1
|
Renaud J, Chédotal A. Time-lapse analysis of tangential migration in Sema6A and PlexinA2 knockouts. Mol Cell Neurosci 2014; 63:49-59. [DOI: 10.1016/j.mcn.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/08/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022] Open
|
2
|
Kawaguchi K, Katsuyama Y, Kikkawa S, Setsu T, Terashima T. PKH26 is an excellent retrograde and anterograde fluorescent tracer characterized by a small injection site and strong fluorescence emission. ACTA ACUST UNITED AC 2011; 73:65-72. [PMID: 21566332 DOI: 10.1679/aohc.73.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fluorescent dye PKH26, which binds mainly to the cell membrane, has long stability that enables the tracing of PKH26-labeled transplanted cells in host tissue. In the present study, we examined whether this fluorescent dye works as a retrograde or anterograde tracer to label neural networks within the central nervous system of adult and postnatal day 3 (P3) mice. A small injection of the dye into the medullospinal junction resulted in the retrograde labeling of corticospinal tract (CST) neurons in layer V of the sensory-motor cortex both in the adult mice and pups. Injection of the dye into the motor cortex of the P3 pups resulted in the anterograde labeling of CST fibers at a single fiber resolution level, although a similar injection of the dye into the motor cortex of the adult mice failed to stain CST fibers anterogradely. These results suggest that, while PKH26 works as a retrograde or anterograde tracer, anterograde labeling of the adult tracts can not be expected.
Collapse
Affiliation(s)
- Koji Kawaguchi
- Division of Anatomy and Developmental Neurobiology, Kobe University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
3
|
Abstract
The reeler mouse is one of the most famous spontaneously occurring mutants in the research field of neuroscience, and this mutant has been used as a model animal to understand mammalian brain development. The classical observations emphasized that laminar structures of the reeler brain are highly disrupted. Molecular cloning of Reelin, the gene responsible for reeler mutant provided insights into biochemistry of Reelin signal, and some models had been proposed to explain the function of Reelin signal in brain development. However, recent reports of reeler found that non-laminated structures in the central nervous system are also affected by the mutation, making function of Reelin signal more controversial. In this review, we summarized reported morphological and histological abnormalities throughout the central nervous system of the reeler comparing to those of the normal mouse. Based on this overview of the reeler abnormalities, we discuss possible function of Reelin signal in the neuronal migration and other morphological events in mouse development.
Collapse
Affiliation(s)
- Yu Katsuyama
- Division of Anatomy and Developmental Neurobiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 Japan.
| | | |
Collapse
|
4
|
COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. J Neurosci 2009; 28:13582-91. [PMID: 19074032 DOI: 10.1523/jneurosci.2132-08.2008] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
While the cortical interneurons derived from the medial ganglionic eminence (MGE) migrate rather diffusely into the cortex, interneurons that migrate out from the caudal ganglionic eminence (CGE) mainly move caudally into the caudal cerebral cortex and the hippocampus in the form of the caudal migratory stream (CMS) (Yozu et al., 2005). Although transplantation experiments at embryonic day 13.5 had revealed that the migrating cells in these two populations are already intrinsically different in regard to their ability to respond to the CGE environment (Yozu et al., 2005), it is not known how the CGE cells are specified and how their migratory behavior is determined. In this study we showed that, although CGE and lateral ganglionic eminence (LGE) express almost the same marker molecules, LGE cells do not migrate caudally when transplanted into the CGE, suggesting that LGE cells are intrinsically different from CGE cells. We therefore compared the transcriptomes of the CGE, MGE, and LGE, and the results showed that COUP-TFII was expressed preferentially in the CGE as well as in the migrating interneurons in the CMS. Transplantation experiments revealed that COUP-TFII is sufficient to change the direction of MGE cell migration to caudal when transplanted into the CGE environment, and knockdown of COUP-TFII inhibited the caudal migration of the CGE cells. These results suggest that COUP-TFII is both required and sufficient for the CGE-cell-specific migratory behavior in the caudal direction. Thus, a locally expressed transcription factor determines the migratory direction of the cortical interneurons in a region-specific manner.
Collapse
|
5
|
Yozu M, Tabata H, Konig N, Nakajima K. Migratory Behavior of Presumptive Interneurons Is Affected by AMPA Receptor Activation in Slice Cultures of Embryonic Mouse Neocortex. Dev Neurosci 2007; 30:105-16. [PMID: 18075259 DOI: 10.1159/000109856] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 02/27/2007] [Indexed: 12/21/2022] Open
Affiliation(s)
- Masato Yozu
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
Yozu M, Tabata H, Nakajima K. The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 2006; 25:7268-77. [PMID: 16079409 PMCID: PMC6725225 DOI: 10.1523/jneurosci.2072-05.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The migratory paths of interneurons derived from the ganglionic eminence (GE), and particularly its caudal portion (CGE), remain essentially unknown. To clarify the three-dimensional migration profile of interneurons derived from each part of the GE, we developed a technique involving focal electroporation into a small, defined portion of the telencephalic hemisphere. While the medial GE cells migrated laterally and spread widely throughout the cortex, the majority of the CGE cells migrated caudally toward the caudal-most end of the telencephalon. Time-lapse imaging and an in vivo immunohistochemical study confirmed the existence of a migratory stream depicted by a population of CGE cells directed caudally that eventually reached the hippocampus. Transplantation experiments suggested that the caudal direction of migration of the CGE cells was intrinsically determined as early as embryonic day 13.5. The caudal migratory stream is a novel migratory path for a population of CGE-derived interneurons passing from the subpallium to the hippocampus.
Collapse
Affiliation(s)
- Masato Yozu
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
7
|
Nagata I, Ono K, Kawana A, Kimura-Kuroda J. Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures. J Comp Neurol 2006; 499:274-89. [PMID: 16977618 DOI: 10.1002/cne.21102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To identify structures that determine the 90 degree orientation of thin espalier dendritic trees of Purkinje cells with respect to parallel fibers (axonal neurite bundles of granule cells) in the cerebellar cortex, we designed five types of two-dimensional and three-dimensional cell and tissue cultures of cerebella from postnatal mice and analyzed the orientation of Purkinje cell dendrites with respect to neurite bundles and astrocyte fibers by immunofluorescence double or triple staining. We cultured dissociated cerebellar cells on micropatterned substrates and preformed neurite bundles of a microexplant culture two-dimensionally and in matrix gels three-dimensionally. Dendrites, but not axons, of Purkinje cells extended toward the neurites of granule cells and oriented at right angles two-dimensionally to aligned neurite bundles in the three cultures. In a more organized explant proper of the microexplant culture, Purkinje cell dendrites extended toward thin aligned neurite bundles not only consistently at right angles but also two-dimensionally. However, in the "organotypic microexplant culture," in which three-dimensionally aligned thick neurite bundles mimicking parallel fibers were produced, Purkinje cell dendrites often oriented perpendicular to the thick bundles three-dimensionally. Astrocytes were abundant in all cultures, and there was no definite correlation between the presence of and orientation to Purkinje cell dendrites, although their fibers were frequently associated in parallel with dendrites in the organotypic microexplant culture. Therefore, Purkinje cells may grow their dendrites to the newly produced neurite bundles of parallel fibers in the cerebellar cortex and be oriented at right angles three-dimensionally mainly via "perpendicular contact guidance."
Collapse
Affiliation(s)
- Isao Nagata
- Department of Brain Structure, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan.
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Gabriella D'Arcangelo
- The Cain Foundation Laboratories, Texas Children's Hospital, Department of Pediatrics, Program in Developmental Biology, Baylor College of Medicine, Houston 77030, USA
| |
Collapse
|
9
|
Paylor R, Hirotsune S, Gambello MJ, Yuva-Paylor L, Crawley JN, Wynshaw-Boris A. Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn Mem 1999; 6:521-37. [PMID: 10541472 PMCID: PMC311310 DOI: 10.1101/lm.6.5.521] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterozygous mutation or deletion of Pafab1b1 (LIS1) in humans is associated with syndromes with type 1 lissencephaly, a severe brain developmental disorder resulting from abnormal neuronal migration. We have created Lis1 heterozygous mutant mice by gene targeting. Heterozygous mutant mice are viable and fertile, but display global organizational brain defects as a result of impaired neuronal migration. To assess the functional impact of the mutation, Lis1 heterozygous mice and their wild-type littermates were evaluated on a wide variety of behavioral tests. Lis1 mutant mice displayed abnormal hindpaw clutching responses and were impaired on a rotarod test. Lis1 heterozygous mice were also impaired in the spatial learning version of the Morris water task. Impaired motor behavior and spatial learning and memory in Lis1 mutant mice indicates that impaired neuronal migration can have functional effects on complex behavioral responses. The behavioral findings also support the use of the Lis1 mutant mice as a model from human type 1 lissencephaly.
Collapse
Affiliation(s)
- R Paylor
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
10
|
Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998; 19:333-9. [PMID: 9697693 DOI: 10.1038/1221] [Citation(s) in RCA: 451] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterozygous mutation or deletion of the beta subunit of platelet-activating factor acetylhydrolase (PAFAH1B1, also known as LIS1) in humans is associated with type I lissencephaly, a severe developmental brain disorder thought to result from abnormal neuronal migration. To further understand the function of PAFAH1B1, we produced three different mutant alleles in mouse Pafah1b1. Homozygous null mice die early in embryogenesis soon after implantation. Mice with one inactive allele display cortical, hippocampal and olfactory bulb disorganization resulting from delayed neuronal migration by a cell-autonomous neuronal pathway. Mice with further reduction of Pafah1b1 activity display more severe brain disorganization as well as cerebellar defects. Our results demonstrate an essential, dosage-sensitive neuronal-specific role for Pafah1b1 in neuronal migration throughout the brain, and an essential role in early embryonic development. The phenotypes observed are distinct from those of other mouse mutants with neuronal migration defects, suggesting that Pafah1b1 participates in a novel pathway for neuronal migration.
Collapse
Affiliation(s)
- S Hirotsune
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Reeler (gene symbol, rl) is an autosomal recessive mutation occurring in mice and characterized by the abnormal positioning of neurons in the central nervous system. In this mutant, however, the cytoarchitecture of the peripheral nervous system is normal, implying that the reeler genetic locus does not affect migration of neurons in the peripheral system. Mesencephalic trigeminal nucleus (Me5) neurons are unique in that they are derived from the neural crest like other neurons in the peripheral nervous system, but enter secondarily into the central nervous system. MATERIALS AND METHODS Me5 neurons were labeled by injecting horseradish peroxidase or Fast Blue into the temporal muscle of normal and reeler mice to determine whether the migration of these neurons is affected by the reeler genetic locus. RESULTS AND CONCLUSIONS Labeled Me5 neurons of the reeler mouse were more widely scattered in comparison with their normal counterparts, suggesting that the reeler genetic locus affects migration of neurons which originate in the neural crest and then migrate into the central nervous system.
Collapse
Affiliation(s)
- T Terashima
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| |
Collapse
|
12
|
Abstract
In this review the current knowledge of the anatomy, development and plasticity of the rodent corticospinal tract is summarised. Recent technical advancements, especially in neuronal tracing methods, have provided much new data concerning the anatomy of the corticospinal tract. The rodent corticospinal axons project to the subcortical nuclei via collateral branches. These collateral branches of corticospinal axons are formed by delayed interstitial budding during early postnatal periods. Corticospinal neurons are generated in the ventricular zone during a short time lag, migrate into the cortical plate, and settle in layer V of the cerebral cortex. The migration of corticospinal neurons is experimentally deranged by prenatal exposure to alcohol or genetically affected by the reeler genetic locus (rl), resulting in generation of ectopic corticospinal neurons. Such experimentally or genetically induced ectopic corticospinal neurons are a good model for examining whether target recognition and path finding are affected by the intracortical position of corticospinal neurons. Some chemical molecules (e.g. L1 and B-50/GAP43) are transiently expressed in the corticospinal tract during the perinatal period, while others (e.g. protein kinase C gamma subspecies and alpha CaM kinase II) are permanently expressed in the adult corticospinal tract. The only chemical marker specific for layer V corticofugal neurons is an antibody to a soluble protein, protein 35. Since the corticospinal tract in the rodent is an easily identified group of fibers situated in the most ventral portion of the dorsal funiculus of the spinal cord and exhibits considerable postnatal development, it has often been utilized in the neurological studies on plasticity and regenerative capacity of the lesioned central nervous system. Recently, it has been clarified that growing corticospinal fibers have the ability to penetrate and traverse across the lesion sites under certain special conditions.
Collapse
Affiliation(s)
- T Terashima
- Department of Anatomy, Tokyo Metropolitan Institute for Neuroscience, Japan
| |
Collapse
|