient profiles. However, the increase was significantly smaller for the velocity-compensated gradients. A diffusion time dependence was found for the pseudo-diffusion coefficient in the activated muscle. CONCLUSION Velocity-compensated diffusion gradients significantly suppress the IVIM effect in the calf muscle, indicating that the ballistic limit is mostly reached, which is supported by the time dependence of the pseudo-diffusion coefficient.
Collapse
Affiliation(s)
- Christoph M Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes T Nemerth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Tang H, Yu L, Suo S, Hu Y, Wang J, Xu J, Lu Q, Zhou Y. Evaluation of skeletal muscle perfusion changes in patients with peripheral artery disease before and after percutaneous transluminal angioplasty using multiparametric MR imaging. Magn Reson Imaging 2022; 93:157-162. [DOI: 10.1016/j.mri.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
|
3
|
Englund EK, Berry DB, Behun JJ, Ward SR, Frank LR, Shahidi B. IVIM Imaging of Paraspinal Muscles Following Moderate and High-Intensity Exercise in Healthy Individuals. FRONTIERS IN REHABILITATION SCIENCES 2022; 3. [PMID: 35959464 PMCID: PMC9365030 DOI: 10.3389/fresc.2022.910068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Quantification of the magnitude and spatial distribution of muscle blood flow changes following exercise may improve our understanding of the effectiveness of various exercise prescriptions. Intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is a technique that quantifies molecular diffusion and microvascular blood flow, and has recently gained momentum as a method to evaluate a muscle's response to exercise. It has also been shown to predict responses to exercise-based physical therapy in individuals with low back pain. However, no study has evaluated the sensitivity of IVIM-MRI to exercise of varying intensity in humans. Here, we aimed to evaluate IVIM signal changes of the paraspinal muscles in response to moderate and high intensity lumbar extension exercise in healthy individuals. Methods IVIM data were collected in 11 healthy volunteers before and immediately after a 3-min bout of moderate and high-intensity resisted lumbar extension. IVIM data were analyzed to determine the average perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D) in the bilateral paraspinal muscles. Changes in IVIM parameters were compared between the moderate and high intensity exercise bouts. Results Exercise increased all IVIM parameters, regardless of intensity (p < 0.003). Moderate intensity exercise resulted in a 11.2, 19.6, and 3.5% increase in f, D* and D, respectively. High intensity exercise led to a similar increase in f (12.2%), but much greater changes in D* (48.6%) and D (7.9%). Conclusion IVIM parameter increases suggest that both the moderate and high-intensity exercise conditions elicited measurable changes in blood flow (increased f and D*) and extravascular molecular diffusion rates (increased D), and that there was a dose-dependence of exercise intensity on D* and D.
Collapse
Affiliation(s)
- Erin K. Englund
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David B. Berry
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, United States
| | - John J. Behun
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Lawrence R. Frank
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Bahar Shahidi
| |
Collapse
|
4
|
Englund EK, Reiter DA, Shahidi B, Sigmund EE. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions. J Magn Reson Imaging 2022; 55:988-1012. [PMID: 34390617 PMCID: PMC8841570 DOI: 10.1002/jmri.27875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Throughout the body, muscle structure and function can be interrogated using a variety of noninvasive magnetic resonance imaging (MRI) methods. Recently, intravoxel incoherent motion (IVIM) MRI has gained momentum as a method to evaluate components of blood flow and tissue diffusion simultaneously. Much of the prior research has focused on highly vascularized organs, including the brain, kidney, and liver. Unique aspects of skeletal muscle, including the relatively low perfusion at rest and large dynamic range of perfusion between resting and maximal hyperemic states, may influence the acquisition, postprocessing, and interpretation of IVIM data. Here, we introduce several of those unique features of skeletal muscle; review existing studies of IVIM in skeletal muscle at rest, in response to exercise, and in disease states; and consider possible confounds that should be addressed for muscle-specific evaluations. Most studies used segmented nonlinear least squares fitting with a b-value threshold of 200 sec/mm2 to obtain IVIM parameters of perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D). In healthy individuals, across all muscles, the average ± standard deviation of D was 1.46 ± 0.30 × 10-3 mm2 /sec, D* was 29.7 ± 38.1 × 10-3 mm2 /sec, and f was 11.1 ± 6.7%. Comparisons of reported IVIM parameters in muscles of the back, thigh, and leg of healthy individuals showed no significant difference between anatomic locations. Throughout the body, exercise elicited a positive change of all IVIM parameters. Future directions including advanced postprocessing models and potential sequence modifications are discussed. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Erin K. Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus
| | | | | | - Eric E. Sigmund
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health
- Center for Advanced Imaging and Innovation (CAIR), Bernard and Irene Schwarz Center for Biomedical Imaging (CBI), NYU Langone Health
| |
Collapse
|
5
|
Ohno M, Ohno N, Miyati T, Kawashima H, Kozaka K, Matsuura Y, Gabata T, Kobayashi S. Triexponential Diffusion Analysis of Diffusion-weighted Imaging for Breast Ductal Carcinoma in Situ and Invasive Ductal Carcinoma. Magn Reson Med Sci 2021; 20:396-403. [PMID: 33563872 PMCID: PMC8922350 DOI: 10.2463/mrms.mp.2020-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose To obtain detailed information in breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) using triexponential diffusion analysis. Methods Diffusion-weighted images (DWI) of the breast were obtained using single-shot diffusion echo-planar imaging with 15 b-values. Mean signal intensities at each b-value were measured in the DCIS and IDC lesions and fitted with the triexponential function based on a two-step approach: slow-restricted diffusion coefficient (Ds) was initially determined using a monoexponential function with b-values > 800 s/mm2. The diffusion coefficient of free water at 37°C was assigned to the fast-free diffusion coefficient (Df). Finally, the perfusion-related diffusion coefficient (Dp) was derived using all the b-values. Furthermore, biexponential analysis was performed to obtain the perfusion-related diffusion coefficient (D*) and the perfusion-independent diffusion coefficient (D). Monoexponential analysis was performed to obtain the apparent diffusion coefficient (ADC). The sensitivity and specificity of the aforementioned diffusion coefficients for distinguishing between DCIS and IDC were evaluated using the pathological results. Results The Ds, D, and ADC of DCIS were significantly higher than those of IDC (P < 0.01 for all). There was no significant correlation between Dp and Ds, but there was a weak correlation between D* and D. The combination of Dp and Ds showed higher sensitivity and specificity (85.9% and 71.4%, respectively), compared to the combination of D* and D (81.5% and 33.3%, respectively). Conclusion Triexponential analysis can provide detailed diffusion information for breast tumors that can be used to differentiate between DCIS and IDC.
Collapse
Affiliation(s)
- Masako Ohno
- Department of Radiological Technology, Kanazawa University Hospital
| | - Naoki Ohno
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Tosiaki Miyati
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Hiroko Kawashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University.,Department of Radiology, Kanazawa University Hospital
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Hospital
| | | | | | - Satoshi Kobayashi
- Department of Radiological Technology, Kanazawa University Hospital.,Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University.,Department of Radiology, Kanazawa University Hospital
| |
Collapse
|
6
|
Lemberskiy G, Feiweier T, Gyftopoulos S, Axel L, Novikov DS, Fieremans E. Assessment of myofiber microstructure changes due to atrophy and recovery with time-dependent diffusion MRI. NMR IN BIOMEDICINE 2021; 34:e4534. [PMID: 34002901 DOI: 10.1002/nbm.4534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Current clinical MRI evaluation of musculature largely focuses on nonquantitative assessments (including T1-, T2- and PD-weighted images), which may vary greatly between imaging systems and readers. This work aims to determine the efficacy of a quantitative approach to study the microstructure of muscles at the cellular level with the random permeable barrier model (RPBM) applied to time-dependent diffusion tensor imaging (DTI) for varying diffusion time. Patients (N = 15, eight males and seven females) with atrophied calf muscles due to immobilization of one leg in a nonweight-bearing cast, were enrolled after providing informed consent. Their calf muscles were imaged with stimulated echo diffusion for DTI, T1-mapping and RPBM modeling. Specifically, After cast removal, both calf muscles (atrophied and contralateral control leg) were imaged with MRI for all patients, with follow-up scans to monitor recovery of the atrophied leg for six patients after 4 and 8 weeks. We compare RPBM-derived microstructural metrics: myofiber diameter, a, and sarcolemma permeability, κ, along with macroscopic anatomical parameters (muscle cross-sectional area, fiber orientation, <θ>, and T1 relaxation). ROC analysis was used to compare parameters between control and atrophied muscle, while the Friedman test was used to evaluate the atrophied muscle longitudinally. We found that the RPBM framework enables measurement of microstructural parameters from diffusion time-dependent DTI, of which the myofiber diameter is a stronger predictor of intramuscular morphological changes than either macroscopic (anatomical) measurements or empirical diffusion parameters. This work demonstrates the potential of RPBM to assess pathological changes in musculature that seem undetectable with standard diffusion and anatomical MRI.
Collapse
Affiliation(s)
- Gregory Lemberskiy
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | | | - Soterios Gyftopoulos
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Leon Axel
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Lyu X, Gao Y, Liu Q, Zhao H, Zhou H, Pan S. Exercise-induced muscle damage: multi-parametric MRI quantitative assessment. BMC Musculoskelet Disord 2021; 22:239. [PMID: 33653313 PMCID: PMC7927395 DOI: 10.1186/s12891-021-04085-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To explore the value of magnetic resonance quantitative analysis using diffusion tensor imaging, T2 mapping, and intravoxel incoherent motion in the evaluation of eccentric exercise-induced muscle damage and to compare the effects of various eccentric exercise modes at different time points in rats. METHODS A total of 174 Sprague-Dawley male rats were randomly divided into five groups: control, once-only exercise, continuous exercise, intermittent exercise, and once-fatigue exercise groups. Each experimental group was divided into seven time-subgroups: 0.5 h, 24 h, 48 h, 72 h, 96 h, 120 h and 168 h after exercise. The quadriceps femoris muscles were then scanned using magnetic resonance imaging. The apparent diffusion coefficient and fractional anisotropy values of diffusion tensor imaging, T2 values of T2 mapping, D and D* values of intravoxel incoherent motion and optical density values of desmin were measured. Associations among different eccentric exercise programmes, magnetic resonance imaging findings, and histopathological results were evaluated. Dunnett's test, two-way repeated measures analysis of variance, and Pearson correlation analysis were used for statistical analysis. RESULTS Diffusion tensor imaging showed that the number of muscle fibre bundles decreased to varying degrees with different time points and eccentric exercises. Apparent diffusion coefficient values of the exercise groups showed a trend that first increased and then decreased, the opposite of fractional anisotropy. The specimens in all eccentric exercise programmes showed high signal T2 values after exercise, the highest among which was in the once-fatigue exercise group. D and D* in the experimental groups were significantly higher than those in the control group at 0.5-48 h after exercise. The apparent diffusion coefficient, fractional anisotropy, T2, D and D* values correlated with the optical density values of desmin. CONCLUSIONS Diffusion tensor imaging, T2 mapping, and intravoxel incoherent motion technology accurately reflect the degree of skeletal muscle damage and recovery associated with eccentric exercise. The degree of muscle damage was the lowest in the continuous exercise group and the highest in the once-fatigue exercise group, which may provide more information and guidance for the formulation of physical and athletic training programmes.
Collapse
Affiliation(s)
- Xiaohong Lyu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.,Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yue Gao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Qiang Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Huadong Zhou
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
8
|
Wang X, Song J, Zhou S, Lu Y, Lin W, Koh TS, Hou Z, Yan Z. A comparative study of methods for determining Intravoxel incoherent motion parameters in cervix cancer. Cancer Imaging 2021; 21:12. [PMID: 33446273 PMCID: PMC7807761 DOI: 10.1186/s40644-020-00377-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
Background To compare different fitting methods for determining IVIM (Intravoxel Incoherent Motion) parameters and to determine whether the use of different IVIM fitting methods would affect differentiation of cervix cancer from normal cervix tissue. Methods Diffusion-weighted echo-planar imaging of 30 subjects was performed on a 3.0 T scanner with b-values of 0, 30, 100, 200, 400, 1000 s/mm2. IVIM parameters were estimated using the segmented (two-step) fitting method and by simultaneous fitting of a bi-exponential function. Segmented fitting was performed using two different cut-off b-values (100 and 200 s/mm2) to study possible variations due to the choice of cut-off. Friedman’s test and Student’s t-test were respectively used to compare IVIM parameters derived from different methods, and between cancer and normal tissues. Results No significant difference was found between IVIM parameters derived from the segmented method with b-value cutoff of 200 s/mm2 and the simultaneous fitting method (P>0.05). Tissue diffusivity (D) and perfusion fraction (f) were significantly lower in cervix cancer than normal tissue (P< 0.05). Conclusions IVIM parameters derived using fitting methods with small cutoff b-values could be different, however, the segmented method with b-value cutoff of 200 s/mm2 are consistent with the simultaneous fitting method and both can be used to differentiate between cervix cancer and normal tissue.
Collapse
Affiliation(s)
- Xue Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325027, China
| | - Jiao Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325027, China
| | - Shengfa Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325027, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325027, China
| | - Wenxiao Lin
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325027, China
| | - Tong San Koh
- Department of Oncologic Imaging, National Cancer Center, Singapore 169610 and Duke-NUS Graduate Medical School, Singapore, 169547, Singapore
| | - Zujun Hou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 25163, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325027, China.
| |
Collapse
|
9
|
Ohno N, Miyati T, Fujihara S, Gabata T, Kobayashi S. Biexponential analysis of intravoxel incoherent motion in calf muscle before and after exercise: Comparisons with arterial spin labeling perfusion and T2. Magn Reson Imaging 2020; 72:42-48. [DOI: 10.1016/j.mri.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
|
10
|
Federau C, Kroismayr D, Dyer L, Farshad M, Pfirrmann C. Demonstration of asymmetric muscle perfusion of the back after exercise in patients with adolescent idiopathic scoliosis using intravoxel incoherent motion (IVIM) MRI. NMR IN BIOMEDICINE 2020; 33:e4194. [PMID: 31815323 DOI: 10.1002/nbm.4194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this work was to quantify muscular perfusion patterns of back muscles after exercise in patients with adolescent idiopathic scoliosis (AIS) using intravoxel incoherent motion (IVIM) MR perfusion imaging. The paraspinal muscles of eight patients with AIS (Cobb angle 35 ± 10°, range [25-47°]) and nine healthy volunteers were scanned with a 1.5 T MRI, at rest and after performing a symmetric back muscle exercise on a Roman chair. An IVIM sequence with 16 b-values from 0 to 900 s/mm2 was acquired, and the IVIM bi-exponential signal equation model was fitted in two steps. Perfusion asymmetries were evaluated using the blood flow related IVIM fD* parameter in regions of interest placed within the paraspinal muscles. Statistical significance was assessed using a Student t-test. The observed perfusion pattern after performing a Roman chair muscle exercise differed consistently in patients with AIS compared with healthy normal volunteers, and consisted of an asymmetrical increase in IVIM fD* [10-3 mm2 /s] above the lumbar convexity from 6.5 ± 5.8 to 28.8 ± 26.8 (p < 0.005), with no increase in the concavity (decrease from 6.5 ± 10.0 to 3.2 ± 1.5 (p = 0.19)), compared with a bilateral symmetric increase in the healthy volunteers (right, increase from 3.3 ± 2.1 to 10.1 ± 4.6 (p < 0.05); left, 6.7 ± 10.7 to 13.3 ± 7.0 (p < 0.05)). In conclusion, patients with AIS exhibit significant asymmetric muscle perfusion over the convexity of the scoliotic curvature after Roman chair exercise.
Collapse
Affiliation(s)
- Christian Federau
- Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich und University of Zürich, Zürich, Switzerland
| | - Daniela Kroismayr
- Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Linda Dyer
- Division of Spine Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Division of Spine Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Pfirrmann
- Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Characterization of lower limb muscle activation patterns during walking and running with Intravoxel Incoherent Motion (IVIM) MR perfusion imaging. Magn Reson Imaging 2019; 63:12-20. [DOI: 10.1016/j.mri.2019.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
|
12
|
Naughton NM, Georgiadis JG. Global sensitivity analysis of skeletal muscle dMRI metrics: Effects of microstructural and pulse parameters. Magn Reson Med 2019; 83:1458-1470. [DOI: 10.1002/mrm.28014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Noel M. Naughton
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
| | - John G. Georgiadis
- Department of Mechanical Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
- Department of Biomedical Engineering Illinois Institute of Technology Chicago Illinois
| |
Collapse
|
13
|
Naughton NM, Georgiadis JG. Comparison of two-compartment exchange and continuum models of dMRI in skeletal muscle. ACTA ACUST UNITED AC 2019; 64:155004. [DOI: 10.1088/1361-6560/ab2aa6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Adelnia F, Shardell M, Bergeron CM, Fishbein KW, Spencer RG, Ferrucci L, Reiter DA. Diffusion-weighted MRI with intravoxel incoherent motion modeling for assessment of muscle perfusion in the thigh during post-exercise hyperemia in younger and older adults. NMR IN BIOMEDICINE 2019; 32:e4072. [PMID: 30861224 PMCID: PMC6530599 DOI: 10.1002/nbm.4072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/16/2018] [Accepted: 01/03/2019] [Indexed: 05/06/2023]
Abstract
Aging is associated with impaired endothelium-dependent vasodilation that leads to muscle perfusion impairment and contributes to organ dysfunction. Impaired muscle perfusion may result in inadequate delivery of oxygen and nutrients during and after muscle contraction, leading to muscle damage. The ability to study the relationship between perfusion and muscle damage has been limited using traditional muscle perfusion measures, which are invasive and risky. To overcome this limitation, we optimized a diffusion-weighted MRI sequence and validated an intravoxel incoherent motion (IVIM) analysis based on Monte Carlo simulation to study muscle perfusion impairment with aging during post-exercise hyperemia. Simulation results demonstrated that the bias of IVIM-derived perfusion fraction (fp ) and diffusion of water molecules in extra-vascular tissue (D) ranged from -3.3% to 14% and from -16.5% to 0.002%, respectively, in the optimized experimental condition. The dispersion in fp and D ranged from 3.2% to 9.5% and from 0.9% to 1.1%, respectively. The mid-thigh of the left leg of four younger (21-30 year old) and four older (60-90 year old) healthy females was studied using the optimized protocol at baseline and at seven time increments occurring every 3.25 min following in-magnet dynamic knee extension exercise performed using a MR-compatible ergometer with a workload of 0.4 bar for 2.5 min. After exercise, both fp and D significantly increased in the rectus femoris (active muscle during exercise) but not in adductor magnus (inactive muscle), reflecting the fact that the local increase in perfusion with both groups showed a maximum value in the second post-exercise time-point. A significantly greater increase in perfusion from the baseline (p < 0.05) was observed in the younger group (37 ± 12.05%) compared with the older group (17.57 ± 15.92%) at the first post-exercise measurement. This work establishes a reliable non-invasive method that can be used to study the effects of aging on dynamic changes in muscle perfusion as they relate to important measures of physical function.
Collapse
Affiliation(s)
- Fatemeh Adelnia
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
- Correspondence: Fatemeh Adelnia and David A. Reiter, National Institute on Aging, Baltimore, MD, USA. ;
| | - Michelle Shardell
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Christopher M. Bergeron
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kenneth W. Fishbein
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - David A. Reiter
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, Georgia, USA
- Correspondence: Fatemeh Adelnia and David A. Reiter, National Institute on Aging, Baltimore, MD, USA. ;
| |
Collapse
|
15
|
Faruch M, Garcia AI, Del Amo M, Pomes J, Isern J, González SP, Grau JM, Milisenda JC, Tomas X. Diffusion‐weighted magnetic resonance imaging is useful for assessing inflammatory myopathies. Muscle Nerve 2019; 59:555-560. [DOI: 10.1002/mus.26438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Marie Faruch
- Radiology Department, CHU Toulouse PurpanPlace du docteur Baylac 31059, Toulouse France
| | - Ana Isabel Garcia
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Montse Del Amo
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Jaume Pomes
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Jaime Isern
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Sergio Prieto González
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de BarcelonaUniversidad de Barcelona and CIBERER Villarroel, 170, 08036, Barcelona Spain
| | - Josep María Grau
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de BarcelonaUniversidad de Barcelona and CIBERER Villarroel, 170, 08036, Barcelona Spain
| | - José César Milisenda
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de BarcelonaUniversidad de Barcelona and CIBERER Villarroel, 170, 08036, Barcelona Spain
| | - Xavier Tomas
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| |
Collapse
|
16
|
McPherson JG, Smith AC, Duben DA, McMahon KL, Wasielewski M, Parrish TB, Elliott JM. Short- and long-term reproducibility of diffusion-weighted magnetic resonance imaging of lower extremity musculature in asymptomatic individuals and a comparison to individuals with spinal cord injury. BMC Musculoskelet Disord 2018; 19:433. [PMID: 30522482 PMCID: PMC6284280 DOI: 10.1186/s12891-018-2361-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background Diffusion-weighted magnetic resonance imaging (DW-MRI) of skeletal muscle has the potential to be a sensitive diagnostic and/or prognostic tool in complex, enigmatic neuromusculoskeletal conditions such as spinal cord injury and whiplash associated disorder. However, the reliability and reproducibility of clinically accessible DW-MRI parameters in skeletal muscle remains incompletely characterized – even in individuals without neuromusculoskeletal injury – and these parameters have yet to be characterized for many clinical populations. Here, we provide normative measures of the apparent diffusion coefficient (ADC) in healthy muscles of the lower limb; assess the rater-based reliability and short- and long-term reproducibility of the ADC in the same muscles; and quantify ADC of these muscles in individuals with motor incomplete spinal cord injury. Methods Twenty individuals without neuromusculoskeletal injury and 14 individuals with motor incomplete spinal cord injury (SCI) participated in this investigation. We acquired bilateral diffusion-weighted MRI of the lower limb musculature in all participants at 3 T using a multi-shot echo-planar imaging sequence with b-values of 0, 100, 300 and 500 s/mm2 and diffusion-probing gradients applied in 3 orthogonal directions. Outcome measures included: (1) average ADC in the lateral and medial gastrocnemius, tibialis anterior, and soleus of individuals without neurological or musculoskeletal injury; (2) intra- and inter-rater reliability, as well as short and long-term reproducibility of the ADC; and (3) estimation of average muscle ADC in individuals with SCI. Results Intra- and inter-rater reliability of the ADC averaged 0.89 and 0.79, respectively, across muscles. Least significant change, a measure of temporal reproducibility, was 4.50 and 11.98% for short (same day) and long (9-month) inter-scan intervals, respectively. Average ADC was significantly elevated across muscles in individuals with SCI compared to individuals without neurological or musculoskeletal injury (1.655 vs. 1.615 mm2/s, respectively). Conclusions These findings provide a foundation for future studies that track longitudinal changes in skeletal muscle ADC of the lower extremity and/or investigate the mechanisms underlying ADC changes in cases of known or suspected pathology.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew C Smith
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,School of Physical Therapy, Regis University, Denver, CO, USA
| | - Daniel A Duben
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Katie L McMahon
- Herston Imaging Research Facility, University of Queensland Centre for Clinical Research, Herston, QLD, Australia.,School of Clinical Sciences, Institute of Health and Biosciences Innovation, Queensland University of Technology, Brisbane, Australia
| | - Marie Wasielewski
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - James M Elliott
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia. .,Faculty of Health Sciences, The University of Sydney, Northern Sydney Local Health District, St Leonards, NSW, Australia.
| |
Collapse
|
17
|
Hybrid quantitative MRI using chemical shift displacement and recovery-based simultaneous water and lipid imaging: A preliminary study. Magn Reson Imaging 2018; 50:61-67. [DOI: 10.1016/j.mri.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 01/03/2023]
|
18
|
Sigmund EE, Baete SH, Luo T, Patel K, Wang D, Rossi I, Duarte A, Bruno M, Mossa D, Femia A, Ramachandran S, Stoffel D, Babb JS, Franks AG, Bencardino J. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI. Eur Radiol 2018; 28:5304-5315. [DOI: 10.1007/s00330-018-5458-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
|
19
|
Mastropietro A, Porcelli S, Cadioli M, Rasica L, Scalco E, Gerevini S, Marzorati M, Rizzo G. Triggered intravoxel incoherent motion MRI for the assessment of calf muscle perfusion during isometric intermittent exercise. NMR IN BIOMEDICINE 2018; 31:e3922. [PMID: 29637672 DOI: 10.1002/nbm.3922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise.
Collapse
Affiliation(s)
- Alfonso Mastropietro
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Simone Porcelli
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Marcello Cadioli
- Dipartimento di Neuroradiologia, Ospedale San Raffaele, Milan, Italy
- Philips Healthcare, Monza, Italy
| | - Letizia Rasica
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Elisa Scalco
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | | | - Mauro Marzorati
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Giovanna Rizzo
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Italy
| |
Collapse
|
20
|
Le Bihan D. What can we see with IVIM MRI? Neuroimage 2017; 187:56-67. [PMID: 29277647 DOI: 10.1016/j.neuroimage.2017.12.062] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Intravoxel Incoherent Motion (IVIM) refers to translational movements which within a given voxel and during the measurement time present a distribution of speeds in orientation and/or amplitude. The IVIM concept has been used to estimate perfusion in tissues as blood flow in randomly oriented capillaries mimics a pseudo-diffusion process. IVIM-based perfusion MRI, which does not require contrast agents, has gained momentum recently, especially in the field oncology. In this introductory review the basic concepts, models, technical requirements and limitations inherent to IVIM-based perfusion MRI are outlined, as well as new, non-perfusion applications of IVIM MRI, such as virtual MR Elastography.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Frédéric Joliot Institute, Bât 145, CEA-Saclay Center, Gif-sur-Yvette, 91191 France.
| |
Collapse
|
21
|
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR IN BIOMEDICINE 2017; 30. [PMID: 28885745 DOI: 10.1002/nbm.3780] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The idea that in vivo intravoxel incoherent motion magnetic resonance signal is influenced by blood motion in the microvasculature is exciting, because it suggests that local and quantitative perfusion information can be obtained in a simple and elegant way from a few diffusion-weighted images, without contrast injection. When the method was proposed in the late 1980s some doubts appeared as to its feasibility, and, probably because the signal to noise and image quality at the time was not sufficient, no obvious experimental evidence could be produced to alleviate them. Helped by the tremendous improvements seen in the last three decades in MR hardware, pulse design, and post-processing capabilities, an increasing number of encouraging reports on the value of intravoxel incoherent motion perfusion imaging have emerged. The aim of this article is to review the current published evidence on the feasibility of in vivo perfusion imaging with intravoxel incoherent motion MRI.
Collapse
Affiliation(s)
- Christian Federau
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben, Basle, Switzerland
| |
Collapse
|
22
|
Day J, Patel S, Limaye V. The role of magnetic resonance imaging techniques in evaluation and management of the idiopathic inflammatory myopathies. Semin Arthritis Rheum 2017; 46:642-649. [DOI: 10.1016/j.semarthrit.2016.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
23
|
Fieremans E, Lemberskiy G, Veraart J, Sigmund EE, Gyftopoulos S, Novikov DS. In vivo measurement of membrane permeability and myofiber size in human muscle using time-dependent diffusion tensor imaging and the random permeable barrier model. NMR IN BIOMEDICINE 2017; 30:e3612. [PMID: 27717099 DOI: 10.1002/nbm.3612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The time dependence of the diffusion coefficient is a hallmark of tissue complexity at the micrometer level. Here we demonstrate how biophysical modeling, combined with a specifically tailored diffusion MRI acquisition performing diffusion tensor imaging (DTI) for varying diffusion times, can be used to determine fiber size and membrane permeability of muscle fibers in vivo. We describe the random permeable barrier model (RPBM) and its assumptions, as well as the details of stimulated echo DTI acquisition, signal processing steps, and potential pitfalls. We illustrate the RPBM method on a few pilot examples involving human subjects (previously published as well as new), such as revealing myofiber size derived from RPBM increase after training in a calf muscle, and size decrease with atrophy in shoulder rotator cuff muscle. Finally, we comment on the potential clinical relevance of our results. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Lemberskiy
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Eric E Sigmund
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Soterios Gyftopoulos
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
24
|
Evaluation of Psoas Major and Quadratus Lumborum Recruitment Using Diffusion-Weighted Imaging Before and After 5 Trunk Exercises. J Orthop Sports Phys Ther 2017; 47:108-114. [PMID: 27819192 DOI: 10.2519/jospt.2017.6730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Study Design Controlled laboratory study, with a pretest-posttest design. Background Diffusion-weighted imaging is a noninvasive magnetic resonance imaging technique that can be used to assess the recruitment of the psoas major (PM) and quadratus lumborum (QL). The recruitment of these muscles during trunk exercises has not been evaluated. Objective To evaluate the diffusion of water movement in several trunk muscles using diffusion-weighted imaging before and after specific trunk exercises and thereby to understand the level of recruitment of each muscle during each exercise. Methods Nine healthy male participants performed the right side bridge, knee raise, and 3 front bridges, including the hand-knee, elbow-knee, and elbow-toe bridges. Diffusion-weighted imaging was performed before and after each exercise. After scanning, the apparent diffusion coefficient (ADC) map was constructed, and ADC values of the rectus abdominis, lateral abdominal muscles, QL, PM, and back muscles were calculated. Results The right PM following the elbow-toe bridge demonstrated the largest increase in ADC values, a change significantly greater than that demonstrated by the hand-knee bridge (P<.001) and side bridge (P = .002) exercises. The ADC change in the right QL following the side bridge exercise was significantly larger than that of other exercises (P<.008). Conclusion Of the 5 exercises investigated, the elbow-toe bridge and side bridge exercises elicit the greatest recruitment of the PM and QL, respectively. J Orthop Sports Phys Ther 2017;47(2):108-114. Epub 5 Nov 2016. doi:10.2519/jospt.2017.6730.
Collapse
|
25
|
Nguyen A, Ledoux JB, Omoumi P, Becce F, Forget J, Federau C. Selective microvascular muscle perfusion imaging in the shoulder with intravoxel incoherent motion (IVIM). Magn Reson Imaging 2017; 35:91-97. [DOI: 10.1016/j.mri.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/24/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
|
26
|
Rockel C, Akbari A, Kumbhare DA, Noseworthy MD. Dynamic DTI (dDTI) shows differing temporal activation patterns in post-exercise skeletal muscles. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:127-138. [PMID: 27624473 DOI: 10.1007/s10334-016-0587-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
OBJECT To assess post-exercise recovery of human calf muscles using dynamic diffusion tensor imaging (dDTI). MATERIALS AND METHODS DTI data (6 directions, b = 0 and 400 s/mm2) were acquired every 35 s from seven healthy men using a 3T MRI, prior to (4 volumes) and immediately following exercise (13 volumes, ~7.5 min). Exercise consisted of 5-min in-bore repetitive dorsiflexion-eversion foot motion with 0.78 kg resistance. Diffusion tensors calculated at each time point produced maps of mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and signal at b = 0 s/mm2 (S0). Region-of-interest (ROI) analysis was performed on five calf muscles: tibialis anterior (ATIB), extensor digitorum longus (EDL) peroneus longus (PER), soleus (SOL), and lateral gastrocnemius (LG). RESULTS Active muscles (ATIB, EDL, PER) showed significantly elevated initial MD post-exercise, while predicted inactive muscles (SOL, LG) did not (p < 0.0001). The EDL showed a greater initial increase in MD (1.90 × 10-4mm2/s) than ATIB (1.03 × 10-4mm2/s) or PER (8.79 × 10-5 mm2/s) (p = 7.40 × 10-4), and remained significantly elevated across more time points than ATIB or PER. Significant increases were observed in post-exercise EDL S0 relative to other muscles across the majority of time points (p < 0.01 to p < 0.001). CONCLUSIONS dDTI can be used to differentiate exercise-induced changes between muscles. These differences are suggested to be related to differences in fiber composition.
Collapse
Affiliation(s)
- Conrad Rockel
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Alireza Akbari
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Dinesh A Kumbhare
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael D Noseworthy
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada. .,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada. .,Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada. .,Department of Radiology, McMaster University, Hamilton, ON, Canada. .,Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
27
|
Filli L, Kenkel D, Wurnig MC, Boss A. Diffusional kurtosis MRI of the lower leg: changes caused by passive muscle elongation and shortening. NMR IN BIOMEDICINE 2016; 29:767-775. [PMID: 27061811 DOI: 10.1002/nbm.3529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Diffusional kurtosis MRI (DKI) quantifies the deviation of water diffusion from a Gaussian distribution. We investigated the influence of passive elongation and shortening of the lower leg muscles on the DKI parameters D (diffusion coefficient) and K (kurtosis). After approval by the local ethics committee, eight healthy volunteers (age, 29.1 ± 2.9 years) underwent MRI of the lower leg at 3 T. Diffusion-weighted images were acquired with 10 different b values at three ankle positions (passive dorsiflexion 10°, neutral position 0°, passive plantar flexion 40°). Parametrical maps of D and K were obtained by voxel-wise fitting of the signal intensities using a non-linear Levenberg-Marquardt algorithm. D and K were measured in the tibialis anterior, medial and lateral gastrocnemius, and soleus muscles. In the neutral position, D and K values were in the range between 1.66-1.79 × 10(-3) mm(2) /s and 0.21-0.39, respectively. D and K increased with passive shortening, and decreased with passive elongation, which could also be illustrated on the parametrical maps. In dorsiflexion, D (p < 0.01) and K (p = 0.036) were higher in the tibialis anterior than in the medial gastrocnemius. In plantar flexion, the opposite was found for K (p = 0.035). DKI parameters in the lower leg muscles are significantly influenced by the ankle joint position, indicating that the diffusion of water molecules in skeletal muscle deviates from a Gaussian distribution depending on muscle tonus. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lukas Filli
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David Kenkel
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Moritz C Wurnig
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Ran J, Liu Y, Sun D, Morelli J, Zhang P, Wu G, Sheng Y, Xie R, Zhang X, Li X. The diagnostic value of biexponential apparent diffusion coefficients in myopathy. J Neurol 2016; 263:1296-302. [PMID: 27142711 DOI: 10.1007/s00415-016-8139-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022]
Abstract
To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm(2) was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs.
Collapse
Affiliation(s)
- Jun Ran
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yao Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Dong Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - John Morelli
- Department of Radiology, St John's Medical Center, Tulsa, OK, USA
| | - Ping Zhang
- Department of Radiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gang Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yuda Sheng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Ruyi Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xiaoli Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
29
|
Nguyen A, Ledoux JB, Omoumi P, Becce F, Forget J, Federau C. Application of intravoxel incoherent motion perfusion imaging to shoulder muscles after a lift-off test of varying duration. NMR IN BIOMEDICINE 2016; 29:66-73. [PMID: 26684052 DOI: 10.1002/nbm.3449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/06/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Intravoxel incoherent motion (IVIM) MRI is a method to extract microvascular blood flow information out of diffusion-weighted images acquired at multiple b-values. We hypothesized that IVIM can identify the muscles selectively involved in a specific task, by measuring changes in activity-induced local muscular perfusion after exercise. We tested this hypothesis using a widely used clinical maneuver, the lift-off test, which is known to assess specifically the subscapularis muscle functional integrity. Twelve shoulders from six healthy male volunteers were imaged at 3 T, at rest, as well as after a lift-off test hold against resistance for 30 s, 1 and 2 min respectively, in three independent sessions. IVIM parameters, consisting of perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient D* and blood flow-related fD*, were estimated within outlined muscles of the rotator cuff and the deltoid bundles. The mean values at rest and after the lift-off tests were compared in each muscle using a one-way ANOVA. A statistically significant increase in fD* was measured in the subscapularis, after a lift-off test of any duration, as well as in D. A fD* increase was the most marked (30 s, +103%; 1 min, +130%; 2 min, +156%) and was gradual with the duration of the test (in 10(-3) mm(2) /s: rest, 1.41 ± 0.50; 30 s, 2.86 ± 1.17; 1 min, 3.23 ± 1.22; 2 min, 3.60 ± 1.21). A significant increase in fD* and D was also visible in the posterior bundle of the deltoid. No significant change was consistently visible in the other investigated muscles of the rotator cuff and the other bundles of the deltoid. In conclusion, IVIM fD* allows the demonstration of a task-related microvascular perfusion increase after a specific task and suggests a direct relationship between microvascular perfusion and the duration of the effort. It is a promising method to investigate non-invasively skeletal muscle physiology and clinical perfusion-related muscular disorders.
Collapse
Affiliation(s)
- Audrey Nguyen
- Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Joachim Forget
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Christian Federau
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Department of Radiology, Division of Neuroradiology, Stanford University, 300 Pasteur Drive, Room S039, Stanford, CA, 94305-5105, United States
| |
Collapse
|
30
|
Kuai ZX, Liu WY, Zhang YL, Zhu YM. Generalization of intravoxel incoherent motion model by introducing the notion of continuous pseudodiffusion variable. Magn Reson Med 2015; 76:1594-1603. [DOI: 10.1002/mrm.26064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Zi-Xiang Kuai
- International Associated Laboratory (LIA)-CNRS Medical Engineering and Theory in Image and Signal Laboratory (Metislab), Harbin Institute of Technology (HIT); Harbin China
- CREATIS, CNRS (UMR 5220); INSERM (U1044); INSA Lyon; Universite de Lyon; Villeurbanne France
| | - Wan-Yu Liu
- International Associated Laboratory (LIA)-CNRS Medical Engineering and Theory in Image and Signal Laboratory (Metislab), Harbin Institute of Technology (HIT); Harbin China
| | - Yan-Li Zhang
- International Associated Laboratory (LIA)-CNRS Medical Engineering and Theory in Image and Signal Laboratory (Metislab), Harbin Institute of Technology (HIT); Harbin China
| | - Yue-Min Zhu
- International Associated Laboratory (LIA)-CNRS Medical Engineering and Theory in Image and Signal Laboratory (Metislab), Harbin Institute of Technology (HIT); Harbin China
- CREATIS, CNRS (UMR 5220); INSERM (U1044); INSA Lyon; Universite de Lyon; Villeurbanne France
| |
Collapse
|
31
|
Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2015. [PMID: 26221741 DOI: 10.1002/jmri.25016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is increasingly applied to study skeletal muscle physiology, anatomy, and pathology. The reason for this growing interest is that DTI offers unique, noninvasive, and potentially diagnostically relevant imaging readouts of skeletal muscle structure that are difficult or impossible to obtain otherwise. DTI has been shown to be feasible within most skeletal muscles. DTI parameters are highly sensitive to patient-specific properties such as age, body mass index (BMI), and gender, but also to more transient factors such as exercise, rest, pressure, temperature, and relative joint position. However, when designing a DTI study one should not only be aware of sensitivity to the above-mentioned factors but also the fact that the DTI parameters are dependent on several acquisition parameters such as echo time, b-value, and diffusion mixing time. The purpose of this review is to provide an overview of DTI studies covering the technical, demographic, and clinical aspects of DTI in skeletal muscles. First we will focus on the critical aspects of the acquisition protocol. Second, we will cover the reported normal variance in skeletal muscle diffusion parameters, and finally we provide an overview of clinical studies and reported parameter changes due to several (patho-)physiological conditions.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Yanagisawa O, Kurihara T. Intramuscular water movement during and after isometric muscle contraction: evaluation at different exercise intensities. Clin Physiol Funct Imaging 2015; 36:368-75. [DOI: 10.1111/cpf.12239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 01/27/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Osamu Yanagisawa
- Sports & Health Management Program; Faculty of Business & Information Sciences; Jobu University; Isesaki Japan
| | - Toshiyuki Kurihara
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Japan
| |
Collapse
|
33
|
Baete SH, Cho GY, Sigmund EE. Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T. NMR IN BIOMEDICINE 2015; 28:667-78. [PMID: 25900166 PMCID: PMC4433040 DOI: 10.1002/nbm.3296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 05/05/2023]
Abstract
When diffusion biomarkers display transient changes, i.e. in muscle following exercise, traditional diffusion-tensor imaging (DTI) methods lack the temporal resolution to resolve the dynamics. This article presents an MRI method for dynamic diffusion-tensor acquisitions on a clinical 3T scanner. This method, the Single-Line Multiple-Echo Diffusion-Tensor Acquisition Technique (SL-MEDITATE), achieves a high temporal resolution (4 s) by rapid diffusion encoding through the acquisition of multiple echoes with unique diffusion sensitization and limiting the readout to a single line volume. The method is demonstrated in a rotating anisotropic phantom, a flow phantom with adjustable flow speed and in vivo skeletal calf muscle of healthy volunteers following a plantar flexion exercise. The rotating and flow-varying phantom experiments show that SL-MEDITATE correctly identifies the rotation of the first diffusion eigenvector and the changes in diffusion-tensor parameter magnitudes, respectively. Immediately following exercise, the in vivo mean diffusivity (MD) time courses show, before the well-known increase, an initial decrease that is not typically observed in traditional DTI. In conclusion, SL-MEDITATE can be used to capture transient changes in tissue anisotropy in a single line. Future progress might allow for dynamic DTI when combined with appropriate k-space trajectories and compressed sensing reconstruction.
Collapse
Affiliation(s)
- Steven H Baete
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY, USA
| | - Gene Y Cho
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, USA
| | - Eric E Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Hiepe P, Gussew A, Rzanny R, Kurz E, Anders C, Walther M, Scholle HC, Reichenbach JR. Age-related structural and functional changes of low back muscles. Exp Gerontol 2015; 65:23-34. [PMID: 25735850 DOI: 10.1016/j.exger.2015.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/15/2023]
Abstract
During aging declining maximum force capacity with more or less unchanged fatigability is observed with the underlying mechanisms still not fully understood. Therefore, we compared morphology and function of skeletal muscles between different age groups. Changes in high-energy phosphate turnover (PCr, Pi and pH) and muscle functional MRI (mfMRI) parameters, including proton transverse relaxation time (T2), diffusion (D) and vascular volume fraction (f), were investigated in moderately exercised low back muscles of young and late-middle-aged healthy subjects with (31)P-MR spectroscopy, T2- and diffusion-weighted MRI at 3T. In addition, T1-weighted MRI data were acquired to determine muscle cross-sectional areas (CSA) and to assess fat infiltration into muscle tissue. Except for pH, both age groups showed similar load-induced MR changes and rates of perceived exertion (RPE), which indicates comparable behavior of muscle activation at moderate loads. Changes of mfMRI parameters were significantly associated with RPE in both cohorts. Age-related differences were observed, with lower pH and higher Pi/ATP ratios as well as lower D and f values in the late-middle-aged subjects. These findings are ascribed to age-related changes of fiber type composition, fiber size and vascularity. Interestingly, post exercise f was negatively associated with fat infiltration with the latter being significantly higher in late-middle-aged subjects. CSA of low back muscles remained unchanged, while CSA of inner back muscle as well as mean T2 at rest were associated with maximum force capacity. Overall, applying the proposed MR approach provides evidence of age-related changes in several muscle tissue characteristics and gives new insights into the physiological processes that take place during aging.
Collapse
Affiliation(s)
- Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany.
| | - Alexander Gussew
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Reinhard Rzanny
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Eduard Kurz
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Christoph Anders
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Mario Walther
- Institute of Medical Statistics, Computer Sciences and Documentation (IMSID), Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Hans-Christoph Scholle
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| |
Collapse
|
35
|
Filli L, Boss A, Wurnig MC, Kenkel D, Andreisek G, Guggenberger R. Dynamic intravoxel incoherent motion imaging of skeletal muscle at rest and after exercise. NMR IN BIOMEDICINE 2015; 28:240-246. [PMID: 25521711 DOI: 10.1002/nbm.3245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/14/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this work was to demonstrate the feasibility of intravoxel incoherent motion imaging (IVIM) for non-invasive quantification of perfusion and diffusion effects in skeletal muscle at rest and following exercise. After IRB approval, eight healthy volunteers underwent diffusion-weighted MRI of the forearm at 3 T and eight different b values between 0 and 500 s/mm(2) with a temporal resolution of 57 s per dataset. Dynamic images were acquired before and after a standardized handgrip exercise. Diffusion (D) and pseudodiffusion (D*) coefficients as well as the perfusion fraction (FP ) were measured in regions of interest in the flexor digitorum superficialis and profundus (FDS/FDP), brachioradialis, and extensor carpi radialis longus and brevis muscles by using a multi-step bi-exponential analysis in MATLAB. Parametrical maps were calculated voxel-wise. Differences in D, D*, and FP between muscle groups and between time points were calculated using a repeated measures analysis of variance with post hoc Bonferroni tests. Mean values and standard deviations at rest were the following: D*, 28.5 ± 11.4 × 10(-3) mm(2) /s; FP , 0.03 ± 0.01; D, 1.45 ± 0.09 × 10(-3) mm(2) /s. Changes of IVIM parameters were clearly visible on the parametrical maps. In the FDS/FDP, D* increased by 289 ± 236% (p < 0.029), FP by 138 ± 58% (p < 0.01), and D by 17 ± 9% (p < 0.01). A significant increase of IVIM parameters could also be detected in the brachioradialis muscle, which however was significantly lower than in the FDS/FDP. After 20 min, all parameters were still significantly elevated in the FDS/FDP but not in the brachioradialis muscle compared with the resting state. The IVIM approach allows simultaneous quantification of muscle perfusion and diffusion effects at rest and following exercise. It may thus provide a useful alternative to other non-invasive methods such as arterial spin labeling. Possible fields of interest for this technique include perfusion-related muscle diseases, such as peripheral arterial occlusive disease.
Collapse
Affiliation(s)
- Lukas Filli
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Whole-body intravoxel incoherent motion imaging. Eur Radiol 2015; 25:2049-58. [PMID: 25576232 DOI: 10.1007/s00330-014-3577-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/07/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate the technical feasibility of whole-body intravoxel incoherent motion (IVIM) imaging. MATERIALS AND METHODS Whole-body MR images of eight healthy volunteers were acquired at 3T using a spin-echo echo-planar imaging sequence with eight b-values. Coronal parametrical whole-body maps of diffusion (D), pseudodiffusion (D*), and the perfusion fraction (Fp) were calculated. Image quality was rated qualitatively by two independent radiologists, and inter-reader reliability was tested with intra-class correlation coefficients (ICCs). Region of interest (ROI) analysis was performed in the brain, liver, kidney, and erector spinae muscle. RESULTS Depiction of anatomic structures was rated as good on D maps and good to fair on D* and Fp maps. Exemplary mean D (10(-3) mm(2)/s), D* (10(-3) mm(2)/s) and Fp (%) values (± standard deviation) of the renal cortex were as follows: 1.7 ± 0.2; 15.6 ± 6.5; 20.9 ± 4.4. Inter-observer agreement was "substantial" to "almost perfect" (ICC = 0.80 - 0.92). The coefficient of variation of D* was significantly lower with the proposed algorithm compared to the conventional algorithm (p < 0.001), indicating higher stability. CONCLUSION The proposed IVIM protocol allows computation of parametrical maps with good to fair image quality. Potential future clinical applications may include characterization of widespread disease such as metastatic tumours or inflammatory myopathies. KEY POINTS • IVIM imaging allows estimation of tissue perfusion based on diffusion-weighted MRI. • In this study, a clinically suitable whole-body IVIM algorithm is presented. • Coronal parametrical whole-body maps showed good depiction of anatomic details. • Potential future applications include detection of widespread metastatic or inflammatory disease.
Collapse
|
37
|
Hiepe P, Gussew A, Rzanny R, Anders C, Walther M, Scholle HC, Reichenbach JR. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles. NMR IN BIOMEDICINE 2014; 27:958-970. [PMID: 24953438 DOI: 10.1002/nbm.3141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/17/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc = 11.8/9.7%; left ES/MF: T2 ,inc = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.
Collapse
Affiliation(s)
- Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Center of Radiology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Lambrecht M, Van Calster B, Vandecaveye V, De Keyzer F, Roebben I, Hermans R, Nuyts S. Integrating pretreatment diffusion weighted MRI into a multivariable prognostic model for head and neck squamous cell carcinoma. Radiother Oncol 2014; 110:429-34. [PMID: 24630535 DOI: 10.1016/j.radonc.2014.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 01/11/2014] [Accepted: 01/12/2014] [Indexed: 11/26/2022]
Abstract
INTRODUCTION In head and neck squamous cell carcinoma (HNSCC) the ability to anticipate an individual patient's outcome is very valuable. With this study we wanted to assess the prognostic value of pretreatment apparent diffusion coefficient (ADC) in a large patient population and integrate it into a multivariable prognostic model. METHODS From 2004 to 2010 175 patients with pathology proven HNSCC were included in this study. All patients underwent a pretreatment MRI with diffusion weighted imaging (DWI) using six b-values. For each tumor, three ADC values were calculated using different b-value combinations: ADC(low) (b 0-50-100 s/mm(2)), ADChigh (b 500-750-1000 s/mm(2)) and ADC(avg) (all b-values). The clinical and radiological variables included: tumor and nodal volume, tumor location and age. Disease recurrence was analyzed using competing risk regression. A prognostic model for disease recurrence was developed, and internal validation was performed using bootstrapping and by dividing patients in three equal sized groups based on prognosis. RESULTS One hundred and sixty-one patients were eligible for analysis. Median follow-up was 50 months (range 4-86). A total of 67 patients experienced disease recurrence during follow-up (42%). ADC(high) was a prognostic factor for disease recurrence (adjusted hazard ratio: 1.14 per 10(-4) mm(2)/s, 95% CI 1.04-1.25). Harrell's c-index of the multivariable prognostic model was 0.62 (95% CI 0.56-0.70) after internal validation. The validated 3-year disease recurrence rates for the groups with worst, intermediate, and best prognosis were 56%, 33% and 31% respectively. CONCLUSION Pretreatment ADC value derived from high b-values is an independent prognostic factor in HNSCC and increases the performance of a multivariable prognostic model in addition to known clinical and radiological variables. Integration of other biomarkers and external validation is necessary to ensure its clinical applicability.
Collapse
Affiliation(s)
- Maarten Lambrecht
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium.
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Belgium; Biostatistics Unit, Leuvens Kankerinstituut, University Hospitals Leuven, Belgium
| | | | | | - Ilse Roebben
- Department of Radiology, University Hospitals Leuven, Belgium
| | - Robert Hermans
- Department of Radiology, University Hospitals Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
39
|
Bokacheva L, Kaplan JB, Giri DD, Patil S, Gnanasigamani M, Nyman CG, Deasy JO, Morris EA, Thakur SB. Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 2013; 40:813-23. [PMID: 24273096 DOI: 10.1002/jmri.24462] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To study the differentiation of malignant breast lesions from benign lesions and fibroglandular tissue (FGT) using apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) parameters. MATERIALS AND METHODS This retrospective study included 26 malignant and 14 benign breast lesions in 35 patients who underwent diffusion-weighted MRI at 3.0T and nine b-values (0-1000 s/mm(2) ). ADC and IVIM parameters (perfusion fraction fp , pseudodiffusion coefficient Dp , and true diffusion coefficient Dd ) were determined in lesions and FGT. For comparison, IVIM was also measured in 16 high-risk normal patients. A predictive model was constructed using linear discriminant analysis. Lesion discrimination based on ADC and IVIM parameters was assessed using receiver operating characteristic (ROC) and area under the ROC curve (AUC). RESULTS In FGT of normal subjects, fp was 1.1 ± 1.1%. In malignant lesions, fp (6.4 ± 3.1%) was significantly higher than in benign lesions (3.1 ± 3.3%, P = 0.0025) or FGT (1.5 ± 1.2%, P < 0.001), and Dd ((1.29 ± 0.28) × 10(-3) mm(2) /s) was lower than in benign lesions ((1.56 ± 0.28) × 10(-3) mm(2) /s, P = 0.011) or FGT ((1.86 ± 0.34) × 10(-3) mm(2) /s, P < 0.001). A combination of Dd and fp provided higher AUC for discrimination between malignant and benign lesions (0.84) or FGT (0.97) than ADC (0.72 and 0.86, respectively). CONCLUSION The IVIM parameters provide accurate identification of malignant lesions.
Collapse
Affiliation(s)
- Louisa Bokacheva
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Intravoxel Incoherent Motion Imaging of Masticatory Muscles: Pilot Study for the Assessment of Perfusion and Diffusion During Clenching. AJR Am J Roentgenol 2013; 201:1101-7. [DOI: 10.2214/ajr.12.9729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Sigmund EE, Sui D, Ukpebor O, Baete S, Fieremans E, Babb JS, Mechlin M, Liu K, Kwon J, McGorty K, Hodnett PA, Bencardino J. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging 2013; 38:1073-82. [PMID: 23440764 DOI: 10.1002/jmri.24060] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2 -weighted (T2w) imaging. MATERIALS AND METHODS Using an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2w imaging and stimulated echo DTI were applied to eight healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in seven calf muscle compartments, which in patients were classified by their response on T2w: normal (<20% change), and CECS (>20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post/pre-exercise ratios) of DTI parameters. RESULTS All diffusivities significantly increased (P < 0.0001) and FA decreased (P = 0.0014) with exercise. Longitudinal diffusion responses were significantly smaller than transversal diffusion responses (P < 0.0001). Nineteen of 98 patient compartments were classified as CECS on T2w. MD increased by 3.8 ± 3.4% (volunteer), 7.4 ± 4.2% (normal), and 9.1 ± 7.0% (CECS) with exercise. CONCLUSION DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment.
Collapse
Affiliation(s)
- Eric E Sigmund
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hayashi T, Miyati T, Takahashi J, Fukuzawa K, Sakai H, Tano M, Saitoh S. Diffusion analysis with triexponential function in liver cirrhosis. J Magn Reson Imaging 2012; 38:148-53. [DOI: 10.1002/jmri.23966] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - Tosiaki Miyati
- Division of Health Sciences; Graduate School of Medical Science; Kanazawa University; Kanazawa; Japan
| | | | | | | | | | | |
Collapse
|
43
|
Shiraishi T, Chikui T, Inadomi D, Kagawa T, Yoshiura K, Yuasa K. Evaluation of diffusion parameters and T2 values of the masseter muscle during jaw opening, clenching, and rest. Acta Radiol 2012; 53:81-6. [PMID: 22156008 DOI: 10.1258/ar.2011.110136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) can be used to evaluate changes that accompany skeletal muscle contraction. PURPOSE To investigate whether jaw opening or closure affect the diffusion parameters of the masseter muscles (MMs). MATERIAL AND METHODS Eleven healthy volunteers were evaluated. Diffusion-tensor images were acquired to obtain the primary (λ(1)), secondary (λ(2)), and tertiary eigenvalues (λ(3)). We estimated these parameters at three different locations: at the level of the mandibular notch for the superior site, the level of the mandibular foramen for the middle site, and the root apex of the mandibular molars for the inferior site. RESULTS Both λ(2) and λ(3) during jaw opening were significantly lower than that at rest at the superior (P = 0.006, P < 0.0001, respectively) and middle site (P = 0.004, P = 0.0001, respectively); however, the change in λ(1) was not significant. At the lower site, no parameter was significantly different at rest and during jaw opening. There was no significant difference in T2 between at rest (40.3 ± 4.4 ms) and during jaw opening (39.2 ± 2.7 ms; P = 0.12). The changes induced by jaw closure were marked at the inferior site. In the middle and inferior sites, the three eigenvalues were increased by jaw closure, and the changes in λ(1) (P = 0.0145, P = 0.0107, respectively) and λ(2) (P = 0.0003, P = 0.0001) were significant (especially λ(2)). CONCLUSION The eigenvalues for diffusion of the MM were sensitive to jaw position. The recruitment of muscle fibers, specific to jaw position, reflects the differences in changes in muscle diffusion parameters.
Collapse
Affiliation(s)
- Tomoko Shiraishi
- Section of Image Diagnosis, Department of Diagnostics and General Care, Fukuoka Dental College, Fukuoka
| | - Toru Chikui
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, Fukuoka
| | - Daisuke Inadomi
- Department of Radiology, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Toyohiro Kagawa
- Section of Image Diagnosis, Department of Diagnostics and General Care, Fukuoka Dental College, Fukuoka
| | - Kazunori Yoshiura
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Science, Kyushu University, Fukuoka
| | - Kenji Yuasa
- Section of Image Diagnosis, Department of Diagnostics and General Care, Fukuoka Dental College, Fukuoka
| |
Collapse
|
44
|
Shiraishi T, Chikui T, Yoshiura K, Yuasa K. Evaluation of T2 values and apparent diffusion coefficient of the masseter muscle by clenching. Dentomaxillofac Radiol 2011; 40:35-41. [PMID: 21159913 DOI: 10.1259/dmfr/15607259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the changes in T2 values and apparent diffusion coefficient (ADC) in the masseter muscle by clenching in healthy volunteers. METHODS 37 volunteers were enrolled in the study. We measured bite force using pressure-sensitive paper and a T2 map. The ADC map was obtained at rest, during clenching, immediately after and 5 min after clenching. The spin-echo sequence was used to calculate T2, and single-shot spin-echo echo planar imaging was used to calculate the ADC. The motion-probing gradients (MPGs) were applied separately along the posterior-to-anterior (PA), right-to-left (RL) and superior-to-inferior (SI) directions, with b values of 0, 300 and 600 s mm(-2) in each direction. ADC-PA, ADC-RL, and ADC-SI values were obtained, and we calculated the ADC-iso for the mean diffusivity. RESULTS There were no significant differences between the stronger and weaker sides of bite force before, during or 5 min after clenching for T2 and ADC. The bite force had little effect on these parameters; thus, we used the average of the two sides for the following analyses. Time course analysis of ADC-iso, ADC-PA, ADC-RL and ADC-SI demonstrated a marked increase after clenching and a rapid decrease immediately after clenching, although they did not completely return to the initial values; however, the change in ADC-RL was significantly greater than those in ADC-PA or ADC-SI (P<0.001 each). The changes in T2 were similar to those of ADC, although not as marked. CONCLUSIONS ADC (especially ADC-RL) was altered by contraction of the masseter muscle.
Collapse
Affiliation(s)
- T Shiraishi
- Section of Image Diagnosis, Department of Diagnostics and General Care, Fukuoka Dental College, Tamura 2-15-1, Sawara-ku, Fukuoka 814-0193, Japan.
| | | | | | | |
Collapse
|
45
|
Yanagisawa O, Fukubayashi T. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle. Clin Radiol 2010; 65:874-80. [DOI: 10.1016/j.crad.2010.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
46
|
Suzuki K, Igarashi H, Watanabe M, Nakamura Y, Nakada T. Separation of perfusion signals from diffusion-weighted image series enabled by independent component analysis. J Neuroimaging 2010; 21:384-94. [PMID: 20977526 DOI: 10.1111/j.1552-6569.2010.00514.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE An important task in diagnostic imaging of acute ischemic stroke is to identify the so-called diffusion-perfusion mismatch area. We aimed to investigate the possibility of facilitating the identification process by combining independent component analysis (ICA) and diffusion-weighted MRI (DWI), with the expectation that this would eliminate the need for additional perfusion imaging to delineate perfusion lesion. METHODS Simulations were performed to confirm the utility of an intuitively determined sequence of 14 b-factors ranging from 0 to 1,000 seconds/mm(2) for ICA separation of perfusion lesion. Corresponding DWI data from 2 stroke patients, 1 in the acute and 1 in the subacute phase, were decomposed into independent component (IC) maps, and their b-dependent amplitude decay profiles were subjected to multiexponential fitting. RESULTS Low-perfusion areas were successfully delineated on IC maps in both patients. Comparison with the areas of diffusion lesion identifiable on relatively high b-factor images in the DWI data, for example, those at b= 1,000 seconds/mm(2) , allowed the mismatch to be identified. CONCLUSION This study demonstrates that combining ICA and DWI enables noninvasive mapping of sluggish perfusion provided an appropriate b-sequence is applied, and that it thereby facilitates the identification of diffusion-perfusion mismatch.
Collapse
Affiliation(s)
- Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | | | | | | | | |
Collapse
|
47
|
Magnetic resonance T2-weighted IDEAL water imaging for assessing changes in masseter muscles caused by low-level static contraction. ACTA ACUST UNITED AC 2010; 109:908-16. [DOI: 10.1016/j.tripleo.2009.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022]
|
48
|
Baron P, Dorrius MD, Kappert P, Oudkerk M, Sijens PE. Diffusion-weighted imaging of normal fibroglandular breast tissue: influence of microperfusion and fat suppression technique on the apparent diffusion coefficient. NMR IN BIOMEDICINE 2010; 23:399-405. [PMID: 20131313 DOI: 10.1002/nbm.1475] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
The influence of microperfusion and fat suppression technique on the apparent diffusion coefficient (ADC) values obtained with diffusion weighted imaging (DWI) of normal fibroglandular breast tissue was investigated. Seven volunteers (14 breasts) were scanned using diffusion weighting factors (b values) up to 1600 s/mm(2) and the four different fat suppression techniques: STIR, fat saturation, SPAIR, and Water Excitation. The relationship between the logarithmic DW attenuation curves and b was linear for b values up to 600 s/mm(2) (R(2) > 0.999). Small differences were noted between the ADC values obtained with the various fat suppression methods, especially at the higher b values. Water Excitation had the highest mean SNR, exceeding STIR (p = 0.03) though not significantly different from fat saturation and SPAIR. In conclusion, the ADC of fibroglandular breast tissue is not influenced by microperfusion and Water Excitation is recommended because it yielded the best SNR values. These factors may be crucial in the differentiation between benign and malignant lesions.
Collapse
Affiliation(s)
- Paul Baron
- University Medical Center Groningen, Department of Radiology, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Jin G, An N, Jacobs MA, Li K. The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions: preliminary results. Acad Radiol 2010; 17:456-63. [PMID: 20207316 DOI: 10.1016/j.acra.2009.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the feasibility of using diffusion-weighted imaging (DWI) with an array spatial sensitivity encoding technique (ASSET) and apparent diffusion coefficient (ADC) map values with different b values to distinguish benign and malignant breast lesions. MATERIALS AND METHODS Fifty-six female patients with 60 histologically proven breast lesions and 20 healthy volunteers underwent magnetic resonance imaging. A subset of normal volunteers (n = 7) and patients (n = 16) underwent both conventional DWI and ASSET-DWI, and the image quality between the two methods was compared. Finally, ASSET-DWI with b = 0, 600 s/mm(2), and b = 0, 1000 s/mm(2), were compared for their ability to distinguish benign and malignant breast lesions. RESULTS The ASSET-DWI method had less distortion, fewer artifacts, and a lower acquisition time than other methods. No significant difference (P > .05) was detected in ADC map values between ASSET-DWI and conventional DWI. For ASSET-DWI, the sensitivity of ADC values for malignant lesions with a threshold of less than 1.44 x 10(-3) mm(2)/s (b = 600 s/mm(2)) and 1.18 x 10(-3) mm(2)/s (b = 1000 s/mm(2)) was 80% and 77.5%, respectively. The specificity of both groups was 95%. CONCLUSION ASSET-DWI evaluation of breast tissue offers decreased distortion, susceptibility to artifacts, and acquisition time relative to other methods. The use of ASSET-DWI is feasible with b values ranging from 600 to 1000 s/mm(2) and provides increased specificity compared to other techniques. Thus, the ADC value of a breast lesion can be used to further characterize malignant lesions from benign ones.
Collapse
Affiliation(s)
- Guangwei Jin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China 100053
| | | | | | | |
Collapse
|
50
|
Karampinos DC, King KF, Sutton BP, Georgiadis JG. Intravoxel partially coherent motion technique: Characterization of the anisotropy of skeletal muscle microvasculature. J Magn Reson Imaging 2010; 31:942-53. [DOI: 10.1002/jmri.22100] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|