1
|
Tong Q, Cai J, Wang Z, Sun Y, Liang X, Xu Q, Mahamoud OA, Qian Y, Qian Z. Recent Advances in the Modification and Improvement of Bioprosthetic Heart Valves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309844. [PMID: 38279610 DOI: 10.1002/smll.202309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/28/2024]
Abstract
Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Jie Cai
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yiren Sun
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Xuyue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Qiyue Xu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Oumar Abdel Mahamoud
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
2
|
Corridon PR. Capturing effects of blood flow on the transplanted decellularized nephron with intravital microscopy. Sci Rep 2023; 13:5289. [PMID: 37002341 PMCID: PMC10066218 DOI: 10.1038/s41598-023-31747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Organ decellularization creates cell-free, collagen-based extracellular matrices that can be used as scaffolds for tissue engineering applications. This technique has recently gained much attention, yet adequate scaffold repopulation and implantation remain a challenge. Specifically, there still needs to be a greater understanding of scaffold responses post-transplantation and ways we can improve scaffold durability to withstand the in vivo environment. Recent studies have outlined vascular events that limit organ decellularization/recellularization scaffold viability for long-term transplantation. However, these insights have relied on in vitro/in vivo approaches that need enhanced spatial and temporal resolutions to investigate such issues at the microvascular level. This study uses intravital microscopy to gain instant feedback on their structure, function, and deformation dynamics. Thus, the objective of this study was to capture the effects of in vivo blood flow on the decellularized glomerulus, peritubular capillaries, and tubules after autologous and allogeneic orthotopic transplantation into rats. Large molecular weight dextran molecules labeled the vasculature. They revealed substantial degrees of translocation from glomerular and peritubular capillary tracks to the decellularized tubular epithelium and lumen as early as 12 h after transplantation, providing real-time evidence of the increases in microvascular permeability. Macromolecular extravasation persisted for a week, during which the decellularized microarchitecture was significantly and comparably compromised and thrombosed in both autologous and allogeneic approaches. These results indicate that in vivo multiphoton microscopy is a powerful approach for studying scaffold viability and identifying ways to promote scaffold longevity and vasculogenesis in bioartificial organs.
Collapse
Affiliation(s)
- Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, USA.
| |
Collapse
|
3
|
Tergitol Based Decellularization Protocol Improves the Prerequisites for Pulmonary Xenografts: Characterization and Biocompatibility Assessment. Polymers (Basel) 2023; 15:polym15040819. [PMID: 36850103 PMCID: PMC9967102 DOI: 10.3390/polym15040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Right ventricle outflow tract obstruction (RVOTO) is a congenital pathological condition that contributes to about 15% of congenital heart diseases. In most cases, the replacement of the right ventricle outflow in pediatric age requires subsequent pulmonary valve replacement in adulthood. The aim of this study was to investigate the extracellular matrix scaffold obtained by decellularization of the porcine pulmonary valve using a new detergent (Tergitol) instead of Triton X-100. The decellularized scaffold was evaluated for the integrity of its extracellular matrix (ECM) structure by testing for its biochemical and mechanical properties, and the cytotoxicity/cytocompatibility of decellularized tissue was assessed using bone marrow-derived mesenchymal stem cells. We concluded that Tergitol could remove the nuclear material efficiently while preserving the structural proteins of the matrix, but without an efficient removal of the alpha-gal antigenic epitope. Therefore, Tergitol can be used as an alternative detergent to replace the Triton X-100.
Collapse
|
4
|
Williams DF, Bezuidenhout D, de Villiers J, Human P, Zilla P. Long-Term Stability and Biocompatibility of Pericardial Bioprosthetic Heart Valves. Front Cardiovasc Med 2021; 8:728577. [PMID: 34589529 PMCID: PMC8473620 DOI: 10.3389/fcvm.2021.728577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/15/2023] Open
Abstract
The use of bioprostheses for heart valve therapy has gradually evolved over several decades and both surgical and transcatheter devices are now highly successful. The rapid expansion of the transcatheter concept has clearly placed a significant onus on the need for improved production methods, particularly the pre-treatment of bovine pericardium. Two of the difficulties associated with the biocompatibility of bioprosthetic valves are the possibilities of immune responses and calcification, which have led to either catastrophic failure or slow dystrophic changes. These have been addressed by evolutionary trends in cross-linking and decellularization techniques and, over the last two decades, the improvements have resulted in somewhat greater durability. However, as the need to consider the use of bioprosthetic valves in younger patients has become an important clinical and sociological issue, the requirement for even greater longevity and safety is now paramount. This is especially true with respect to potential therapies for young people who are afflicted by rheumatic heart disease, mostly in low- to middle-income countries, for whom no clinically acceptable and cost-effective treatments currently exist. To extend longevity to this new level, it has been necessary to evaluate the mechanisms of pericardium biocompatibility, with special emphasis on the interplay between cross-linking, decellularization and anti-immunogenicity processes. These mechanisms are reviewed in this paper. On the basis of a better understanding of these mechanisms, a few alternative treatment protocols have been developed in the last few years. The most promising protocol here is based on a carefully designed combination of phases of tissue-protective decellularization with a finely-titrated cross-linking sequence. Such refined protocols offer considerable potential in the progress toward superior longevity of pericardial heart valves and introduce a scientific dimension beyond the largely disappointing 'anti-calcification' treatments of past decades.
Collapse
Affiliation(s)
- David F. Williams
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Deon Bezuidenhout
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | | | - Paul Human
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Peter Zilla
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Kobayashi M, Ohara M, Hashimoto Y, Nakamura N, Fujisato T, Kimura T, Kishida A. In vitro evaluation of surface biological properties of decellularized aorta for cardiovascular use. J Mater Chem B 2021; 8:10977-10989. [PMID: 33174886 DOI: 10.1039/d0tb01830a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to determine an in vitro evaluation method that could directly predict in vivo performance of decellularized tissue for cardiovascular use. We hypothesized that key factors for in vitro evaluation would be found by in vitro assessment of decellularized aortas that previously showed good performance in vivo, such as high patency. We chose porcine aortas, decellularized using three different decellularization methods: sodium dodecyl-sulfate (SDS), freeze-thawing, and high-hydrostatic pressurization (HHP). Immunohistological staining, a blood clotting test, scanning electron microscopy (SEM) analysis, and recellularization of endothelial cells were used for the in vitro evaluation. There was a significant difference in the remaining extracellular matrix (ECM) components, ECM structure, and the luminal surface structure between the three decellularized aortas, respectively, resulting in differences in the recellularization of endothelial cells. On the other hand, there was no difference observed in the blood clotting test. These results suggested that the blood clotting test could be a key evaluation method for the prediction of in vivo performance. In addition, evaluation of the luminal surface structure and the recellularization experiment should be packaged as an in vitro evaluation because the long-term patency was probably affected. The evaluation approach in this study may be useful to establish regulations and a quality management system for a cardiovascular prosthesis.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Masako Ohara
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
6
|
Kumar N, Kumar V, Purohit S, Gangwar AK, Shrivastava S, Maiti SK, Saxena S, Mathews DD, Raghuvanshi PDS, Singh AK, Singh KP. Decellularization of Skin Tissue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:165-191. [PMID: 34582023 DOI: 10.1007/978-3-030-82735-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biomaterials science encompasses elements of medicine, biology, chemistry, materials, and tissue engineering. They are engineered to interact with biological systems to treat, augment, repair, or replace lost tissue function. The choice of biomaterial depends on the procedure being performed, the severity of the patient's condition, and the surgeon's preference. Prostheses made from natural-derived biomaterials are often derived from decellularized extracellular matrix (ECM) of animal (xenograft) or human (allograft) origin. Advantages of using ECM include their resemblance in morphology and three-dimensional structures with that of tissue to be replaced. Due to this, scientists all over are now focusing on naturally derived biomaterials which have been shown to possess several advantages compared to synthetic ones, owing to their biocompatibility, biodegradability, and remodeling properties. Advantages of a naturally derived biomaterial enhance their application for replacement or restoration of damaged organs/tissues. They adequately support cell adhesion, migration, proliferation, and differentiation. Naturally derived biomaterials can induce extracellular matrix formation and tissue repair when implanted into a defect by enhancing attachment and migration of cells from surrounding environment. In the current chapter, we will focus on the natural and synthetic dermal matrix development and all of the progress in this field.
Collapse
Affiliation(s)
- Naveen Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India.
| | - Vineet Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Sanjay Purohit
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Anil Kumar Gangwar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Sameer Shrivastava
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Sonal Saxena
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Dayamon David Mathews
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | - Ajit Kumar Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Karam Pal Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, India
| |
Collapse
|
7
|
Removal of an abluminal lining improves decellularization of human umbilical arteries. Sci Rep 2020; 10:10556. [PMID: 32601366 PMCID: PMC7324607 DOI: 10.1038/s41598-020-67417-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
The decellularization of long segments of tubular tissues such as blood vessels may be improved by perfusing decellularization solution into their lumen. Particularly, transmural flow that may be introduced by the perfusion, if any, is beneficial to removing immunogenic cellular components in the vessel wall. When human umbilical arteries (HUAs) were perfused at a transmural pressure, however, very little transmural flow was observed. We hypothesized that a watertight lining at the abluminal surface of HUAs hampered the transmural flow and tested the hypothesis by subjecting the abluminal surface to enzyme digestion. Specifically, a highly viscous collagenase solution was applied onto the surface, thereby restricting the digestion to the surface. The localized digestion resulted in a water-permeable vessel without damaging the vessel wall. The presence of the abluminal lining and its successful removal were also supported by evidence from SEM, TEM, and mechanical testing. The collagenase-treated HUAs were decellularized with 1% sodium dodecyl sulfate (SDS) solution under either rotary agitation, simple perfusion, or pressurized perfusion. Regardless of decellularization conditions, the decellularization of HUAs was significantly enhanced after the abluminal lining removal. Particularly, complete removal of DNA was accomplished in 24 h by pressurized perfusion of the SDS solution. We conclude that the removal of the abluminal lining can improve the perfusion-assisted decellularization.
Collapse
|
8
|
Naso F, Gandaglia A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation 2017; 25. [PMID: 29057501 DOI: 10.1111/xen.12354] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Xenogeneic decellularized heart valve scaffolds have the potential to overcome the limitations of existing bioprosthetic heart valves that have limited duration due to calcification and tissue degeneration phenomena. This article presents a review of 30 years of decellularization approaches adopted in cardiovascular tissue engineering, with a focus on the use, either individually or in combination, of different detergents. The safety and efficacy of cell-removal procedures are specifically reported and discussed, as well as the structure and biomechanics of the treated extracellular matrix (ECM). Detergent residues within the ECM, production of hyaluronan fragments, safe removal of cellular debris, and the persistence of the alpha-Gal epitope after the decellularization treatments are of particular interest as parameters for the identification of the best tissue for the manufacture of bioprostheses. Special attention has also been given to key factors that should be considered in the manufacture of the next generation of xenogeneic bioprostheses, where tissues must retain the ability to be remodeled and to grow in weight along with body reshaping.
Collapse
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation Company, Este, Padova, Italy
| | | |
Collapse
|
9
|
Ratto GB, Di Primio R, Romano P, Truini M, Badini A, Zaccheo D, Motta G. New Directions in the Use of Carbon as Vascular Graft Material. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/153857448802200405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon has been used to improve the thromboresistance of synthetic vascular prostheses, and for this pur pose, dacron grafts have been coated with carbon. Owing to the contradic tory results reported in the literature, a new kind of vascular conduit, ex clusively textured from carbon fi bers, has been developed. The pres ent research study was undertaken to compare carbon and expanded poly tetrafluoroethylene (e-PTFE) grafts when used as vascular substitutes. Fifty-six experimental animals were divided into four equal groups and underwent substitution of segments of infrarenal aorta or inferior vena cava (IVC), through use of either carbon or e-PTFE grafts. Prosthetic segments were removed fifteen sec onds, or sixty minutes, or seven, fif teen, thirty, sixty, or one hundred twenty days after implantation. Spec imens were examined by light and scanning electron microscopy. Cumu lative patency rates, calculated by the life-table method at 120 days after surgery, were 72% for aortic carbon grafts, 41 % for aortic e-PTFE grafts, and 0% for both carbon and e-PTFE grafts implanted on the IVC. Carbon conduits performed significantly bet ter than e-PTFE conduits when used as small-caliber arterial substitutes (p < 0.05). Fifteen seconds after blood contact, the inner surface of carbon prostheses, regardless of the implantation site, was covered with a thin proteinaceous layer, whereas e- PTFE grafts appeared almost com pletely free from hematic deposits. One hour after implantation, a red thrombus was found to overlay the luminal surface of both carbon and e- PTFE prostheses. This layer ap peared to be thicker on the e-PTFE grafts than on the carbon grafts and thicker on the venous grafts than on the arterial. The endothelialization process of the blood-prosthesis inter face seemed to be slightly more rapid on the carbon than on the e-PTFE aortic grafts. In conclusion, this new carbon graft would appear to possess promising specifications, making it suitable for small-caliber arterial (but not venous) replacement.
Collapse
Affiliation(s)
- Giovanni B. Ratto
- Cattedra di Semeiotica Chirurgica I Università di Genova Genova, Italy
| | - R. Di Primio
- From the Istituto di Anatomia Umana Normale (Head: D. Zaccheo), University of Genova, Genova, Italy
| | - P. Romano
- From the Istituto di Anatomia Umana Normale (Head: D. Zaccheo), University of Genova, Genova, Italy
| | - M. Truini
- Cattedra di Anatomia Patologica (Head: A. Badini) University of Genova, Genova, Italy
| | - A. Badini
- Cattedra di Anatomia Patologica (Head: A. Badini) University of Genova, Genova, Italy
| | - D. Zaccheo
- Istituto di Anatomia Umana Normale (Head: D. Zaccheo), University of Genova, Genova, Italy
| | - G. Motta
- Cattedra di Semeiotica Chirurgica I (Head: G. Motta), University of Genova, Genova, Italy
| |
Collapse
|
10
|
Li ZK, Wu ZS, Lu T, Yuan HY, Tang H, Tang ZJ, Tan L, Wang B, Yan SM. Materials and surface modification for tissue engineered vascular scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1534-52. [PMID: 27484610 DOI: 10.1080/09205063.2016.1217607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although vascular implantation has been used as an effective treatment for cardiovascular disease for many years, off-the-shelf and regenerable vascular scaffolds are still not available. Tissue engineers have tested various materials and methods of surface modification in the attempt to develop a scaffold that is more suitable for implantation. Extracellular matrix-based natural materials and biodegradable polymers, which are the focus of this review, are considered to be suitable materials for production of tissue-engineered vascular grafts. Various methods of surface modification that have been developed will also be introduced, their impacts will be summarized and assessed, and challenges for further research will briefly be discussed.
Collapse
Affiliation(s)
- Zhong-Kui Li
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Zhong-Shi Wu
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Ting Lu
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Hao-Yong Yuan
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Hao Tang
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Zhen-Jie Tang
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Ling Tan
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Bin Wang
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| | - Si-Ming Yan
- a Department of Cardiovascular Surgery , Second Xiangya Hospital of Central South University , Changsha , PR China
| |
Collapse
|
11
|
Shakya P, Sharma AK, Kumar N, Vellachi R, Mathew DD, Dubey P, Singh K, Shrivastava S, Shrivastava S, Maiti SK, Hasan A, Singh KP. Bubaline Cholecyst Derived Extracellular Matrix for Reconstruction of Full Thickness Skin Wounds in Rats. SCIENTIFICA 2016; 2016:2638371. [PMID: 27127678 PMCID: PMC4835655 DOI: 10.1155/2016/2638371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/06/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
An acellular cholecyst derived extracellular matrix (b-CEM) of bubaline origin was prepared using anionic biological detergent. Healing potential of b-CEM was compared with commercially available collagen sheet (b-CS) and open wound (C) in full thickness skin wounds in rats. Thirty-six clinically healthy adult Sprague Dawley rats of either sex were randomly divided into three equal groups. Under general anesthesia, a full thickness skin wound (20 × 20 mm(2)) was created on the dorsum of each rat. The defect in group I was kept as open wound and was taken as control. In group II, the defect was repaired with commercially available collagen sheet (b-CS). In group III, the defect was repaired with cholecyst derived extracellular matrix of bovine origin (b-CEM). Planimetry, wound contracture, and immunological and histological observations were carried out to evaluate healing process. Significantly (P < 0.05) increased wound contraction was observed in b-CEM (III) as compared to control (I) and b-CS (II) on day 21. Histologically, improved epithelization, neovascularization, fibroplasia, and best arranged collagen fibers were observed in b-CEM (III) as early as on postimplantation day 21. These findings indicate that b-CEM have potential for biomedical applications for full thickness skin wound repair in rats.
Collapse
Affiliation(s)
- Poonam Shakya
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - A. K. Sharma
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Naveen Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Remya Vellachi
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Dayamon D. Mathew
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Prasoon Dubey
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Kiranjeet Singh
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Sonal Shrivastava
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - S. K. Maiti
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Anwarul Hasan
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - K. P. Singh
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| |
Collapse
|
12
|
Kajbafzadeh AM, Khorramirouz R, Akbarzadeh A, Sabetkish S, Sabetkish N, Saadat P, Tehrani M. A novel technique for simultaneous whole-body and multi-organ decellularization: umbilical artery catheterization as a perfusion-based method in a sheep foetus model. Int J Exp Pathol 2015; 96:116-32. [PMID: 26031202 DOI: 10.1111/iep.12124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/09/2015] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to develop a method to generate multi-organ acellular matrices. Using a foetal sheep model have developed a method of systemic pulsatile perfusion via the umbilical artery which allows for simultaneous multi-organ decellularization. Twenty sheep foetuses were systemically perfused with Triton X-100 and sodium dodecyl sulphate. Following completion of the whole-body decellularization, multiple biopsy samples were taken from different parts of 21 organs to ascertain complete cell component removal in the preserved extracellular matrices. Both the natural and decellularized organs were subjected to several examinations. The samples were obtained from the skin, eye, ear, nose, throat, cardiovascular, respiratory, gastrointestinal, urinary, musculoskeletal, central nervous and peripheral nervous systems. The histological results depicted well-preserved extracellular matrix (ECM) integrity and intact vascular structures, without any evidence of residual cellular materials, in all decellularized bioscaffolds. Scanning electron microscope (SEM) and biochemical properties remained intact, similar to their age-matched native counterparts. Preservation of the collagen structure was evaluated by a hydroxyproline assay. Dense organs such as bone and muscle were also completely decellularized, with a preserved ECM structure. Thus, as shown in this study, several organs and different tissues were decellularized using a perfusion-based method, which has not been previously accomplished. Given the technical challenges that exist for the efficient generation of biological scaffolds, the current results may pave the way for obtaining a variety of decellularized scaffolds from a single donor. In this study, there have been unique responses to the single acellularization protocol in foetuses, which may reflect the homogeneity of tissues and organs in the developing foetal body.
Collapse
Affiliation(s)
- Abdol-Mohammad Kajbafzadeh
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Reza Khorramirouz
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Aram Akbarzadeh
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Shabnam Sabetkish
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Nastaran Sabetkish
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Paria Saadat
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Mona Tehrani
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| |
Collapse
|
13
|
Comparative histologic and immunologic evaluation of 1,4-butanediol diglycidyl ether crosslinked versus noncrosslinked acellular swim bladder matrix for healing of full-thickness skin wounds in rabbits. J Surg Res 2015; 197:436-46. [DOI: 10.1016/j.jss.2015.04.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023]
|
14
|
Jetty D, Sharma AK, Kumar N, Shrivastava S, Sonal B, Rai RB. Invivo biocompatibility determination of acellular aortic matrix of buffalo origin. Prog Biomater 2014; 3:115-122. [PMID: 29470768 PMCID: PMC5301469 DOI: 10.1007/s40204-014-0027-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/11/2014] [Indexed: 11/24/2022] Open
Abstract
In the present study, biocompatibility of native, acellular, 1,4-butanediol diglycidylether and 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC) cross-linked acellular aortic grafts was evaluated following subcutaneous implantation in guinea pigs. Biocompatibility was evaluated based on macroscopic, histopathological observations and immune responses elicited by the implanted grafts. Results showed that macroscopically, no abnormal cellular reaction was observed at the host-graft junction in any of the implanted animals. Histopathological observations revealed that the inflammatory response was mild during first 15 days post-implantation and increased at 30 days post-implantation in acellular and cross-linked tissues. By day 60, marked ingrowth of host tissue was observed in EDC cross-linked acellular aortic grafts. ELISA and lymphocyte proliferation assay revealed that animals implanted with EDC grafts showed least immune response when compared to others. Therefore, it was concluded that EDC cross-linked acellular aortic grafts were more compatible and had better handling qualities than the other cross-linked grafts.
Collapse
Affiliation(s)
- Devarathnam Jetty
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh India
| | - Ashok Kumar Sharma
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh India
| | - Naveen Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh India
| | - B. Sonal
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh India
| | - R. B. Rai
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh India
| |
Collapse
|
15
|
Kumar V, Kumar N, Gangwar AK, Singh H. Comparison of acellular small intestinal matrix (ASIM) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide crosslinked ASIM (ASIM-EDC) for repair of full-thickness skin wounds in rabbits. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.wndm.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Bioengineered acellular dermal matrices for the repair of abdominal wall defects in rats. Hernia 2014; 19:219-29. [DOI: 10.1007/s10029-014-1308-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
17
|
Regenerative implants for cardiovascular tissue engineering. Transl Res 2014; 163:321-41. [PMID: 24589506 DOI: 10.1016/j.trsl.2014.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 01/22/2023]
Abstract
A fundamental problem that affects the field of cardiovascular surgery is the paucity of autologous tissue available for surgical reconstructive procedures. Although the best results are obtained when an individual's own tissues are used for surgical repair, this is often not possible as a result of pathology of autologous tissues or lack of a compatible replacement source from the body. The use of prosthetics is a popular solution to overcome shortage of autologous tissue, but implantation of these devices comes with an array of additional problems and complications related to biocompatibility. Transplantation offers another option that is widely used but complicated by problems related to rejection and donor organ scarcity. The field of tissue engineering represents a promising new option for replacement surgical procedures. Throughout the years, intensive interdisciplinary, translational research into cardiovascular regenerative implants has been undertaken in an effort to improve surgical outcome and better quality of life for patients with cardiovascular defects. Vascular, valvular, and heart tissue repair are the focus of these efforts. Implants for these neotissues can be divided into 2 groups: biologic and synthetic. These materials are used to facilitate the delivery of cells or drugs to diseased, damaged, or absent tissue. Furthermore, they can function as a tissue-forming device used to enhance the body's own repair mechanisms. Various preclinical studies and clinical trials using these advances have shown that tissue-engineered materials are a viable option for surgical repair, but require refinement if they are going to reach their clinical potential. With the growth and accomplishments this field has already achieved, meeting those goals in the future should be attainable.
Collapse
|
18
|
Intima/medulla reconstruction and vascular contraction-relaxation recovery for acellular small diameter vessels prepared by hyperosmotic electrolyte solution treatment. J Artif Organs 2014; 17:169-77. [PMID: 24563234 DOI: 10.1007/s10047-014-0760-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
This study aims at the evaluation of blood vessel reconstruction process of decellularized small diameter vessels prepared by a hyperosmotic electrolyte solution treatment not only histologically but also physiologically in rat transplantation model. Complete cell removal by a hyperosmotic electrolyte solution treatment was confirmed by hematoxylin/eosin staining and scanning electron microscopic observation. All acellular vessels transplanted into the rat abdominal aorta were patent up to 14 months. One week post-transplantation, the vWF-positive cells were observed on the luminal surface but the layer formation did not complete. Five weeks following transplantation, the vWF-positive endothelial cells were located on the intima consistent with intact endothelial cells. Beneath the endothelial cells, α-SMA-positive smooth muscle cells were distributed. The harvested vessels displayed formation of tunica intima (endothelial cells) and tunica medulla (smooth muscle cell) layers. We also examined the physiological properties of the vessels 12 months post-transplantation using a wire myograph system. The transplanted vessels contracted upon addition of norepinephrine and relaxed upon addition of sodium nitroprusside as well as the native vessels. In conclusion, the acellular vessels prepared with hyperosmotic electrolytic solution showed excellent and long-term patency, which may be related to the successful preservation of vascular ECM. In addition, the acellular vessels revealed the intima/medulla regeneration with the physiological contraction-relaxation functions in response to the each substance.
Collapse
|
19
|
Gauvin R, Marinov G, Mehri Y, Klein J, Li B, Larouche D, Guzman R, Zhang Z, Germain L, Guidoin R. A comparative study of bovine and porcine pericardium to highlight their potential advantages to manufacture percutaneous cardiovascular implants. J Biomater Appl 2012; 28:552-65. [DOI: 10.1177/0885328212465482] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: Prosthetic heart valves designed to be implanted percutaneously must be loaded within delivery catheters whose diameter can be as low as 18 F (6 mm). This mandatory crimping of the devices may result in deleterious damages to the tissues used for valve manufacturing. As bovine and porcine pericardial tissue are currently given preference because of their excellent availability and traceability, a preliminary comparative study was undertaken to highlight their potential advantages. Materials and methods: Bovine and pericardium patches were compared morphologically (light microscopy, scanning electron microscopy and transmission electron microscopy). The acute thrombogenicity of both materials was measured in term of platelet uptake and observed by scanning electron microscopy, porcine intact and injured arteries being used as controls. The pericardium specimens were also subjected to uniaxial tensile tests to compare their respective mechanical characteristics. Results: Both pericardiums showed a layered architecture of collagen bundles presenting some interstitial cells. They displayed wavy crimps typical of an unloaded collagenous tissue. The collagen bundles were not bound together and the fibrils were parallel with characteristic periodicity patterns of cross striations. The mesothelial cells found in vivo on the serous surface were no longer present due to tissue processing, but the adjacent structure was far more compacted when compared to the fibrous side. The fibrinocollagenous surfaces were found to be more thrombogenic for both bovine and porcine tissues and the serous side of the porcine pericardium retained more platelets when compared to the bovine samples, making the acute thrombogenicity more important in the porcine pericardium. Conclusion: Both bovine and porcine pericardium used in cardiovascular implantology can be selected to manufacture percutaneous heart valves. The selection of one pericardium preferably to the other should deserve additional testing regarding the innocuousness of crimping when loaded in delivery catheters and the long-term durability after percutaneous deployment.
Collapse
Affiliation(s)
- Robert Gauvin
- Center of LOEX, Laval University, Quebec (QC), Canada
| | | | - Yayhe Mehri
- Montreal Heart Institute, Montreal (QC), Canada
| | | | - Bin Li
- Research Center of Saint-François d'Assise Hospital (CHU), Laval University, Quebec (QC), Canada
| | | | | | - Ze Zhang
- Research Center of Saint-François d'Assise Hospital (CHU), Laval University, Quebec (QC), Canada
| | - Lucie Germain
- Center of LOEX, Laval University, Quebec (QC), Canada
| | - Robert Guidoin
- Research Center of Saint-François d'Assise Hospital (CHU), Laval University, Quebec (QC), Canada
| |
Collapse
|
20
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
21
|
Orlando G, Wood KJ, De Coppi P, Baptista PM, Binder KW, Bitar KN, Breuer C, Burnett L, Christ G, Farney A, Figliuzzi M, Holmes JH, Koch K, Macchiarini P, Mirmalek Sani SH, Opara E, Remuzzi A, Rogers J, Saul JM, Seliktar D, Shapira-Schweitzer K, Smith T, Solomon D, Van Dyke M, Yoo JJ, Zhang Y, Atala A, Stratta RJ, Soker S. Regenerative medicine as applied to general surgery. Ann Surg 2012; 255:867-80. [PMID: 22330032 PMCID: PMC3327776 DOI: 10.1097/sla.0b013e318243a4db] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues, or organs to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues, and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate.
Collapse
Affiliation(s)
- Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Entwicklung klappentragender Venensegmente mittels „tissue-engineering“. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2011. [DOI: 10.1007/s00398-011-0856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Tosun Z, Villegas-Montoya C, McFetridge PS. The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues. J Vasc Surg 2011; 54:1451-60. [PMID: 21872418 DOI: 10.1016/j.jvs.2011.05.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/29/2011] [Accepted: 05/20/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES During the last decade, the use of ex vivo-derived materials designed as implant scaffolds has increased significantly. This is particularly so in the area of regenerative medicine, or tissue engineering, where the natural chemical and biomechanical properties have been shown to be advantageous. By focusing on detailed events that occur during early-phase remodeling processes, our objective was to detail progressive changes in graft biomechanics to further our understanding of these processes. METHODS A perfusion bioreactor system and acellular human umbilical veins were used as a model three-dimensional vascular scaffold on which human myofibroblasts were seeded and cultured under static or defined pulsatile conditions. Cell function in relation to graft mechanical properties was assessed. RESULTS Cells doubled in density from approximately 1 × 10(6) to 2 ± 0.4 × 10(6) cells/cm ringlet, whereas static cultures remained unchanged. The material's compressive stiffness and ultimate tensile strength remained unchanged in both static and dynamic systems. However the Young's modulus values increased significantly in the physiologic range, whereas in the failure range, a significant reduction (66%) was shown under dynamic conditions. CONCLUSIONS As pulse and flow conditions are modulated, complex mechanical changes are occurring that modify the elastic modulus differentially in both physiologic and failure ranges. Mechanical properties play an important role in graft patency, and a dynamic relationship between structure and function occurs during graft remodeling. These investigations have shown that as cells migrate into this ex vivo scaffold model, significant variation in material elasticity occurs that may have important implications in our understanding of early-stage vascular remodeling events.
Collapse
Affiliation(s)
- Zehra Tosun
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| | | | | |
Collapse
|
24
|
Study on the physical properties of tissue-engineered blood vessels made by chemical cross-linking and polymer-tissue cross-linking. J Artif Organs 2009; 12:47-54. [DOI: 10.1007/s10047-008-0443-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/27/2008] [Indexed: 11/26/2022]
|
25
|
Kratzberg JA, Walker PJ, Rikkers E, Raghavan ML. The effect of proteolytic treatment on plastic deformation of porcine aortic tissue. J Mech Behav Biomed Mater 2009; 2:65-72. [DOI: 10.1016/j.jmbbm.2008.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 04/02/2008] [Accepted: 04/04/2008] [Indexed: 11/16/2022]
|
26
|
Narita Y, Kagami H, Matsunuma H, Murase Y, Ueda M, Ueda Y. Decellularized ureter for tissue-engineered small-caliber vascular graft. J Artif Organs 2008; 11:91-9. [PMID: 18604613 DOI: 10.1007/s10047-008-0407-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 02/23/2008] [Indexed: 11/25/2022]
Abstract
Previous attempts to create small-caliber vascular prostheses have been limited. The aim of this study was to generate tissue-engineered small-diameter vascular grafts using decellularized ureters (DUs). Canine ureters were decellularized using one of four different chemical agents [Triton-X 100 (Tx), deoxycholate (DCA), trypsin, or sodium dodecyl sulfate (SDS)] and the histology, residual DNA contents, and immunogenicity of the resulting DUs were compared. The mechanical properties of the DUs were evaluated in terms of water permeability, burst strength, tensile strength, and compliance. Cultured canine endothelial cells (ECs) and myofibroblasts were seeded onto DUs and evaluated histologically. Canine carotid arteries were replaced with the EC-seeded DUs (n = 4). As controls, nonseeded DUs (n = 5) and PTFE prostheses (n = 4) were also used to replace carotid arteries. The degree of decellularization and the maintenance of the matrix were best in the Tx-treated DUs. Tx-treated and DCA-treated DUs had lower remnant DNA contents and immunogenicity than the others. The burst strength of the DUs was more than 500 mmHg and the maximum tensile strength of the DUs was not different to that of native ureters. DU compliance was similar to that of native carotid artery. The cell seeding test resulted in monolayered ECs and multilayered alpha-smooth muscle actin-positive cells on the DUs. The animal implantation model showed that the EC-seeded DUs were patent for at least 6 months after the operation, whereas the nonseeded DUs and PTFE grafts become occluded within a week. These results suggest that tissue-engineered DUs may be a potential alternative conduit for bypass surgery.
Collapse
Affiliation(s)
- Yuji Narita
- Department of Clinical Cell Therapy and Tissue Engineering, Nagoya University School of Medicine, Nagoya, 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Aper T, Haverich A, Teebken O. Der Traum vom idealen Bypassmaterial in der Gefäßchirurgie. GEFÄSSCHIRURGIE 2008. [DOI: 10.1007/s00772-008-0587-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Chang Y, Hsu CK, Wei HJ, Chen SC, Liang HC, Lai PH, Sung HW. Cell-free xenogenic vascular grafts fixed with glutaraldehyde or genipin: in vitro and in vivo studies. J Biotechnol 2005; 120:207-19. [PMID: 16112218 DOI: 10.1016/j.jbiotec.2005.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 05/30/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Chronic rejection of arterial xenografts results in aneurysmal dilation, due to immune mediated processes. To minimize the immunologic degradation of the graft, a cell-extraction process employing sodium dodecyl sulfate (SDS) was used in the study to remove the cellular components in bovine carotid arteries. To further reduce their immunogenicity, the acellular arteries were fixed with glutaraldehyde (A-GA) or genipin (A-GP). The in vitro properties of all test samples were analyzed. Additionally, the in vivo performance of the heparinized A-GA and A-GP grafts (H-A-GA and H-A-GP) was evaluated in a canine model. It was found that the SDS treatment effectively removed cells from the arterial wall, but the main structures of the extracellular matrix were preserved with a portion of the water-soluble glycosaminoglycans removed. After cell extraction, the elastic lamellae in the media became straightened, and thus made the tissue less extensile. The heparinized tissues significantly reduced platelet adhesion. At retrieval, all implanted grafts were patent and not dilated. Chronic inflammatory response surrounding the implants was observed. However, fixation of acellular tissues by glutaraldehyde or genipin inhibited immune cell penetration into the media and limited tissue degradation, and therefore prevented the arterial wall from dilation. Nevertheless, the H-A-GP graft was superior to the H-A-GA graft in completeness of endothelialization on its luminal surface, and thus precluded thrombus formation.
Collapse
Affiliation(s)
- Yen Chang
- Division of Cardiovascular Surgery, Veterans General Hospital-Taichung and College of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
29
|
Daniel J, Abe K, McFetridge PS. Development of the Human Umbilical Vein Scaffold for Cardiovascular Tissue Engineering Applications. ASAIO J 2005; 51:252-61. [PMID: 15968956 DOI: 10.1097/01.mat.0000160872.41871.7e] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Biologic function and the mechanical performance of vascular grafting materials are important predictors of graft patency. As such, "functional" materials that improve biologic integration and function have become increasingly sought after. An important alternative to synthetic materials is the use of biomaterials derived from ex vivo tissues that retain significant biologic and mechanical function. Unfortunately, inconsistent mechanical properties that result from tedious, time consuming, manual dissection methods have reduced the potential usefulness of many of these materials. We describe the preparation of the human umbilical vein (HUV) for use as an acellular, three-dimensional, vascular scaffold using a novel, automated dissection methodology. The goal of this investigation was to determine the effectiveness of the autodissection methodology to yield an ex vivo biomaterial with improved uniformity and reduced variance. Mechanical properties, including burst pressure, compliance, uniaxial tension testing, and suture holding capacity, were assessed to determine the suitability of the HUV scaffold for vascular tissue engineering applications. The automated methodology results in a tubular scaffold with significantly reduced sample to sample variation, requiring significantly less time to excise the vein from the umbilical cord than manual dissection methods. Short-term analysis of the interactions between primary human vascular smooth muscle cells and fibroblasts HUV scaffold have shown an excellent potential for cellular integration by native cellular remodeling processes. Our work has shown that the HUV scaffold is mechanically sound, uniform, and maintains its biphasic stress-strain relationship throughout tissue processing. By maintaining the mechanical properties of the native blood vessels, in concert with promising cellular interactions, the HUV scaffold may lead to improved grafts for vascular reconstructive surgeries.
Collapse
Affiliation(s)
- Joel Daniel
- School of Chemical, Biological and Materials Engineering, and the University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, Oklahoma, USA
| | | | | |
Collapse
|
30
|
Abstract
Current prosthetic substitutes for heart valves and blood vessels have numerous limitations such as limited durability (biological valves), susceptibility to infection, the necessity of lifelong anticoagulation therapy (prosthetic valves), and reduced patency in small-caliber grafts, for example. Tissue engineering using either polymers or decellularized native allogeneic or xenogenic heart valve/vascular matrices may provide the techniques to develop the ideal heart valve or vascular graft. The matrix scaffold serves as a basis on which seeded cells can organise and develop into the valve or vascular tissue prior to or following implantation. The scaffold is either degraded or metabolised during the formation and organisation of the newly generated matrix, leading to vital living tissue. This paper summarises current research and first clinical developments in the tissue engineering of heart valves and vascular grafts.
Collapse
Affiliation(s)
- O E Teebken
- Klinik für Thorax-, Herz- und Gefässchirurgie, Medizinische Hochschule Hannover.
| | | | | |
Collapse
|
31
|
Kanematsu A, Yamamoto S, Iwai-Kanai E, Kanatani I, Imamura M, Adam RM, Tabata Y, Ogawa O. Induction of smooth muscle cell-like phenotype in marrow-derived cells among regenerating urinary bladder smooth muscle cells. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:565-73. [PMID: 15681839 PMCID: PMC1602323 DOI: 10.1016/s0002-9440(10)62278-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tissue regeneration on acellular matrix grafts has great potential for therapeutic organ reconstruction. However, hollow organs such as the bladder require smooth muscle cell regeneration, the mechanisms of which are not well defined. We investigated the mechanisms by which bone marrow cells participate in smooth muscle formation during urinary bladder regeneration, using in vivo and in vitro model systems. In vivo bone marrow cells expressing green fluorescent protein were transplanted into lethally irradiated rats. Eight weeks following transplantation, bladder domes of the rats were replaced with bladder acellular matrix grafts. Two weeks after operation transplanted marrow cells repopulated the graft, as evidenced by detection of fluorescent staining. By 12 weeks they reconstituted the smooth muscle layer, with native smooth muscle cells (SMC) infiltrating the graft. In vitro, the differential effects of distinct growth factor environments created by either bladder urothelial cells or bladder SMC on phenotypic changes of marrow cells were examined. First, supernatants of cultured bladder cells were used as conditioned media for marrow cells. Second, these conditions were reconstituted with exogenous growth factors. In each case, a growth factor milieu characteristic of SMC induced an SMC-like phenotype in marrow cells, whereas that of urothelial cells failed. These findings suggest that marrow cells differentiate into smooth muscle on acellular matrix grafts in response to the environment created by SMC.
Collapse
Affiliation(s)
- Akihiro Kanematsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaracho, Sakyo, Kyoto, Japan 606-8507
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: The Holy Grail of peripheral vascular surgery. J Vasc Surg 2005; 41:349-54. [PMID: 15768021 DOI: 10.1016/j.jvs.2004.12.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Artificial blood vessels composed of viable tissue represent the ideal vascular graft. Compliance, lack of thrombogenicity, and resistance to infections as well as the ability to heal, remodel, contract, and secrete normal blood vessel products are theoretical advantages of such grafts. Three basic elements are generally required for the construction of an artificial vessel: a structural scaffold, made either of collagen or a biodegradable polymer; vascular cells, and a nurturing environment. Mechanical properties of the artificial vessels are enhanced by bioreactors that mimic the in vivo environment of the vascular cells by producing pulsatile flow. Alternative approaches include the production of fibrocollagenous tubes within the recipient's own body (subcutaneous tissue or peritoneal cavity) and the construction of an artificial vessel from acellular native tissues, such as decellularized small intestine submucosa, ureter, and allogeneic or xenogeneic arteries. This review details the most recent developments on vascular tissue engineering, summarizes the results of initial experiments on animals and humans, and outlines the current status and the challenges for the future.
Collapse
Affiliation(s)
- John D Kakisis
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
33
|
Kanematsu A, Yamamoto S, Ozeki M, Noguchi T, Kanatani I, Ogawa O, Tabata Y. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 2004; 25:4513-20. [PMID: 15046942 DOI: 10.1016/j.biomaterials.2003.11.035] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 11/24/2003] [Indexed: 11/24/2022]
Abstract
We have investigated the use of natural and synthetic collagenous matrices as carriers of exogenous growth factors. A bladder acellular matrix (BAM) was processed from rat bladder and compared with sponge matrix of porcine type 1 collagen. The lyophilized matrices were rehydrated by the aqueous solutions of basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), platelet derived growth factor-BB (PDGF-BB), vascular endothelial growth factor (VEGF), insulin like growth factor-1 (IGF-1) and heparin binding epidermal growth factor-like growth factor (HB-EGF), to obtain the matrix incorporating each growth factor. The rehydration method enabled the growth factor protein to distribute into the matrix homogeneously. In vivo release test in the mouse subcutis revealed that, the property of BAM for growth factor release was similar to that of collagen sponge. Among the growth factors examined, bFGF release was the most sustained, followed by HGF and PDGF-BB. bFGF released from the two matrices showed similar in vivo angiogenic activity at the mouse subcutis in a dose-dependent manner. These findings demonstrate that the collagenous matrices function as release carriers of growth factors. This feature is promising to create a scaffold, which has a nature to control the tissue regeneration actively.
Collapse
Affiliation(s)
- Akihiro Kanematsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Shogoin-Kawaracho 54, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
McFetridge PS, Bodamyali T, Horrocks M, Chaudhuri JB. Endothelial and Smooth Muscle Cell Seeding onto Processed Ex Vivo Arterial Scaffolds Using 3D Vascular Bioreactors. ASAIO J 2004; 50:591-600. [PMID: 15672794 DOI: 10.1097/01.mat.0000144365.22025.9b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Biomaterials derived from ex vivo tissues offer a viable alternative to synthetic materials for organ replacement therapies. In this study, we describe the use of a tissue engineering scaffold derived from ex vivo arterial tissue to assess vascular cell adhesion within a three-dimensional perfusion bioreactor. With the aim of maximizing seeding efficiency, five methods for endothelial cell (EC) and three independent methods for vascular smooth muscle cell (VSMC) adhesion were explored. Seeded constructs were maintained in vascular bioreactors under pulsatile flow conditions, culminating at 165 ml/min at 1.33 Hz to validate cell attachment and retention over time. Progressive modification of the seeding and flow regime protocols resulted in an increased of EC retention from 5.1 to 634 cells/mm2. Seeding VSMCs as sheets rather than cell suspensions bound and stabilized surface EC matrix fibers, resulting in multiple cell layers adhered to the scaffold with cells migrating to the medial/adventitial boundary. In conjunction with the bioscaffold, the vascular perfusion system serves as a useful tool to analyze cell adhesion and retention by allowing controlled manipulation of seeding and perfusion conditions.
Collapse
Affiliation(s)
- Peter S McFetridge
- School of Chemical, Biological and Materials Engineering and the University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | |
Collapse
|
35
|
McFetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 2004; 70:224-34. [PMID: 15227667 DOI: 10.1002/jbm.a.30060] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomaterials derived from tissue continue to offer viable alternatives to synthetic materials when autologous materials are unavailable for transplantation due to their unique chemical and mechanical properties. Tissue processing aims to stabilize the material against host degradation and render it immunologically inert by removing cellular material and crosslinking the structural proteins. It is clear that different approaches taken to achieve these goals have very different chemical and mechanical effects on the material. We describe herein the development of a tissue processing methodology to generate acellular scaffolds for tissue engineering small-diameter vascular grafts. Carotid arteries were isolated from Great White pigs and exposed to various solvent treatments, xylene, butanol, and ethanol to determine optimal parameters for the extraction of host lipids. The tissue was then exposed to a limited proteolysis with trypsin to disrupt cellular protein. This resulted in a controlled digestion that disrupted porcine nuclear DNA and cleared bulk cellular protein, leaving the more resistant structural proteins largely intact and retaining the bulk mechanical properties of the matrix. Histological analysis and scanning electron microscopy illustrated the complete removal of intact cells and nuclear material. The decellularized graft was stabilized by crosslinking with the photooxidative dye methylene green in the presence of 30,000 LUX of broad-band light energy. High-performance liquid chromatography analysis showed that the crosslinked tissue yielded 78.6% less hydroxyproline, compared with control tissue, after 20 h incubation with pepsin. Analysis of the crosslinked vessels' burst-pressure and stress-strain characteristics have shown comparable mechanical properties to those of control vessels. Assessment of in vitro cell adhesion and compatibility was conducted by seeding primary human umbilical vein endothelial cells and adult human vascular smooth muscle cells onto the lumenal and ablumenal surfaces, respectively; these cells were shown to adhere and proliferate under traditional static culture conditions.
Collapse
Affiliation(s)
- Peter S McFetridge
- School of Chemical Engineering and Materials Science, University of Oklahoma, 100 East Boyd, Norman, Oklahoma 73019-1004, USA
| | | | | | | | | |
Collapse
|
36
|
Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, Keating MT, Li DY. A critical role for elastin signaling in vascular morphogenesis and disease. Development 2003; 130:411-23. [PMID: 12466207 DOI: 10.1242/dev.00223] [Citation(s) in RCA: 324] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular proliferative diseases such as atherosclerosis and coronary restenosis are leading causes of morbidity and mortality in developed nations. Common features associated with these heterogeneous disorders involve phenotypic modulation and subsequent abnormal proliferation and migration of vascular smooth muscle cells into the arterial lumen, leading to neointimal formation and vascular stenosis. This fibrocellular response has largely been attributed to the release of multiple cytokines and growth factors by inflammatory cells. Previously, we demonstrated that the disruption of the elastin matrix leads to defective arterial morphogenesis. Here, we propose that elastin is a potent autocrine regulator of vascular smooth muscle cell activity and that this regulation is important for preventing fibrocellular pathology. Using vascular smooth muscle cells from mice lacking elastin (Eln(-/-)), we show that elastin induces actin stress fiber organization, inhibits proliferation, regulates migration and signals via a non-integrin, heterotrimeric G-protein-coupled pathway. In a porcine coronary model of restenosis, the therapeutic delivery of exogenous elastin to injured vessels in vivo significantly reduces neointimal formation. These findings indicate that elastin stabilizes the arterial structure by inducing a quiescent contractile state in vascular smooth muscle cells. Together, this work demonstrates that signaling pathways crucial for arterial morphogenesis can play an important role in the pathogenesis and treatment of vascular disease.
Collapse
Affiliation(s)
- Satyajit K Karnik
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Tissue engineering, using either polymer or biological based scaffolds, represents the newest approach to overcoming limitations of small diameter prosthetic vascular grafts. Their disadvantages include thromboembolism and thrombosis, anticoagulant related haemorrhage, compliance mismatch, neointimal hyperplasia, as well as aneurysm formation. This current review represents an overview about previous and contemporary studies in the field of artificial vascular conduits development regarding arterial and venous autografts, allografts, xenografts, alloplastic prostheses, and tissue engineering.
Collapse
Affiliation(s)
- Omke E Teebken
- Leibniz Research Laboratories for Biotechnology & Artificial Organs, LEBAO, Thoracic & Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
38
|
Allaire E, Bruneval P, Mandet C, Becquemin JP, Michel JB. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery 1997; 122:73-81. [PMID: 9225918 DOI: 10.1016/s0039-6060(97)90267-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Determinants of xenograft immunogenicity are poorly characterized. We showed previously that decellularized arterial xenografts (DAXs) dilate, whereas decellularized arterial isografts (DAIs) and allografts do not, suggesting an interspecies, rather than an intraspecies, immunogenicity of the arterial extracellular matrix leading to chronic rejection. Now we have investigated the immunogenicity of the arterial extracellular matrix in xenografts and its impact on chronic injury (elastin lysis) and remodeling (graft dilation). METHODS Diameter and elastin content were measured in DAIs and DAXs from hamster to rat (concordant combination) and guinea pig to rat (discordant combinations) at 8 weeks. We also characterized the immune effectors infiltrating DAIs and DAXs by immunohistochemistry after 6 hours to 4 weeks of implantation. Results were compared with nondecellularized isografts and xenografts. Last, the impact of the donor-recipient phylogenetic distance on monocyte-macrophage penetration into the media was assessed in three xenograft combinations. RESULTS DAXs from guinea pig, but not from hamster, were aneurysmal at 8 weeks. Elastin lysis paralleled graft dilation. DAXs, but not DAIs, were infiltrated by monocytes, macrophages, T lymphocytes, and immunoglobulins. The donor-recipient combination did not affect the phenotype of the inflammatory infiltrate in DAXs, but it modified the kinetics of monocyte-macrophage penetration into the media. The absence of decellularization changed the inflammatory infiltrate phenotype (absence of macrophages) but had little impact on DAX injury and remodeling. CONCLUSIONS DAX immunogenicity accounts for most of chronic arterial xenograft injury, which is modulated by the donor-recipient combination. The immunogenicity of arterial xenografts, unlike allografts, is supported by the extracellular matrix in addition to the cells and could influence the long-term fate of xenografts.
Collapse
Affiliation(s)
- E Allaire
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 460, Centre Hospitalier Universitaire Xavier Bichat, Paris, France
| | | | | | | | | |
Collapse
|
39
|
Allaire E, Guettier C, Bruneval P, Plissonnier D, Michel JB. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg 1994; 19:446-56. [PMID: 8126857 DOI: 10.1016/s0741-5214(94)70071-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE Chronic rejection of arterial allografts and xenografts results in arterial wall dilation and rupture, making them unsuitable for long-term arterial replacement in vascular surgery. In the arterial wall, as in other organs, the cells probably carry major antigenic determinants. Arterial wall cellular components can be removed by detergent treatment to produce a graftable matrix tube. METHODS We compared the patency and macroscopic and microscopic morphologic changes that occurred in sodium dodecyl sulfate (SDS)-treated and untreated arterial isografts, allografts, and xenografts 2 months after implantation in rats. We quantified elastin, collagen, and nuclear density in the three layers of the graft wall (intima, media, and adventitia) by morphometric methods. The SDS treatment removed endothelial and smooth muscle cells and cells in the adventitia but preserved elastin and collagen extracellular matrix. RESULTS All arterial xenografts, whether SDS treated or untreated, were aneurysmal 2 months after grafting, with loss of the medial cellular and extracellular components. In allografts, SDS treatment prevented dilation, reduced adventitial inflammatory infiltration, and preserved medial elastin. The SDS-treated allografts had an evenly distributed, noninflammatory intimal thickening that was richer in elastin fibers than that in untreated allografts. CONCLUSIONS These results suggest an interspecies, but not an intraspecies, graft antigenicity of arterial extracellular matrix. The SDS treatment prevented chronic rejection of the arterial allograft and led to the proliferation of an elastin-rich and adapted intima.
Collapse
Affiliation(s)
- E Allaire
- Unit 367 INSERM, Hôpital Broussais, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Kieffer E, Bahnini A, Koskas F, Ruotolo C, Blevec DL, Plissonnier D. In situ allograft replacement of infected infrarenal aortic prosthetic grafts: Results in forty-three patients. J Vasc Surg 1993. [DOI: 10.1016/0741-5214(93)90420-q] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Etchberger KJ, Sharefkin JB, Lalka SG, Taylor MW. Detection of fibronectin on vascular flow surfaces by enzyme-linked immunosorbent assay. Ann Vasc Surg 1989; 3:118-22. [PMID: 2548556 DOI: 10.1016/s0890-5096(06)62003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous variables are involved in the attachment of endothelial cells to a substrate. Quantifying these factors both on native vessels and on synthetic substrates is important in determining the success of endothelial cell attachment, retention, and growth on these substrates. Fibronectin is an important cell attachment molecule and is likely to be key to the successful attachment of endothelial cells to any substrate. For this reason we have developed an enzyme-linked immunosorbent assay for interrogation of the luminal surface of native and synthetic vessels for the presence of fibronectin. A plexiglass chamber was designed with two blocks, an upper block with wells and a lower supporting block. The chamber was then assembled with a vessel between the two blocks, forming the bottom of the well. This luminal surface was then interrogated by conventional enzyme-linked immunosorbent assay. Native vessels, collagenase-digested vessels, acellular matrices and PTFE preclotted with whole blood were assayed to determine the quantity of fibronectin present. These results were correlated with a bioassay developed to determine the quantity of fibronectin necessary for cell attachment. It was concluded that all of the samples assayed had ample fibronectin for cell attachment and that other factors must be responsible for successful maintenance of a cell monolayer.
Collapse
|
42
|
Lalka SG, Oelker LM, Malone JM, Duhamel RC, Kevorkian MA, Raper BA, Nixon JC, Etchberger KJ, Dalsing MC, Cikrit DF. Acellular vascular matrix: a natural endothelial cell substrate. Ann Vasc Surg 1989; 3:108-17. [PMID: 2765354 DOI: 10.1016/s0890-5096(06)62002-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A preliminary assessment was made of the acellular vascular matrix graft as a substrate for endothelial cell seeding, with respect to surface pretreatment (none versus fibronectin and/or serum) and presence of exogenous growth factor. Arteries were harvested from greyhounds and exposed to a sequential detergent extraction process to produce the acellular vascular matrix. Human umbilical vein endothelial cells were grown in tissue culture, harvested in first passage, then seeded at 10(5) cells/cm2 on sections of acellular vascular matrix and on gel-coated polystyrene positive controls. After 18 hour incubation, endothelial cell-seeded acellular matrices were fixed and processed for histologic and planimetric analysis; control wells were fixed and endothelial cells were counted by planimetry. Pretreatment of the acellular vascular matrix was found to have no effect on the percentage of endothelial cell coverage of the matrix. There was significantly better endothelial cell coverage of the acellular matrix than on matched gel-treated polystyrene control wells. Withdrawal of growth factor resulted in a significant reduction in endothelial cell coverage for all acellular vascular matrix groups. Growth factor withdrawal also significantly reduced attachment of endothelial cells on gel-treated polystyrene. Cell surface area was significantly smaller when growth factor was withdrawn from all groups except from the acellular vascular matrix without pretreatment. We conclude that: (1) the acellular vascular matrix is conductive to endothelial cell adherence and spreading even without pretreatment; and (2) sudden withdrawal of exogenous growth factor may impair early coverage of substrates by endothelial cells due to an effect on their adherence or spreading.
Collapse
Affiliation(s)
- S G Lalka
- Department of Surgery, Indiana University School of Medicine, Indianapolis
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Improved in vivo endothelialization of prosthetic grafts by surface modification with fibronectin. J Vasc Surg 1988. [DOI: 10.1016/0741-5214(88)90114-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|