1
|
Eilertsen HC, Strømholt J, Bergum JS, Eriksen GK, Ingebrigtsen R. Mass Cultivation of Microalgae: II. A Large Species Pulsing Blue Light Concept. BIOTECH 2023; 12:biotech12020040. [PMID: 37218757 DOI: 10.3390/biotech12020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
If mass cultivation of photoautotrophic microalgae is to gain momentum and find its place in the new "green future", exceptional optimizations to reduce production costs must be implemented. Issues related to illumination should therefore constitute the main focus, since it is the availability of photons in time and space that drives synthesis of biomass. Further, artificial illumination (e.g., LEDs) is needed to transport enough photons into dense algae cultures contained in large photobioreactors. In the present research project, we employed short-term O2 production and 7-day batch cultivation experiments to evaluate the potential to reduce illumination light energy by applying blue flashing light to cultures of large and small diatoms. Our results show that large diatom cells allow more light penetration for growth compared to smaller cells. PAR (400-700 nm) scans yielded twice as much biovolume-specific absorbance for small biovolume (avg. 7070 μm3) than for large biovolume (avg. 18,703 μm3) cells. The dry weight (DW) to biovolume ratio was 17% lower for large than small cells, resulting in a DW specific absorbance that was 1.75 times higher for small cells compared to large cells. Blue 100 Hz square flashing light yielded the same biovolume production as blue linear light in both the O2 production and batch experiments at the same maximum light intensities. We therefore suggest that, in the future, more focus should be placed on researching optical issues in photobioreactors, and that cell size and flashing blue light should be central in this.
Collapse
Affiliation(s)
- Hans Chr Eilertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
- Finnfjord AS, N-9305 Finnsnes, Norway
| | | | | | - Gunilla Kristina Eriksen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Richard Ingebrigtsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
2
|
Mohamed AG, El-Salam BAEYA, Gafour WAEM. Quality Characteristics of Processed Cheese Fortified with <i>Spirulina</i> Powder. Pak J Biol Sci 2020; 23:533-541. [PMID: 32363839 DOI: 10.3923/pjbs.2020.533.541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Spirulina is a rich source of nutrients viz., essential amino acids, essential fatty acids, carotenoids and vitamins. The study was carried out to evaluate of Spirulina maxima addition as source of nutrients, antioxidants and color on processed cheese properties. MATERIALS AND METHODS Processed cheese analogue treatments were supplemented with Spirulina maxima powder (1, 2 and 3%). The chemical, physical, color and sensorial properties of processed cheese analogue supplemented with S. maxima were evaluated through 3 months of cold storage (7°C). Also, the antioxidant capacity of S. maxima processed cheese analogue treatments was determined. RESULTS The spreadable processed cheese analogue with 3% S. maxima powder had higher chemical components except ash compared to control cheese. The results of physical properties showed that the penetrometer reading of the S. maxima processed cheese treatments was higher than those of control allover storage period, while oil separation and melt ability were lower. The S. maxima processed cheeses were more green (a-value) and lower whiter (L-value) than those of control. The highest free radical scavenging activity (57.24%) was recorded for S. maxima processed cheese analogue treatment (3%). From the sensorial results, the S. maxima processed cheese analogue (1 or 2%) treatments was higher acceptable compared to those of 3%. CONCLUSION Hence, adding S. maxima powder (1 or 2%) during processed cheese analogue manufacture let the cheese to develop special color (green), high nutritional value, antioxidant activity and sensorial scores.
Collapse
|
3
|
Guyon JB, Vergé V, Schatt P, Lozano JC, Liennard M, Bouget FY. Comparative Analysis of Culture Conditions for the Optimization of Carotenoid Production in Several Strains of the Picoeukaryote Ostreococcus. Mar Drugs 2018; 16:md16030076. [PMID: 29495580 PMCID: PMC5867620 DOI: 10.3390/md16030076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 01/09/2023] Open
Abstract
Microalgae are promising sources for the sustainable production of compounds of interest for biotechnologies. Compared to higher plants, microalgae have a faster growth rate and can be grown in industrial photobioreactors. The microalgae biomass contains specific metabolites of high added value for biotechnology such as lipids, polysaccharides or carotenoid pigments. Studying carotenogenesis is important for deciphering the mechanisms of adaptation to stress tolerance as well as for biotechnological production. In recent years, the picoeukaryote Ostreococcustauri has emerged as a model organism thanks to the development of powerful genetic tools. Several strains of Ostreococcus isolated from different environments have been characterized with respect to light response or iron requirement. We have compared the carotenoid contents and growth rates of strains of Ostreococcus (OTTH595, RCC802 and RCC809) under a wide range of light, salinity and temperature conditions. Carotenoid profiles and productivities varied in a strain-specific and stress-dependent manner. Our results also illustrate that phylogenetically related microalgal strains originating from different ecological niches present specific interests for the production of specific molecules under controlled culture conditions.
Collapse
Affiliation(s)
- Jean-Baptiste Guyon
- Observatoire Océanologique, UMR 7621 Laboratoire d'Océanographie Microbienne, Université de Pierre et Marie Curie (Paris 06), Sorbonne Universités, 66650 Banyuls-sur-Mer, France.
| | - Valérie Vergé
- Observatoire Océanologique, UMR 7621 Laboratoire d'Océanographie Microbienne, Université de Pierre et Marie Curie (Paris 06), Sorbonne Universités, 66650 Banyuls-sur-Mer, France.
| | - Philippe Schatt
- Observatoire Océanologique, UMR 7621 Laboratoire d'Océanographie Microbienne, Université de Pierre et Marie Curie (Paris 06), Sorbonne Universités, 66650 Banyuls-sur-Mer, France.
| | - Jean-Claude Lozano
- Observatoire Océanologique, UMR 7621 Laboratoire d'Océanographie Microbienne, Université de Pierre et Marie Curie (Paris 06), Sorbonne Universités, 66650 Banyuls-sur-Mer, France.
| | - Marion Liennard
- Observatoire Océanologique, UMR 7621 Laboratoire d'Océanographie Microbienne, Université de Pierre et Marie Curie (Paris 06), Sorbonne Universités, 66650 Banyuls-sur-Mer, France.
| | - François-Yves Bouget
- Observatoire Océanologique, UMR 7621 Laboratoire d'Océanographie Microbienne, Université de Pierre et Marie Curie (Paris 06), Sorbonne Universités, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
4
|
Reshma R, Arumugam M. Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202. PLANTA 2017; 246:779-790. [PMID: 28685294 DOI: 10.1007/s00425-017-2732-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
An eco-friendly cell wall digestion strategy was developed to enhance the availability of nutritionally important bio molecules of edible microalgae and exploit them for cloning, transformation, and expression of therapeutic proteins. Microalgae are the source for many nutritionally important bioactive compounds and potential drugs. Even though edible microalgae are rich in nutraceutical, bioavailability of all these molecules is very less due to their rigid recalcitrant cell wall. For example, the cell wall of Scenedesmus quadricauda CASA CC202 is made up of three layers comprising of rigid outer pectin and inner cellulosic layer separated by a thin middle layer. In the present investigation, a comprehensive method has been developed for the selective degradation of S. quadricauda CASA CC202 cell wall, by employing both mechanical and enzymatic treatments. The efficiency of cell wall removal was evaluated by measuring total reducing sugar (TRS), tannic acid-ferric chloride staining, calcoflour white staining, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analysis. It was confirmed that the yield of TRS increased from 129.82 mg/g in 14 h from pectinase treatment alone to 352.44 mg/g by combined sonication and enzymatic treatment within 12 h. As a result, the combination method was found to be effective for the selective degradation of S. quadricauda CASA CC202 cell wall. This study will form a base for our future works, where this will help to enhance the digestibility and availability of nutraceutically important proteins.
Collapse
Affiliation(s)
- Ragini Reshma
- Microbial Processes and Technology Division (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Muthu Arumugam
- Microbial Processes and Technology Division (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| |
Collapse
|
5
|
Teymouri A, Kumar S, Barbera E, Sforza E, Bertucco A, Morosinotto T. Integration of biofuels intermediates production and nutrients recycling in the processing of a marine algae. AIChE J 2016. [DOI: 10.1002/aic.15537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ali Teymouri
- Dept. of Civil and Environmental EngineeringOld Dominion UniversityNorfolk VA23529
| | - Sandeep Kumar
- Dept. of Civil and Environmental EngineeringOld Dominion UniversityNorfolk VA23529
| | - Elena Barbera
- Dept. of Industrial Engineering DIIUniversity of PadovaVia Marzolo 935131Padova Italy
| | - Eleonora Sforza
- Dept. of Industrial Engineering DIIUniversity of PadovaVia Marzolo 935131Padova Italy
| | - Alberto Bertucco
- Dept. of Industrial Engineering DIIUniversity of PadovaVia Marzolo 935131Padova Italy
| | - Tomas Morosinotto
- Dept. of BiologyUniversity of PadovaVia U. Bassi 58/B35121Padova Italy
| |
Collapse
|
6
|
Wuang SC, Luo YD, Wang S, Chua PQD, Tee PS. Performance assessment of biofuel production in an algae-based remediation system. J Biotechnol 2016; 221:43-8. [DOI: 10.1016/j.jbiotec.2016.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
7
|
Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends. Biotechnol Adv 2015; 33:1228-45. [DOI: 10.1016/j.biotechadv.2015.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/26/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022]
|
8
|
Badri H, Monsieurs P, Coninx I, Nauts R, Wattiez R, Leys N. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays. PLoS One 2015; 10:e0135565. [PMID: 26308624 PMCID: PMC4550399 DOI: 10.1371/journal.pone.0135565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of microbial cells, in particularly for photosynthetic organisms as the cyanobacterium Arthrospira.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Robin Nauts
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| |
Collapse
|
9
|
Badri H, Monsieurs P, Coninx I, Wattiez R, Leys N. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. Microbiologyopen 2015; 4:187-207. [PMID: 25678338 PMCID: PMC4398503 DOI: 10.1002/mbo3.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
The aim of this work was to characterize in detail the response of Arthrospira to ionizing radiation, to better understand its radiation resistance capacity. Live cells of Arthrospira sp. PCC 8005 were irradiated with 60Co gamma rays. This study is the first, showing that Arthrospira is highly tolerant to gamma rays, and can survive at least 6400 Gy (dose rate of 527 Gy h−1), which identified Arthrospira sp. PCC 8005 as a radiation resistant bacterium. Biochemical, including proteomic and transcriptomic, analysis after irradiation with 3200 or 5000 Gy showed a decline in photosystem II quantum yield, reduced carbon fixation, and reduced pigment, lipid, and secondary metabolite synthesis. Transcription of photo-sensing and signaling pathways, and thiol-based antioxidant systems was induced. Transcriptomics did show significant activation of ssDNA repair systems and mobile genetic elements (MGEs) at the RNA level. Surprisingly, the cells did not induce the classical antioxidant or DNA repair systems, such superoxide dismutase (SOD) enzyme and the RecA protein. Arthrospira cells lack the catalase gene and the LexA repressor. Irradiated Arthrospira cells did induce strongly a group of conserved proteins, of which the function in radiation resistance remains to be elucidated, but which are a promising novel routes to be explored. This study revealed the radiation resistance of Arthrospira, and the molecular systems involved, paving the way for its further and better exploitation.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium.,Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| |
Collapse
|
10
|
|
11
|
Avila-Leon I, Chuei Matsudo M, Sato S, de Carvalho J. Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. J Appl Microbiol 2012; 112:1086-94. [DOI: 10.1111/j.1365-2672.2012.05303.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Gantar M, Simović D, Djilas S, Gonzalez WW, Miksovska J. Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. strain 37-2-1. J Biotechnol 2012; 159:21-6. [PMID: 22353597 DOI: 10.1016/j.jbiotec.2012.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/13/2012] [Accepted: 02/06/2012] [Indexed: 11/29/2022]
Abstract
C-phycocyanin (C-PC) is a blue colored accessory photosynthetic pigment found in cyanobacteria. Some of the medicinal properties of Spirulina have been attributed to this pigment, which includes anticancer, antioxidant, and anti-inflammatory activity. We have screened cyanobacteria isolated from freshwater habitats in Florida for their high content of C-PC. Of 125 strains tested, one filamentous strain identified as Limnothrix sp. was selected for further research. This strain produced 18% C-PC of total dry biomass. Here we describe a simple method for obtaining C-PC of high purity without the use of ion exchange chromatography. The procedure is based on pigment precipitation from the cell lysate with an appropriate concentration of ammonium sulfate, then purification with activated carbon and chitosan, followed by a sample concentration using tangential flow filtration. We have shown that when the lower concentration of ammonium sulfate was used, C-PC with higher purity index was recovered. Characterization of C-PC from Limnothrix showed that it had an absorbance maximum at 620nm and fluorescence at 639nm. The molecular mass of intact C-PC was estimated to be ~50kDa with α and β subunits forming dimmers. When C-PC content per unit biomass was compared to that of marketed Spirulina powder, we found that Limnothrix was superior. C-phycocyanin from Limnothrix had an antioxidative activity on DPPH free radicals similar to that found in a natural antioxidant - rutin.
Collapse
Affiliation(s)
- Miroslav Gantar
- Florida International University, Department of Biological Sciences, MM Campus, Miami, FL 33199, USA.
| | | | | | | | | |
Collapse
|
13
|
Varfolomeev SD, Wasserman LA. Microalgae as source of biofuel, food, fodder, and medicines. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811090079] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhang T, Gong H, Wen X, Lu C. Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:951-8. [PMID: 20417984 DOI: 10.1016/j.jplph.2009.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 05/21/2023]
Abstract
The effects of salt stress (0-0.8M NaCl) on excitation energy transfer from phycobilisomes to photosystem I (PSI) and photosystem II (PSII) in the cyanobacterium Spirulina platensis were investigated. Salt stress resulted in a significant decrease in photosynthetic oxygen evolution activity and PSII electron transport activity, but a significant increase in PSI electron transport activity. Analyses of the polyphasic fluorescence transients (OJIP) showed that, with an increase in salt concentration, the fluorescence yield at the phases J, I and P declined considerably and the transient almost leveled off at 0.8M NaCl. Analyses of the JIP test demonstrated that salt stress led to a decrease in the maximal efficiency of PSII photochemistry, the probability of electron transfer beyond Q(A), and the yield of electron transport beyond Q(A). In addition, salt stress resulted in a decrease in the electron transport per PSII reaction center, but an increase in the absorption per PSII reaction center. However, there was no significant change in the trapping per PSII reaction center. Furthermore, there was a decrease in the concentration of the active PSII reaction centers. Analyses of 77K chlorophyll fluorescence emission spectra excited either at 436 or 580nm showed that salt stress inhibited excitation energy transfer from phycobilisomes to PSII but induced an increase in the efficiency of energy transfer from phycobilisomes to PSI. Based on these results, it is suggested that, through a down-regulation of PSII reaction centers and a shift of excitation energy transfer in favor of PSI, the PSII apparatus was protected from excess excitation energy.
Collapse
Affiliation(s)
- Tao Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
15
|
Gong H, Tang Y, Wang J, Wen X, Zhang L, Lu C. Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:488-95. [DOI: 10.1016/j.bbabio.2008.03.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 03/04/2008] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
|
16
|
Abstract
In non-Western civilizations, cyanobacteria have been part of the human diet for centuries. Today, microalgae and cyanobacteria are either produced in controlled cultivation processes or harvested from the natural habitats and marketed as food supplements around the world. Cyanobacteria produce a vast array of different biologically active compounds, some of which are expected to be used in drug development. The fact that some of the active components from cyanobacteria potentially have anticancer, antimicrobial, antiviral, anti-inflammatory, and other effects is being used for marketing purposes. However, introduction of these products in the form of whole biomass for alimentary purposes raises concerns regarding the potential toxicity and long-term effects on human health. Here, we review data on the use of cyanobacteria and microalgae in human nutrition and searched for available information on legislature that regulates the use of these products. We have found that, although the quality control of these products is most often self-regulated by the manufacturers, different governmental agencies are introducing strict regulations for placing novel products, such as algae and cyanobacteria, on the market. The existing regulations require these products to be tested for the presence of toxins, such as microcystin; however, other, sometimes novel, toxins remain undetected, and their long-term effects on human health remain unknown.
Collapse
Affiliation(s)
- Miroslav Gantar
- Department of Biological Sciences, Florida International University, University Park, Miami, Florida 33199, USADepartment of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biological Sciences, Florida International University, University Park, Miami, Florida 33199, USADepartment of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
17
|
Wen X, Gong H, Lu C. Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:389-95. [PMID: 15907691 DOI: 10.1016/j.plaphy.2005.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 03/03/2005] [Indexed: 05/02/2023]
Abstract
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).
Collapse
Affiliation(s)
- Xiaogang Wen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
18
|
Kumar HD. Management of nutritional and health needs of malnourished and vegetarian people in India. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 546:311-21. [PMID: 15584384 DOI: 10.1007/978-1-4757-4820-8_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- H D Kumar
- Biotechnology Program, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Olguín EJ, Galicia S, Angulo-Guerrero O, Hernández E. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. BIORESOURCE TECHNOLOGY 2001; 77:19-24. [PMID: 11211071 DOI: 10.1016/s0960-8524(00)00142-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Evaluation of the effect of low light flux and nitrogen deficiency on growth and chemical composition of Spirulina sp. (straight filaments strain, SF) in batch cultures utilizing a complex medium containing sea-water supplemented with anaerobic effluents from digested pig waste, was undertaken. Cultivation was carried out either at a light flux of 66 (lower) or 144 micromol photon m(-2) s(-1) (higher), utilizing bench raceways. Biomass concentration (as dry weight) after 12 days of cultivation in the complex medium was similar (P < 0.05) to the one observed in a chemically defined medium (Zarrouk), regardless of the light intensity. Protein content of the biomass in the complex medium was significantly lower (P < 0.05), compared to the Zarrouk medium, regardless of the light flux. However, biomass from the complex medium was enriched in total lipids (28.6%), when cultures were exposed to the lower light flux. On the other hand, the palmitoleic acid percentage of total fatty acids was significantly higher (P < 0.05) at a higher light intensity and a high level of gamma linolenic acid (GLA) as a percentage of total fatty acids was observed (28.13%) in the biomass harvested from the complex medium at the lower light intensity. Finally, polysaccharide content was significantly higher (P < 0.05) at the high light intensity and a very high content of total polysaccharides (28.41%) was observed in the complex medium.
Collapse
Affiliation(s)
- E J Olguín
- Departamento de Biotecnología, Instituto de Ecología, Xalapa, Mexico.
| | | | | | | |
Collapse
|
20
|
Kuhad RC, Singh A, Tripathi KK, Saxena RK, Eriksson KE. Microorganisms as an alternative source of protein. Nutr Rev 1997; 55:65-75. [PMID: 9170892 DOI: 10.1111/j.1753-4887.1997.tb01599.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Demand for human food and animal feed proteins from nonconventional sources has increased, particularly in developing countries. Microbial protein is one such source. It is desirable because it is amenable to controlled intensive cultivation and is less dependent on variations in climate, weather, and soil. Microbial proteins must be evaluated for nutritive value, safety, and economic considerations before mass production is undertaken.
Collapse
Affiliation(s)
- R C Kuhad
- Department of Microbiology, University of Delhi, New Delhi, India
| | | | | | | | | |
Collapse
|
21
|
|