1
|
Tatar CL, Appikatla S, Bessert DA, Paintlia AS, Singh I, Skoff RP. Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain. ASN Neuro 2010; 2:e00043. [PMID: 20885931 PMCID: PMC2946597 DOI: 10.1042/an20100016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/11/2010] [Accepted: 08/19/2010] [Indexed: 02/06/2023] Open
Abstract
PMD (Pelizaeus-Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy) mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α) and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CCL3, CC chemokine ligand 3
- CCR1, CC chemokine receptor 1
- CD11b, cluster of differentiation molecule 11B
- CD8, cluster of differentiation 8
- CNS, central nervous system
- CRP, C-reactive protein
- CXCL, CXC chemokine ligand
- DAB, diaminobenzidine
- DPN, day postnatal
- EAE, experimental allergic encephalomyelitis
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HRP, horseradish peroxidase
- IL-1β, interleukin-1β
- Iba1, ionized calcium-binding adaptor molecule 1
- MOG, myelin oligodendrocyte glycoprotein
- PLP1, proteolipid protein 1 gene (human)
- PMD, Pelizaeus–Merzbacher disease
- Pelizaeus–Merzbacher disease
- Plp1, proteolipid protein 1 gene (non-human)
- QPCR, quantitative PCR
- TNF-α, tumour necrosis factor-α
- Ta, Tabby
- iNOS, inducible nitric oxide synthase
- inflammation
- jp, jimpy
- microglia
- myelin
- oligodendrocyte
- proteolipid protein
- qRT–PCR, quantitative reverse transcription–PCR
Collapse
Affiliation(s)
- Carrie L Tatar
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| | - Sunita Appikatla
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| | - Denise A Bessert
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| | - Ajaib S Paintlia
- †Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Inderjit Singh
- †Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Robert P Skoff
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| |
Collapse
|
2
|
Miller MJ, Kangas CD, Macklin WB. Neuronal expression of the proteolipid protein gene in the medulla of the mouse. J Neurosci Res 2010; 87:2842-53. [PMID: 19479988 DOI: 10.1002/jnr.22121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteolipid protein (PLP) gene (Plp) encodes the major myelin proteins, PLP and DM20. Expression of Plp occurs predominantly in oligodendrocytes, but evidence is accumulating that this gene is also expressed in neurons. In earlier studies, we demonstrated that myelin-deficient (MD) rats, which carry a mutation in the Plp gene, exhibit lethal hypoxic ventilatory depression. Furthermore, we found that, in the MD rat, PLP accumulated in neuronal cell bodies in the medulla oblongata. In the current study, we sought to determine which neurons expressed the Plp gene in the medulla oblongata and whether Plp gene expression changed in neurons with maturation. A transgenic mouse expressing the Plp promoter driving expression of enhanced green fluorescent protein (Plp-EGFP) was used to identify neurons expressing this gene. Plp expression in neurons was confirmed by immunostaining EGFP-positive cells for NeuN and by in situ hybridization for PLP mRNA. The numbers of neurons expressing Plp-EGFP and their distribution increased between P5 and P10 in the medulla. Immunostaining for surface receptors and classes of neurons expressing Plp-EGFP revealed that Plp gene expression in brainstem neurons was restricted to neurons expressing specific ligand-gated channels and biosynthetic enzymes, including glutamatergic NMDA receptors, GABA(A) receptors, and ChAT in defined areas of the medulla. Plp gene expression was rarely found in interneurons expressing GABA and was never found in AMPA receptor- or tyrosine hydroxylase-expressing neurons. Thus, Plp expression in the mouse caudal medulla was found to be developmentally regulated and restricted to specific groups of neurons.
Collapse
Affiliation(s)
- Martha J Miller
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
3
|
Proteolipid protein gene mutation induces altered ventilatory response to hypoxia in the myelin-deficient rat. J Neurosci 2003. [PMID: 12657685 DOI: 10.1523/jneurosci.23-06-02265.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pelizaeus Merzbacher disease is an X-linked dysmyelinating disorder of the CNS, resulting from mutations in the proteolipid protein (PLP) gene. An animal model for this disorder, the myelin-deficient (MD) rat, carries a point mutation in the PLP gene and exhibits a phenotype similar to the fatal, connatal disease, including extensive dysmyelination, tremors, ataxia, and death at approximately postnatal day 21 (P21). We postulated that early death might result from disruption of myelinated neural pathways in the caudal brainstem and altered ventilatory response to oxygen deprivation or hypercapnic stimulus. Using barometric plethysmography to measure respiratory function, we found that the MD rat develops lethal hypoxic depression of breathing at P21, but hypercapnic ventilatory response is normal. Histologic examination of the caudal brainstem in the MD rat at this age showed extensive dysmyelination and downregulation of NMDA and to a lesser extent GABA(A) receptors on neurons in the nucleus tractus solitarius, hypoglossal nucleus, and dorsal motor nucleus of the vagus. Unexpectedly, immunoreactive PLP/DM20 was detected in neurons in the caudal brainstem. Not all biosynthetic functions and structural elements were altered in these neurons, because phosphorylated and nonphosphorylated neurofilament and choline acetyltransferase expression were comparable between MD and wild-type rats. These findings suggest that PLP is expressed in neurons in the developing brainstem and that PLP gene mutation can selectively disrupt central processing of afferent neural input from peripheral chemoreceptors, leaving the central chemosensory system for hypercapnia intact.
Collapse
|
4
|
Feutz AC, Pham-Dinh D, Allinquant B, Miehe M, Ghandour MS. An immortalized jimpy oligodendrocyte cell line: defects in cell cycle and cAMP pathway. Glia 2001; 34:241-52. [PMID: 11360297 DOI: 10.1002/glia.1058] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Normal and jimpy oligodendrocytes in secondary cultures were transfected with plasmids containing the SV40 T-antigen gene expressed under the control of the mouse metallothionein-I promoter. Two immortalized stable cell lines, a normal (158N) and jimpy (158JP) cell line, expressed transcripts and proteins of oligodendrocyte markers, including proteolipid protein (PLP), myelin basic protein (MBP), and carbonic anhydrase II (CAII). Galactocerebroside and sulfatide were also detected with immunocytochemistry. Immunoelectron microscopy using gold particles showed that the truncated endogenous jimpy PLP was distributed throughout the cytoplasm and in association with the plasma membrane of cell bodies and processes. The length of the cell cycle in the jimpy oligodendrocytes in the absence of zinc was 31 h, about a 4-h longer cell cycle than the normal line. In the presence of 100 microM zinc, the cell cycle became 3 h shorter for both cell lines, with the jimpy cell cycle duration remaining 4 h longer than the normal line. Interestingly, the jimpy cell line showed a significant deficiency in stimulation via the cAMP pathway. While the level of oligodendrocyte markers (PLP, MBP, and CAII) were significantly increased by dibutyryl cAMP (dbcAMP) treatment in the normal cell line, no changes were observed in the jimpy cell lines. This observation, together with previous results showing jimpy oligodendrocyte's failure to respond to basic fibroblast growth factor (bFGF), suggests a role for PLP in a signal transduction pathway. Jimpy and normal oligodendrocytes transfected with the SV40T antigen gene, driven by the wild-type promoter of mouse metallothionein-I, continue to express properties of oligodendrocytes and therefore provide a powerful model to explore the function of myelin proteins and to dissect the complexity of the jimpy phenotype.
Collapse
Affiliation(s)
- A C Feutz
- CNRS-ER 2072, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
5
|
Vela JM, González B, Castellano B. Understanding glial abnormalities associated with myelin deficiency in the jimpy mutant mouse. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:29-42. [PMID: 9600623 DOI: 10.1016/s0165-0173(97)00055-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Jimpy is a shortened life-span murine mutant showing recessive sex-linked inheritance. The genetic defect consists of a point mutation in the PLP gene and produces a severe CNS myelin deficiency that is associated with a variety of complex abnormalities affecting all glial populations. The myelin deficiency is primarily due to a failure to produce the normal amount of myelin during development. However, myelin destruction and oligodendrocyte death also account for the drastic myelin deficit observed in jimpy. The oligodendroglial cell line shows complex abnormalities in its differentiation pattern, including the degeneration of oligodendrocytes through an apoptotic mechanism. Oligodendrocytes seem to be the most likely candidate to be primarily altered in a disorder affecting myelination, but disturbances affecting astrocytes and microglia are also remarkable and may have a crucial significance in the development of the jimpy disorder. In fact, the jimpy phenotype may not be attributed to a defect in a single cell but rather to a deficiency in the normal relations between glial cells. Evidences from a variety of sources indicate that the jimpy mutant could be a model for disturbed glial development in the CNS. The accurate knowledge of the significance of PLP and its regulation during development must be of vital importance in order to understand glial abnormalities in jimpy.
Collapse
Affiliation(s)
- J M Vela
- Department of Cell Biology and Physiology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
6
|
Knapp PE, Maderspach K, Hauser KF. Endogenous opioid system in developing normal and jimpy oligodendrocytes: mu and kappa opioid receptors mediate differential mitogenic and growth responses. Glia 1998; 22:189-201. [PMID: 9537839 DOI: 10.1002/(sici)1098-1136(199802)22:2<189::aid-glia10>3.0.co;2-u] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The early development of both neurons and neuroglia may be modulated by signaling through opioid mediated pathways. Neurons and astroglia not only express specific types of opiate receptors, but also respond functionally to opioids with altered rates of proliferation and growth. The present study was undertaken to determine if opioids also modulate development of the other major CNS macroglial cell, the oligodendrocyte (OL). Using well-characterized polyclonal antibodies specific for delta-, kappa-, and mu-opiate receptors, OLs grown in vitro were shown to express mu-receptors at a very immature stage prior to expression of kappa-receptors. This developmentally regulated sequence differs from the pattern of expression in neurons and astroglia. delta-receptors are apparently absent from cultured OLs. OLs also have physiologic responses to selective mu- and kappa-receptor agonists and antagonists. Exposure of relatively immature O4+ OLs to the mu-receptor agonist PL017 [H-Tyr-Pro-Phe(N-Me)-D-Pro-NH2] resulted in a significant enhancement in the rate of DNA synthesis. This effect, which was not observed in more mature MBP+ OLs, was entirely blocked by the antagonist naloxone. Although the kappa-receptor pathway appeared to be uninvolved in controlling proliferation, the kappa-receptor antagonist nor-binaltorphimine significantly increased the size of myelin-like membranes produced by the cultured OLs. Interestingly, OLs derived from the jimpy mouse, a mutant characterized by an almost complete lack of CNS myelin and premature death of OLs, were found to be deficient in kappa-opiate receptors. Our findings clearly show that OLs not only express specific opiate receptors, but also respond to changes in their level of stimulation in ways that could profoundly impact nervous system morphology and function. If opiate receptors are expressed by OLs in vivo, their pharmacological manipulation might provide a novel pathway for modulating OL and myelin production both during development and in demyelinated conditions.
Collapse
MESH Headings
- Animals
- Animals, Newborn/physiology
- Antimetabolites
- Bromodeoxyuridine
- Cell Size
- Cells, Cultured
- Endorphins/pharmacology
- Endorphins/physiology
- Immunohistochemistry
- Mice
- Mice, Jimpy
- Mitogens/pharmacology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodendroglia/ultrastructure
- Receptors, Opioid/drug effects
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/biosynthesis
Collapse
Affiliation(s)
- P E Knapp
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington 40536-0084, USA.
| | | | | |
Collapse
|
7
|
Vela JM, Hidalgo J, González B, Castellano B. Induction of metallothionein in astrocytes and microglia in the spinal cord from the myelin-deficient jimpy mouse. Brain Res 1997; 767:345-55. [PMID: 9367267 DOI: 10.1016/s0006-8993(97)00628-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Jimpy is a shortened life-span murine mutant whose genetic disorder results in severe pathological alterations in the CNS, including hypomyelination, oligodendrocyte death and strong astroglial and microglial reaction. The knowledge of metallothionein (MT) regulation in the CNS and especially of MT presence in specific glial cell types under pathological conditions is scarce. In the present study, immunocytochemical detection of MT-I + II has been performed in spinal cord sections from 10-12- and 20-22-day-old jimpy and normal animals. The identification of MT-positive glial cells was achieved through double labeling combining MT immunocytochemistry and selective markers for oligodendrocytes, astrocytes and microglia. MT was found in glial cells and was present in the spinal cord of jimpy and normal mice at both ages, but there were remarkable differences in MT expression and in the nature of MT-positive glial cells depending on the type of mouse. The number of MT-positive cells was higher in jimpy than in normal spinal cords. This was apparent in all spinal cord areas, although it was more pronounced in white than in the gray matter and at 20-22 days than at 10-12 days. The mean number of MT-positive glia in the jimpy white matter was 1.9-fold (10-12 days) and 2.4-fold (20-22 days) higher than in the normal one. Astrocytes were the only parenchymal glial cells that were positively identified as MT-producing cells in normal animals. Interestingly, MT in the jimpy spinal cord was localized not only in astrocytes but also in microglial cells. The occurrence of MT induction in relation to reactive astrocytes and microglia, and its role in neuropathological conditions is discussed.
Collapse
Affiliation(s)
- J M Vela
- Department of Cell Biology and Physiology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
8
|
Knapp PE, Benjamins JA, Skoff RP. Epigenetic factors up-regulate expression of myelin proteins in the dysmyelinating jimpy mutant mouse. JOURNAL OF NEUROBIOLOGY 1996; 29:138-50. [PMID: 8821173 DOI: 10.1002/(sici)1097-4695(199602)29:2<138::aid-neu2>3.0.co;2-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteolipid protein (PLP) is a major structural component of central nervous system (CNS) myelin. Evidence exists that PLP or the related splice variant DM-20 protein may also play a role in early development of oligodendrocytes (OLs), the cells that form CNS myelin. There are several naturally occurring mutations of the PLP gene that have been used to study the roles of PLP both in myelination and in OL differentiation. The PLP mutation in the jimpy (jp) mouse has been extensively characterized. These mutants produce no detectable PLP and exhibit an almost total lack of CNS myelin. Additionally, most OLs in affected animals die prematurely, before producing myelin sheaths. We have studied cultures of jp CNS in order to understand whether OL survival and myelin formation require production of normal PLP. When grown in primary cultures, jp OLs mimic the relatively undifferentiated phenotype of jp OLs in vivo. They produce little myelin basic protein (MBP), never immunostain for PLP, and rarely elaborate myelin-like membranes. We report here that jp OLs grown in medium conditioned by normal astrocytes synthesize MBP and incorporate it into membrane expansions. Some jp OLs grown in this way stain with PLP antibodies, including an antibody to a peptide sequence specific for the mutant jp PLP. This study shows that: (1) an absence of PLP does not necessarily lead to dysmyelination or OL death; (2) OLs are capable of translating at least a portion of the predicted jp PLP; (3) the abnormal PLP made in the cultured jp cells is not toxic to OLs. These results also highlight the importance of environmental factors in controlling OL phenotype.
Collapse
Affiliation(s)
- P E Knapp
- Department of Anatomy, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
9
|
Feutz AC, Bellomi I, Allinquant B, Schladenhaufen Y, Ghandour MS. Isolation and characterization of defective jimpy oligodendrocytes in culture. JOURNAL OF NEUROCYTOLOGY 1995; 24:865-77. [PMID: 8576715 DOI: 10.1007/bf01179985] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study characterizes jimpy oligodendrocyte-enriched secondary cultures isolated from 10-12 days in vitro primary glial cell cultures derived from 1-2-day-old jimpy mouse brains. Proliferation of defective oligodendrocytes was carefully investigated with regard to the expression of myelin basic protein and proteolipid protein and their respective mRNAs. Less than 5% of contaminating astrocytes (GFAP+ cells) were usually present. The identity of jimpy oligodendrocytes was confirmed using an antibody directed against a peptide from the wild type proteolipid protein C-terminal sequence for immunocytochemistry and an oligonucleotide complementary to mRNA derived from exon 5 of the proteolipid protein gene for in situ hybridization. Both the antibody and the probe recognize only normal oligondedrocytes while jimpy oligodendrocytes always remain unstained. Proteolipid protein in normal and jimpy oligodendrocytes was detected with antibody recognizing normal and mutated forms. Between 80 and 95% of the cells in normal and jimpy cultures at 2 and 4 days in vitro in secondary cultures express myelin basic protein and proteolipid protein and their respective mRNAs. The percentage of oligodendrocytes (PLP+ or MBP+) in S phase of the cell cycle was 7-10% for both normal and jimpy oligodendrocytes. This contrasts with the in vivo situation where the proliferation rate of oligodendrocytes in jimpy brains is higher than in normal brains. In addition, jimpy oligodendrocytes remain unresponsive to basic fibroblast growth factor treatment while a similar treatment stimulates the proliferation of normal oligodendrocytes.
Collapse
Affiliation(s)
- A C Feutz
- Laboratoire de Neurobiologie Ontogénique (UPR 417-CNRS), Centre de Neurochimie, Strasbourg, France
| | | | | | | | | |
Collapse
|
10
|
Skoff RP, Ghandour MS. Oligodendrocytes in female carriers of the jimpy gene make more myelin than normal oligodendrocytes. J Comp Neurol 1995; 355:124-33. [PMID: 7636008 DOI: 10.1002/cne.903550113] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The female carrier of the jimpy (jp) gene is a model system to study the plasticity of neuroglial cells and the mechanisms they use to compensate for a temporary deficit in myelin. Myelin in the female carriers is reduced 30-40% during the first postnatal month but is normal in adults. We hypothesized that the number of oligodendrocytes (OLs) in the female carriers is increased, based upon previous data showing OL proliferation is increased but the number of dying OLs is only slightly elevated in development. To test this hypothesis, antibodies to carbonic anhydrase (CA)II, an OL-specific marker, were used to quantify the number of OLs in the spinal cords of 1-month-old and adult female carriers. Contrary to expectations, the number of OLs is significantly reduced in the dorsal funiculus and grey matter by 21% in adult female carriers compared to controls. A reduction of lesser magnitude is present in the 1-month-old animals. Electron microscopic montages prepared from normal and carrier dorsal funiculus were used to count total numbers of glia. Ultrastructural quantification shows a similar reduction in the number of OLs and confirms the validity of the CAII immunostaining as a means to quantify OLs. These data show that there are 21% fewer OLs in the central nervous system (CNS) of adult female carriers but normal amounts of myelin. Presumably, some OLs in the carrier CNS are maintaining more myelin than their counterparts in normal CNS would. These findings demonstrate that (1) a reduction in number of OLs does not necessarily involve a reduction in the amount of myelin, and (2) OLs have considerable flexibility in the amount of myelin they can make.
Collapse
Affiliation(s)
- R P Skoff
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|