1
|
Doering JA, Dubiel J, Wiseman S. Predicting Early Life Stage Mortality in Birds and Fishes from Exposure to Low-Potency Agonists of the Aryl Hydrocarbon Receptor: A Cross-Species Quantitative Adverse Outcome Pathway Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2055-2064. [PMID: 32648946 DOI: 10.1002/etc.4816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Dioxin-like compounds (DLCs) cause early life stage mortality of vertebrates through activation of the aryl hydrocarbon receptor (AhR). A prior study developed a cross-species quantitative adverse outcome pathway (qAOP) which can predict full dose-response curves of early life stage mortality for any species of bird or fish exposed to DLCs using the species- and chemical-specific 50% effect concentration (EC50) from an in vitro AhR transactivation assay with COS-7 cells. However, calculating a reliable EC50 for input into this qAOP requires the maximal response of the concentration-response curve to be known, which is not always possible for low-potency agonists, such as some polychlorinated biphenyls (PCBs). To enable predictions for these low-potency agonists, the present study revised this qAOP to use the effect concentration threshold (ECThreshold ) from the in vitro AhR transactivation assay as input. Significant linear relationships were demonstrated between ECThreshold and the dose to cause 0, 10, 50, or 100% mortality among early life stages of 3 species of birds and 7 species of fish for 4 DLCs: 2,3,7,8-tetrachlorodibenzo-p-dioxin, PCB 126, PCB 77, and PCB 105. These 4 linear relationships were combined to form the revised qAOP. This qAOP using the ECThreshold enables prediction of experimental dose-response curves for lower-potency agonists to within an order of magnitude on average, but the prior qAOP using EC50 predicts experimental dose-response curves for higher-potency agonists with greater accuracy. Environ Toxicol Chem 2020;39:2055-2064. © 2020 SETAC.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Dean KM, Marcell AM, Baltos LD, Carro T, Bohannon MEB, Ottinger MA. Comparative Lethality of In ovo Exposure to PCB 126, PCB 77, and 2 Environmentally Relevant PCB Mixtures in Japanese Quail (Coturnix japonica). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2637-2650. [PMID: 31436847 DOI: 10.1002/etc.4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/08/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The Japanese quail (Coturnix japonica) egg bioassay was used to directly compare the toxicity of 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 3,3',4,4'-tetrachlorobiphenyl (PCB 77), and 2 environmentally relevant polychlorinated biphenyl (PCB) mixtures over specified dose ranges relative to vehicle and uninjected controls. Measures included lethality and deformities. Results showed clear dose-response relationships for PCB 126 and the 2 PCB mixtures by logistic analysis of covariance using a varying threshold model because there was a low but significant slope for mortality of vehicle controls over incubation. No dose-dependent increase in mortality was observed with PCB 77 treatment. Mortality increased above baseline for PCB 126 and the 2 mixtures after embryonic day 7 (ED07) to a stable slope from ED10. Median lethal doses and thresholds for response differed for PCB 126 and the 2 PCB mixtures, with the mixtures having lower initial toxicity and all showing progressively greater toxicity over the course of development. Further, the lethality of the PCB mixtures appeared to involve both aryl hydrocarbon receptor (AhR) and non-AhR mechanisms. Incidence of deformities was unrelated to treatments. In summary, complex mixtures of PCBs were lethal in a dose-related manner, with sublethal effects from exposure to PCB 77. Environ Toxicol Chem 2019;38:2637-2650. © 2019 SETAC.
Collapse
Affiliation(s)
- Karen M Dean
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Allegra M Marcell
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Leah D Baltos
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Tiffany Carro
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Meredith E B Bohannon
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
4
|
Dean KM, Baltos LD, Marcell AM, Bohannon MEB, Iwaniuk AN, Ottinger MA. Uptake of radiolabeled 3,3',4,4'-tetrachlorobiphenyl into Japanese quail egg compartments and embryo following air cell and albumen injection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:126-135. [PMID: 28865120 DOI: 10.1002/etc.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/21/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
The avian embryo is an excellent model for testing adverse developmental effects of environmental chemicals as well as uptake and movement of xenobiotics within the egg compartments. Before incubation at embryonic day 0, 14 C 3,3',4,4'-tetrachlorobiphenyl (14 C PCB 77) was injected into Japanese quail eggs either onto the air cell or into the albumen. All egg components were collected on embryonic day 1, 5, or 10, and concentrations of 14 C PCB 77 were measured in various egg components (shell, membrane, yolk, albumen, and embryo). The results showed measurable 14 C PCB 77 in all egg components, with changing concentrations in each egg component over the course of embryonic development. Specifically, concentrations in the shell content decreased between embryonic days 1 and 10, increased in albumen from embryonic days 1 to 5 and then decreased at embryonic day 10, and increased in both yolk and embryo from embryonic days 1 to 10. Vehicle and injection site both influenced 14 C PCB 77 allantoic fluid concentrations, with little effect on other egg components except for the inner shell membrane. The fatty acid vehicle injected into the albumen yielded the highest 14 C PCB 77 recovery. These findings demonstrate dynamic movement of toxicants throughout the egg components during avian embryonic development and a steady increase of relatively low levels of 14 C PCB 77 in the embryo compared with the yolk, albumen, and shell, suggesting that embryonic uptake (i.e., exposure) mirrors utilization of egg components for nutrition and growth during development. Environ Toxicol Chem 2018;37:126-135. © 2017 SETAC.
Collapse
Affiliation(s)
- Karen M Dean
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Leah D Baltos
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Allegra M Marcell
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Meredith E B Bohannon
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Andrew N Iwaniuk
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Jönsson ME, Mattsson A, Shaik S, Brunström B. Toxicity and cytochrome P450 1A mRNA induction by 6-formylindolo[3,2-b]carbazole (FICZ) in chicken and Japanese quail embryos. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:125-36. [PMID: 26456929 DOI: 10.1016/j.cbpc.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022]
Abstract
The tryptophan derivative formylindolo[3,2-b]carbazole (FICZ) binds with high ligand affinity to the aryl hydrocarbon receptor (AHR) and is readily degraded by AHR-regulated cytochrome P450 family 1 (CYP1) enzymes. Whether in vivo exposure to FICZ can result in toxic effects has not been examined and the main objective of this study was to determine if FICZ is embryotoxic in birds. We examined toxicity and CYP1 mRNA induction of FICZ in embryos from chicken (Gallus domesticus) and Japanese quail (Coturnix japonica) exposed to FICZ (2-200μgkg(-1)) by yolk and air sac injections. FICZ caused liver toxicity, embryo mortality, and CYP1A4 and CYP1A5 induction in both species with similar potency. This is in stark contrast to the very large difference in sensitivity of these species to halogenated AHR agonists. We also exposed chicken embryos to a low dose of FICZ (4μgkg(-1)) in combination with a CYP inhibitor, ketoconazole (KCZ). The mixture of FICZ and KCZ was lethal while FICZ alone had no effect at 4μgkg(-1). Furthermore, mixed exposure to FICZ and KCZ caused stronger and more long-lasting hepatic CYP1A4 induction than exposure to each compound alone. These findings indicate reduced biotransformation of FICZ by co-treatment with KCZ as a cause for the enhanced effects although additive AHR activation is also possible. To conclude, FICZ is toxic to bird embryos and it seems reasonable that the toxicity by FICZ involves AHR activation. However, the molecular targets and biological events leading to hepatic damage and mortality are unknown.
Collapse
Affiliation(s)
- Maria E Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden.
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Siraz Shaik
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Park YJ, Lee MJ, Kim HR, Chung KH, Oh SM. Developmental toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in artificially fertilized crucian carp (Carassius auratus) embryo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 491-492:271-278. [PMID: 24751158 DOI: 10.1016/j.scitotenv.2014.03.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent bioaccumulative environmental contaminant that is an endocrine disruptor. Embryos of various fish species are responsive to TCDD and have been used as an alternative method to the acute toxicity test with juvenile and adult fish. The TCDD test has similar endpoints of developmental toxicity. However, their sensitivity and signs of TCDD-induced toxicity are different depending on fish species and its habit. Crucian carp (Carassius auratus) - the sentinel species for persistent organic pollutants and a common foodfish in China, Japan, and Korea - was used to identify the developmental toxicity of TCDD. We obtained the fertilized eggs from the artificial fertilization of crucian carp (97.45% success rate). Embryos at 3h post fertilization (hpf) were exposed to no vehicle, vehicle (dimethylsulfoxide, 0.1% v/v) or TCDD (0.128, 0.32, 0.8, 2 and 5 μg/L) for 1h and then fresh water was changed and aerated. Embryonic development and toxicity were monitored until 150 hpf. TCDD-exposed group showed no effects on embryo mortality and hatching rate from 6 to 126 hpf. On the other hand, the post-hatching mortality rate in TCDD-exposed group was increased in a dose-dependent manner, especially at high doses (0.8, 2 and 5 μg/L). The LD50 for larval mortality was calculated to 0.24 ng TCDD/g embryo. Pericardial edema was continuously observed in larvae of TCDD-exposed groups from hatching complete time (78 hpf), followed by the onset of yolk sac edema. Hemorrhage and edema showed a significant increase depending on exposure concentration and time. Expression of TCDD-related CYP1A genes was evaluated quantitatively. Embryo and larvae in TCDD-exposed groups displayed a significant increase of CYP1A gene expression. Overall, we defined TCDD-induced toxicity in artificially fertilized crucian carp embryo and these results suggest that crucian carp can be applied as an early life stage model of TCDD-induced toxicity.
Collapse
Affiliation(s)
- Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Min Jee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea.
| | - Seung Min Oh
- Fusion Technology Laboratory, Hoseo University, Hoseoro 79, bungil 20, Baebang-myun, Asan, Chungnam 336-795, South Korea.
| |
Collapse
|
7
|
Zhang R, Manning GE, Farmahin R, Crump D, Zhang X, Kennedy SW. Relative potencies of aroclor mixtures derived from avian in vitro bioassays: comparisons with calculated toxic equivalents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8852-8861. [PMID: 23815337 DOI: 10.1021/es401340t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The World Health Organization toxic equivalency factors (WHO-TEFs) for birds were developed to simplify risk assessments of environmental mixtures of dioxin-like compounds (DLCs). Under this framework, toxic equivalents (TEQs) are used to represent the toxic potency of DLC mixtures as an equivalent concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Recently, a luciferase reporter gene (LRG) assay, measuring aryl hydrocarbon receptor 1 (AHR1)-mediated gene expression, accurately predicted the relative potency of individual polychlorinated biphenyl (PCB) congeners in different avian species. The study presented here used the LRG assay to predict the relative potency of Aroclors 1016, 1221, 1242, 1248, 1254, and 1260 on induction of LRG activity in cells transfected with chicken, ring-necked pheasant, or Japanese quail AHR1 constructs. LRG assay results were compared to (1) results of ethoxyresorufin-O-deethylase (EROD) assays conducted in chicken hepatocytes and (2) calculated TEQs from the literature. The relative potencies of Aroclors were similar between the LRG and EROD assays, and bioassay-derived TEQs for the chicken closely resembled calculated TEQs. However, LRG assay-derived TEQs for the Japanese quail construct were 1-2 orders of magnitude higher than calculated TEQs for Aroclors 1254 and 1016. These results suggest that the WHO-TEFs are not representative of relative PCB potency for all avian species.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing, PR China, 210023
| | | | | | | | | | | |
Collapse
|
8
|
A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species. Toxicol Appl Pharmacol 2012; 263:390-401. [DOI: 10.1016/j.taap.2012.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
|
9
|
Jönsson ME, Woodin BR, Stegeman JJ, Brunström B. Cytochrome p450 1 genes in birds: evolutionary relationships and transcription profiles in chicken and Japanese quail embryos. PLoS One 2011; 6:e28257. [PMID: 22164255 PMCID: PMC3229566 DOI: 10.1371/journal.pone.0028257] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/04/2011] [Indexed: 01/08/2023] Open
Abstract
Background Cytochrome P450 1 (CYP1) genes are biomarkers for aryl hydrocarbon receptor (AHR) agonists and may be involved in some of their toxic effects. CYP1s other than the CYP1As are poorly studied in birds. Here we characterize avian CYP1B and CYP1C genes and the expression of the identified CYP1 genes and AHR1, comparing basal and induced levels in chicken and quail embryos. Methodology/Principal Findings We cloned cDNAs of chicken CYP1C1 and quail CYP1B1 and AHR1. CYP1Cs occur in several bird genomes, but we found no CYP1C gene in quail. The CYP1C genomic region is highly conserved among vertebrates. This region also shares some synteny with the CYP1B region, consistent with CYP1B and CYP1C genes deriving from duplication of a common ancestor gene. Real-time RT-PCR analyses revealed similar tissue distribution patterns for CYP1A4, CYP1A5, CYP1B1, and AHR1 mRNA in chicken and quail embryos, with the highest basal expression of the CYP1As in liver, and of CYP1B1 in eye, brain, and heart. Chicken CYP1C1 mRNA levels were appreciable in eye and heart but relatively low in other organs. Basal transcript levels of the CYP1As were higher in quail than in chicken, while CYP1B1 levels were similar in the two species. 3,3′,4,5,5′-Pentachlorobiphenyl induced all CYP1s in chicken; in quail a 1000-fold higher dose induced the CYP1As, but not CYP1B1. Conclusions/Significance The apparent absence of CYP1C1 in quail, and weak expression and induction of CYP1C1 in chicken suggest that CYP1Cs have diminishing roles in tetrapods; similar tissue expression suggests that such roles may be met by CYP1B1. Tissue distribution of CYP1B and CYP1C transcripts in birds resembles that previously found in zebrafish, suggesting that these genes serve similar functions in diverse vertebrates. Determining CYP1 catalytic functions in different species should indicate the evolving roles of these duplicated genes in physiological and toxicological processes.
Collapse
Affiliation(s)
- Maria E Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
10
|
Henshel DS, DeWitt J, Troutman A. Using chicken embryos for teratology studies. ACTA ACUST UNITED AC 2011; Chapter 13:Unit 13.4.1-19. [PMID: 20960427 DOI: 10.1002/0471140856.tx1304s14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit describes methods for injecting, incubating, handling and analyzing domestic chicken embryos used in teratology studies. It also includes a discussion of caveats and special handling issues as well as some discussion of statistical analyses that differentiate working with chicken embryos from working with clutches of eggs or litters of pups. As an example of potential data, preliminary data from a study of abnormalities in early embryos and hatchling chicks exposed to chlordane are presented.
Collapse
|
11
|
New CYP1 genes in the frog Xenopus (Silurana) tropicalis: induction patterns and effects of AHR agonists during development. Toxicol Appl Pharmacol 2010; 250:170-83. [PMID: 20965207 DOI: 10.1016/j.taap.2010.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 11/22/2022]
Abstract
The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), β-naphthoflavone (βNF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versus the control, respectively). βNF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and βNF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 μM PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 μM PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.
Collapse
|
12
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
13
|
INOMATA T, SEKIGUCHI M, HIRAYAMA S, AKAHORI F, SHIRAI M, KASHIWAZAKI N, ITO J, HISAMATSU S, SAKITA K, NINOMIYA H. An Assessment of Mutagenic Effect of 3, 3', 4, 4', 5 Pentachlorobiphenyl (PCB126) in Muta Mouse Fetuses. J Vet Med Sci 2009; 71:529-33. [DOI: 10.1292/jvms.71.529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tomo INOMATA
- Department of Laboratory Animal Science, School of Veterinary Medicine, Azabu University
- Research Institute of Biosciences, Azabu University
| | - Midori SEKIGUCHI
- Department of Laboratory Animal Science, School of Veterinary Medicine, Azabu University
| | - Shunsuke HIRAYAMA
- Department of Laboratory Animal Science, School of Veterinary Medicine, Azabu University
| | - Fumiaki AKAHORI
- Department of Pharmacology, School of Veterinary Medicine, Azabu University
| | - Mitsuyuki SHIRAI
- Department of Pharmacology, School of Veterinary Medicine, Azabu University
| | - Naomi KASHIWAZAKI
- Department of Animal Reproduction, School of Veterinary Medicine, Azabu University
| | - Junya ITO
- Department of Animal Reproduction, School of Veterinary Medicine, Azabu University
| | - Shin HISAMATSU
- Environmental Analysis, School of Life and Environmental Science, Azabu University
| | | | - Hiroyoshi NINOMIYA
- Department of Laboratory Animal Science, School of Veterinary Medicine, Azabu University
| |
Collapse
|
14
|
Augspurger TP, Tillitt DE, Bursian SJ, Fitzgerald SD, Hinton DE, Di Giulio RT. Embryo toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the wood duck (Aix sponsa). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 55:659-669. [PMID: 18704254 DOI: 10.1007/s00244-008-9198-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 07/05/2008] [Indexed: 05/26/2023]
Abstract
We examined the sensitivity of the wood duck (Aix sponsa) embryo to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by injecting the toxicant into their eggs. Six groups of wood duck eggs (n = 35 to 211 per trial) were injected with 0 to 4600 pg TCDD/g egg between 2003 and 2005. Injections were made into yolk prior to incubation, and eggs were subsequently incubated and assessed weekly for mortality. Significant TCDD-induced mortality was not observed through day 25 (90% of incubation). Liver, heart, eye, and brain histology were generally unremarkable. Hepatic ethoxyresorufin-O-deethylase activity, a biomarker of dioxin-like compound exposure, was induced by 12-fold in the 4600 pg/g treatment relative to controls. The median lethal dose for chicken (Gallus domesticus) eggs we dosed identically to wood duck eggs was about 100 pg/g, similar to other assessments of chickens. Among dioxin-like compound embryo lethality data for 15 avian genera, the wood duck 4600 pg/g no-observed-effect level ranks near the middle. Because no higher doses were tested, wood ducks may be like other waterfowl (order Anseriformes), which are comparatively tolerant to embryo mortality from polychlorinated dibenzo-p-dioxins and dibenzofurans when exposed by egg injection.
Collapse
Affiliation(s)
- T P Augspurger
- U.S. Fish and Wildlife Service, 551-F Pylon Drive, Raleigh, NC 27606, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Head JA, Hahn ME, Kennedy SW. Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7535-7541. [PMID: 18939598 DOI: 10.1021/es801082a] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dioxin-like compounds are toxic to most vertebrates, but significant differences in sensitivity exist among species. A recent study suggests that the amino acid residues corresponding to Ile324 and Ser380 in the chicken aryl hydrocarbon receptor 1 (AHR1) are important determinants of differential biochemical responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in chickens and common terns. Here, we investigate whether the identity of these amino acid residues can predict embryonic sensitivity to dioxin-like compounds in a wide range of birds. AHR1 sequences were determined in species for which sensitivity data were available. Of all the species surveyed, chickens were unique in having the Ile/Ser genotype and were also the most sensitive to dioxin-like compounds. Turkeys, ring-necked pheasants, and Eastern bluebirds (intermediate Ile/Ala genotype) were less sensitive than chickens but more sensitive than American kestrels, common terns, double-crested cormorants, Japanese quail, herring gulls, or ducks (Val/ Ala genotype). Our work suggests that key amino acids in the AHR1 ligand binding domain are predictive of broad categories of dioxin sensitivity in avian species. Given the large degree of variation in species sensitivity and the paucity of species-specific toxicity data, a genetic screen based on these findings could substantially improve risk assessment for dioxin-like compounds in wild birds.
Collapse
Affiliation(s)
- Jessica A Head
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
16
|
Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE, Heideman W. Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 2006; 70:549-61. [PMID: 16714409 DOI: 10.1124/mol.106.025304] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proper regulation of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, is required for normal vertebrate cardiovascular development. AHR hyperactivation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during zebrafish (Danio rerio) development results in altered heart morphology and function, culminating in death. To identify genes that may cause cardiac toxicity, we analyzed the transcriptional response to TCDD in zebrafish hearts. Zebrafish larvae were exposed to TCDD for 1 h at 72 h after fertilization (hpf), and the hearts were extracted for microarray analysis at 1, 2, 4, and 12 h after exposure (73, 74, 76, and 84 h postfertilization). The remaining body tissue was also collected at each time for comparison. TCDD rapidly induced expression in 42 genes within 1 to2hof exposure. These genes function in xenobiotic metabolism, proliferation, heart contractility, and pathways that regulate heart development. Furthermore, these expression changes preceded signs of cardiovascular toxicity, characterized by decreased stroke volume, peripheral blood flow, and a halt in heart growth. This identifies strong candidates for important AHR target genes. It is noteworthy that the TCDD-induced transcriptional response in the hearts of zebrafish larvae was substantially different from that induced in the rest of the body tissues. One of the biggest differences included a cluster of genes that were down-regulated 12 h after exposure in heart tissue, but not in the body samples. More than 70% of the transcripts in this heart-specific cluster promote cellular growth and proliferation. Thus, the developing heart stands out as being responsive to TCDD at both the level of toxicity and gene expression.
Collapse
Affiliation(s)
- Sara A Carney
- Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
17
|
Karchner SI, Franks DG, Kennedy SW, Hahn ME. The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2006; 103:6252-7. [PMID: 16606854 PMCID: PMC1435364 DOI: 10.1073/pnas.0509950103] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [3H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxin-like compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.
Collapse
Affiliation(s)
- Sibel I. Karchner
- *Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
| | - Diana G. Franks
- *Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
| | - Sean W. Kennedy
- Environment Canada, Canadian Wildlife Service/National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3
| | - Mark E. Hahn
- *Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Carney SA, Prasch AL, Heideman W, Peterson RE. Understanding dioxin developmental toxicity using the zebrafish model. ACTA ACUST UNITED AC 2006; 76:7-18. [PMID: 16333842 DOI: 10.1002/bdra.20216] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zebrafish (Danio rerio) have advantages over mammals as an animal model for investigating developmental toxicity. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin, TCDD), a persistent global contaminant, is the most comprehensively studied developmental toxicant in zebrafish. The hallmark responses of TCDD developmental toxicity manifested in zebrafish larvae include edema, anemia, hemorrhage, and ischemia associated with arrested growth and development. Heart and vasculature development and function are severely impaired, and jaw malformations occur secondary to inhibited chondrogenesis. The swim bladder fails to inflate, and the switch from embryonic to adult erythropoiesis is blocked. This profile of developmental toxicity responses, commonly referred to as "blue sac syndrome" because the edematous yolk sac appears blue, is observed in the larval form of all freshwater fish species exposed to TCDD at the embryonic stage of development. Components of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AHR/ARNT) signaling pathway in zebrafish have been identified and functionally characterized. Their role in mediating TCDD toxicity has been determined using morpholinos to specifically knockdown the translation of zfAHR1, zfAHR2, zfARNT1, and zfARNT2 mRNAs, respectively, and a line of zfARNT2 null mutant zebrafish has provided further insight. These studies have shown that zfAHR2 and zfARNT1 mediate TCDD developmental toxicity. In addition, the growing use of molecular and genomic tools for research on zebrafish have led to advances in our understanding of the mechanism of TCDD developmental toxicity at the molecular level, including the recent finding that toxicity is not mediated by increased cytochrome P4501A (zfCYP1A) expression.
Collapse
Affiliation(s)
- Sara A Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53705-2222, USA
| | | | | | | |
Collapse
|
19
|
Katynski AL, Vijayan MM, Kennedy SW, Moon TW. 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) impacts hepatic lipid peroxidation, membrane fluidity and beta-adrenoceptor kinetics in chick embryos. Comp Biochem Physiol C Toxicol Pharmacol 2004; 137:81-93. [PMID: 14984707 DOI: 10.1016/j.cca.2003.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 11/22/2003] [Accepted: 11/23/2003] [Indexed: 10/26/2022]
Abstract
Polychlorinated biphenyls (PCB) and other aryl hydrocarbon receptor (AHR) agonists induce oxidative stress and alter membrane lipid peroxidation and fluidity. This study tested the hypothesis that PCB-induced changes in membrane properties impact membrane beta-adrenoceptor (beta-AR) affinity and capacity in chick embryo hepatocytes. Embryos were injected into the air cell with 1.6 microg 3,3',4,4',5-pentachlorobiphenyl (PCB 126)/kg egg at day 0, and incubated to day 19 when livers were removed. This dose resulted in hepatic PCB 126 levels of 0.67 ng/g liver or 10.2 ng/g liver lipid; levels in untreated embryos were non-detectable. Hepatic microsomal EROD activity was elevated by approximately 12-fold and embryo mortality was significantly increased compared with the untreated group. Hepatic lipid peroxidation increased and membrane order (steady-state fluorescence anisotropy values) decreased with in ovo PCB 126 exposure. Consistent with changes in membrane structure, hepatic beta-AR affinity for CGP 12177 significantly decreased (Kd increased) without changes in receptor numbers. This study demonstrates that in ovo exposure to PCB 126 in chick eggs significantly impacted embryo survival, and this was correlated with altered hepatic membrane structure and ultimately membrane function.
Collapse
Affiliation(s)
- A L Katynski
- Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | | | | | | |
Collapse
|
20
|
|
21
|
Sanderson JT, Norstrom RJ, Elliott JE, Hart LE, Cheng KM, Bellward GD. Biological effects of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in double-crested cormorant chicks (Phalacrocorax auritus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1994; 41:247-65. [PMID: 8301702 DOI: 10.1080/15287399409531840] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present project assessed the effect of environmental contamination with polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) on hepatic microsomal ethoxyresorufin O-deethylase (EROD) activities and morphological parameters in matched double-crested cormorant (Phalacrocorax auritus) hatchlings from egg clutches chosen for chemical analysis. Double-crested cormorant eggs were collected from five colonies across Canada, with differing levels of contamination. Levels of contamination expressed in sum of 2,3,7,8-tetrachlorodibenzo-p-dioxin-toxic equivalents (TCDD-toxic equivalents or TEQ, ng/kg egg; mean +/- SEM) were: Saskatchewan, 250 +/- 50; Chain Islands, 672 +/- 73; Christy Islet, 276 +/- 14; Crofton, 131, n = 1; and Lake Ontario, 1606 +/- 118. In the hatchlings, hepatic EROD activities (pmol/min/mg protein; mean +/- SEM) were: Saskatchewan, 283 +/- 42; Chain Islands, 516 +/- 98; Christy Islet, 564 +/- 91; Crofton, 391 +/- 52; and Lake Ontario, 2250 +/- 156. Hepatic microsomal EROD activity (pmol/min/mg protein) regressed positively on TEQ (r2 = .69; p < .00005; n = 25). Yolk weight (g) regressed negatively on TEQ (r2 = .44; p = .00005). Wing length (mm) regressed negatively on PCB-169 (r2 = .28; p = .007). Monospecific antibodies raised against rat cytochrome P-450 1A1 recognized a protein in the hepatic microsomes of the double-crested cormorant, and also in those of the great blue heron (Ardea herodias), using immunoblotting. The intensity of the stained band increased with increased EROD activity, supporting the assumption that ethoxyresorufin is a suitable substrate for avian cytochrome P-450 1A1. These results validate the use of avian hepatic microsomal EROD activity as an index of cytochrome P-450 1A1 induction by environmental levels of polychlorinated aromatic hydrocarbons and as a useful screening tool to determine the extent of exposure to such chemicals. Furthermore, the induction of cytochrome P-450 1A1 observed in the cormorant indicates that the Ah receptor-mediated process, by which TCDD and related chemicals exert many of their toxicities, has been activated.
Collapse
Affiliation(s)
- J T Sanderson
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|