Yorozuya T, Namba C, Adachi N, Nakanishi K, Dote K, Nagaro T. Changes in Energy Levels by Dexamethasone in Ischemic Hearts and Brains in Male Mice.
J Neurosurg Anesthesiol 2016;
27:295-303. [PMID:
25710300 PMCID:
PMC4560271 DOI:
10.1097/ana.0000000000000153]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND
Glucocorticoids have been shown to alleviate ischemia-induced myocardial injury, while aggravating neuronal damage caused by ischemia. As energy failure is a predominant factor in cellular viability, we examined the effects of glucocorticoids on energy utilization in the mouse heart and brain.
METHODS
Seventy-two male ddY mice were assigned to 1 of 3 groups: saline (S), dexamethasone (a glucocorticoid without mineralocorticoid activity, 5 mg/kg) (D), and metyrapone (a potent inhibitor of the synthesis of glucocorticoids, 100 mg/kg) (M) groups (n=24 in each). Three hours after intraperitoneal administration, all animals were decapitated, and the heads were frozen in liquid nitrogen after 0, 0.5, 1, or 2 minutes (n=6 in each). The hearts were immediately removed and frozen in liquid nitrogen after 0, 5, 10, or 20 minutes of incubation at 37°C (n=6 in each). The concentrations of adenylates and monoamines were determined by high-performance liquid chromatography.
RESULTS
In the heart, the adenosine 5'-triphosphate (ATP) concentration did not differ among the 3 groups at 0 minute of ischemia (3 h of S, D, or M treatment). Ischemia for 5 minutes decreased the ATP content to 21% of the basal level in the S group. The ATP decrease was suppressed by either the D or M treatment, such that after 5 minutes ATP levels were 63% and 64% of each basal level, respectively. In the brain, the ATP level in the M group was 62% of that in the S group at 0 minute of ischemia, and the 5'-monophosphate (AMP) level was 276% of that in the S group. Brain dopamine metabolism was facilitated by dexamethasone, and suppressed by metyrapone.
CONCLUSIONS
The relationship between effects of glucocorticoids on ischemia-induced changes in energy levels and cellular viability was not clearly elucidated.
Collapse